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Abstract. A grid approximation of a boundary value problem is considered for
a singularly perturbed parabolic convection–diffusion equation. For this problem,
upwind difference schemes on the well–known piecewise-uniform meshes converge ε-
uniformly in the maximum discrete norm at the rate O(N−1 lnN + N

−1

0
), where

N + 1 and N0 + 1 are the number of mesh points in x and t respectively; the
number of nodes in the x-mesh before the transition point (the point where the step-
size changes) and after it are the same. Under the condition N ≈ N0 this scheme
converges at the rate O(P−1/2 ln P ); here P = (N + 1)(N0 + 1) is the total number
of nodes in the piecewise-uniform mesh. Schemes on piecewise-uniform meshes are
constructed that are optimal with respect to the convergence rate. These schemes
converge ε-uniformly at the rate O(P−1/2 ln1/2

P ). In optimal meshes based on
widths that are similar to Kolmogorov’s widths, the ratio of mesh points in x and t

is of O((ε + ln−1
P )−1). Under the condition ε = o( 1 ), most nodes in such a mesh

in x are placed before the transition point.

Key words: boundary value problem, perturbation parameter ε, parabolic

convection–diffusion equation, finite difference approximation, optimal meshes,

boundary layer, Kolmogorov’s widths, ε-uniform convergence.

1 Introduction

At present, methods for the construction of ε-uniformly convergent difference
schemes on special piecewise-uniform meshes that condense in boundary layers
are sufficiently well developed; e.g., see [2, 4, 9, 10, 12] for partial and [7] for
ordinary differential equations. These methods are widespread because of their
simplicity and convenience (e.g., see [4, 9, 10, 12] and the references therein).
The well-known upwind finite difference scheme on a piecewise-uniform mesh
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converges ε-uniformly in the maximum discrete norm at the rate O(N−1 lnN+
N−1

0 ), where N + 1 and N0 + 1 are the number of mesh points in x and t

respectively (e.g., see [6, 12, 14]). But the convergence rate of such a scheme
is, in general, not optimal with respect to P , where P is the total number of
nodes in this piecewise-uniform mesh and P = (N + 1)(N0 + 1).

Thus, it is of intrinsic interest to construct difference schemes on piecewise-
uniform meshes that converge with an optimal convergence rate; from a theo-
retical and practical point of view, we shall investigate schemes that converge
ε-uniformly in the maximum norm.

In the present paper, a finite difference approximation for a boundary value
problem is considered for a singularly perturbed parabolic convection–diffusion
equation. Using a technique of widths that are similar to Kolmogorov’s widths
(e.g., see [1, 3, 13]), an ε-uniformly convergent difference scheme on a piecewise-
uniform mesh is constructed and studied. This scheme is optimal (for given
P ) with respect to their convergence rate. Also optimal difference schemes are
considered that are constructed using known piecewise-uniform meshes that
condense in the boundary layer.

2 Problem Formulation. The Aim of the Research

2.1. On the set G

G = G ∪ S, G = D × (0, T ], (2.1)

where D = (0, d), we consider the boundary value problem for the singularly
perturbed parabolic convection–diffusion equation

L u(x, t) = f(x, t), (x, t) ∈ G,

u(x, t) = ϕ(x, t), (x, t) ∈ S.
(2.2)

Here

L = ε a(x, t)
∂2

∂x2
+ b(x, t)

∂

∂x
− c(x, t) − p(x, t)

∂

∂t
, (x, t) ∈ G,

the functions a(x, t), b(x, t), c(x, t), p(x, t), f(x, t) are assumed to be suffi-
ciently smooth on the set G, while ϕ(x, t) is assumed to be sufficiently smooth
on the smooth parts of S, moreover1

a0 ≤ a(x, t) ≤ a0, b0 ≤ b(x, t) ≤ b0, 0 ≤ c(x, t) ≤ c0, (2.3)

p0 ≤ p(x, t) ≤ p0, (x, t) ∈ G;

|f(x, t)| ≤ M, (x, t) ∈ G; |ϕ(x, t)| ≤ M, (x, t) ∈ S;

where a0, b0, p0 > 0; the parameter ε takes arbitrary values in the opened-
closed interval (0, 1].

For small values of ε, a regular boundary layer appears in a neighbourhood
of the set SL

1 = {(x, t) : x = 0, 0 < t ≤ T }. Here SL
1 and SL

2 are the left and

1 Here and below, M, Mi (or m) denote sufficiently large (small) positive constants that
are independent of the parameter ε and of the discretization parameters.
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right parts of the lateral boundary SL; S = SL ∪ S0, SL = SL
1 ∪ SL

2 , S0 = S0

is the lower part of the boundary.

2.2. In the case of the boundary value problem (2.2), (2.1), we are inter-
ested in numerical methods whose solutions converge uniformly with respect
to the parameter ε (or, briefly, converge ε-uniformly) in the maximum discrete
norm. Our main interest is in approximations constructed on the set Gh based
on grid solutions that converge ε-uniformly in the maximum norm to the so-
lution of the boundary value problem. But in the case of singularly perturbed
problems, the convergence of the discrete solution on Gh does not imply the
convergence of its interpolants on G. Thus, the ε-uniform convergence of the
discrete solution z(x, t) at the nodes of the grid Gh is, in general, inadequate
for a description of the ε-uniform convergence for approximations constructed
on the set G. For example, the solution of the difference scheme constructed
by the classical approximation of the boundary value problem (2.2), (2.1) on
the uniform mesh Gh(3.3) = G

u

h , converges on the grid Gh as ε−1 h → ∞ for
h → 0, when the characteristic width of the boundary layer defined by the
parameter ε is much less than the step-size of the mesh in x. The simplest
interpolant

z(x, t) = z
(

x, t; z(·), Gh

)

, (x, t) ∈ G, (2.4)

i.e., the linear interpolant on triangular elements (partitions of elementary
rectangles from G, produced by nodes of the grid Gh; it does not matter which
triangulation one constructs from these mesh points) that is constructed from
the grid function does not converge on G to the solution of the boundary value
problem. Under the prescribed condition for the grid Gh(3.3), the interpolant

uh(x, t)z(2.4)

(

x, t; uh(·), Gh

)

, (x, t) ∈ G, constructed from the grid function

uh(x, t) = u(x, t), (x, t) ∈ Gh, where u(x, t) is the solution of the problem (2.2),
(2.1), also does not converge on G. Here and below, we consider a convergence
in the maximum norm.

Let us give some definitions. In the case when the interpolant z(2.4)(x, t),

(x, t) ∈ G, converges on G, we say that the difference scheme resolves the
boundary value problem (for some values of the parameter ε); otherwise, we
say that the difference scheme does not resolve the boundary value problem.
In the case when the interpolant z(x, t), (x, t) ∈ G converges on G ε-uni-
formly, we say that the difference scheme resolves the boundary value problem
ε-uniformly.

We say that the solution of the difference scheme converges (or, briefly, the
difference scheme converges), if the discrete solution converges on Gh and if the
difference scheme resolves the boundary value problem. Here the convergence
(solvability) of the difference scheme can be ε-uniform or be valid only under
some restriction on the parameter.

We are interested in ε-uniformly convergent difference schemes on piec-
ewise-uniform meshes that have optimal convergence rate with respect to P ,
where P is the total number of nodes in such a mesh. For brevity, we say that
these schemes and the associated meshes are optimal.

Math. Model. Anal., 13(1):99–112, 2008.
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2.3. Let us give the aim of this research. For the problem (2.2), (2.1),
known difference schemes on piecewise-uniform meshes from [12] (see also [6,
14]) converge ε-uniformly (see the scheme (3.2), (3.7) and the estimate (3.8)
in Section 3). These schemes are not optimal with respect to P .

Our aim for the boundary value problem (2.2), (2.1) is, in the class of
difference schemes on piecewise-uniform meshes, to construct meshes that are
optimal with respect to P and to study convergence on such meshes in the
maximum norm. Thus, we shall consider optimal meshes that are constructed
based on widths and known piecewise-uniform meshes.

2.4. For the following considerations, we need some estimates. We give
estimates for the solution of the boundary value problem and its derivatives;
the derivation of these estimates is similar to [5, 6, 14]. We write the solution
of problem (2.2) as the decomposition

u(x, t) = U(x, t) + V (x, t), (x, t) ∈ G, (2.5)

where U(x, t) and V (x, t) are the regular and singular parts of the solution.
The functions U(x, t) and V (x, t) satisfy the estimates

∣

∣

∣

∣

∂k+k0

∂xk∂tk0

U(x, t)

∣

∣

∣

∣

≤ M
[

1 + ε2−k
]

, (2.6)

∣

∣

∣

∣

∂k+k0

∂xk∂tk0

V (x, t)

∣

∣

∣

∣

≤ Mε−k exp
(

− mε−1r(x, Γ1)
)

, (x, t) ∈ G,

where k+2 k0 ≤ 4, k ≤ 3, and m is an arbitrary number in the interval (0, m0),
m0 = minG

[

a−1(x, t) b(x, t)
]

, and r(x, Γ1) is the distance from the point x to
the left boundary Γ1 of the set D.

Theorem 1. Let the data of the boundary value problem (2.2), (2.1) satisfy
condition (2.3). Let also the following conditions be fulfilled:

a, , b, , c, p, f ∈ C6+α(G), ϕ ∈ C6+α(S), α > 0,

ϕ(x, t) = 0, (x, t) ∈ S0;

∂k0

∂tk0

ϕ(x, t) = 0,
∂k+k0

∂xk ∂tk0

f(x, t) = 0, (x, t) ∈ Sc,

where k, k0 ≤ 6, Sc = S
L⋂

S0. Then the solution of the boundary value prob-
lem and its components in the representation (2.5) satisfy the estimates (2.6).

3 Schemes on Uniform and Piecewise-Uniform Meshes

Let us consider monotone difference schemes.

3.1. On the set G, we introduce the rectangular grid

Gh = ω × ω0, (3.1)
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where ω and ω0 are, in general, arbitrary nonuniform meshes on the intervals
[0, d] and [0, T ] respectively. Let

hi = xi+1 − xi, xi, xi+1 ∈ ω, h = max
i

hi, hk
t = tk+1 − tk,

tk, tk+1 ∈ ω0, ht = max
k

hk
t .

Assume that the conditions h ≤ M N−1, ht ≤ M N−1
0 are satisfied, where

N +1 and N0+1 are the number of nodes in the meshes ω and ω0 respectively.

We approximate problem (2.2), (2.1) by the finite difference scheme [11]

Λ z(x, t) = f(x, t), (x, t) ∈ Gh,

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.
(3.2)

Here Gh = G ∩ Gh, Sh = S ∩ Gh,

Λ ≡ ε a(x, t) δxbx + b(x, t) δx − c(x, t) − p(x, t) δt, (x, t) ∈ Gh,

and δxbx z(x, t) is the second-order central difference derivative on the nonuni-
form mesh,

δxbx z(x, t) = 2(hi + hi−1)−1[δx z(x, t) − δx z(x, t)], (x, t) = (xi, t) ∈ Gh;

δx z(x, t) and δx z(x, t) are the first-order forward and backward difference
derivatives. The scheme (3.2), (3.1) is ε-uniformly monotone [11].

3.2. In the case when the grid is uniform in both variables:

Gh = G
u

h ω × ω0, (3.3)

then using the maximum principle, we obtain the estimate

|u(x, t) − z(x, t)| ≤ M
[

(

ε + N−1
)−1

N−1 + N−1
0

]

, (x, t) ∈ Gh; (3.4)

which is unimprovable with respect to N, N0, ε.

The interpolant z(x, t) = z(2.4)

(

x, t; z(3.2), (3.3)(·), G
u

h

)

satisfies the esti-
mate

|u(x, t) − z(x, t)| ≤ M
[

(

ε + N−1
)−1

N−1 + N−1
0

]

, (x, t) ∈ G. (3.5)

The scheme (3.2), (3.3) converges under the condition N−1 ≪ ε; more pre-
cisely,

ε−1 = o(N), N → ∞, ε ∈ (0, 1]. (3.6)

3.3. Let us construct the ε-uniformly convergent scheme (see, e.g., [9, 12]).
On the set G, we introduce the grid

Gh = G
s

h ≡ ω s × ω0, (3.7a)

Math. Model. Anal., 13(1):99–112, 2008.
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where ω0 = ω0(3.3) and ω s is a piecewise uniform mesh constructed as follows.
The interval [0, d] is divided into two parts [0, σ] and [σ, d], where the step-
sizes in each part are constant and respectively equal to h(1) = 2 σ N−1 and
h(2) = 2(d − σ)N−1. The parameter σ is defined by

σ = σ(ε, N) = min
[

2−1 d, m−1 ε lnN
]

, (3.7b)

where m is an arbitrary number in the interval (0, m0), and m0 = m0(2.6).

The parameter σ in the grid (3.7) of the scheme (3.2), (3.7) is chosen
to satisfy the condition that the singular component of the discrete solution
converges ε-uniformly in the σ-neighbourhood of the set SL

1 and its majorant
converges to zero ε-uniformly outside that neighbourhood [12]. Thus, the
difference scheme (3.2), (3.7) is the scheme on the piecewise-uniform grid that
is apriori adapted with respect to an indicator, i.e., the grid boundary layer
and its majorant (in a neighbourhood of the boundary layer and outside it,
respectively).

We now deduce the error bound for the solution of the difference scheme
(3.2), (3.7). Write the solution of the difference scheme as the decomposition

z(x, t) = zU (x, t) + zV (x, t), (x, t) ∈ Gh,

that corresponds to (2.5). Here zU (x, t) and zV (x, t) are the regular and
singular components of the discrete solution, and they are solutions of the
problems






Λ zU(x, t) = f(x, t), (x, t) ∈ Gh,

zU (x, t) = U(x, t), (x, t) ∈ Sh;







Λ zV (x, t) = 0, (x, t) ∈ Gh,

zV (x, t) = V (x, t), (x, t) ∈ Sh,

where U(x, t) and V (x, t) are the components in the representation (2.5). Tak-
ing into account the estimates of derivatives of the function U(x, t), we find

|U(x, t) − zU (x, t)| ≤ M
[

N−1 + N−1
0

]

, (x, t) ∈ Gh.

Estimating V (x, t) − zV (x, t) outside a neighbourhood of the set S
L

1 , we
take into account that the functions V (x, t) and zV (x, t) decay towards zero

as (x, t) moves away from the set S
L

1 . As a majorant for V (x, t) and zV (x, t),
we use the function v(x), x ∈ ωs, that is the solution of the problem

Λ v(x1) ≡ {ε δxbx + m1 δx} v(x) = 0, x ∈ ω se,

v(x) = 1, x = 0,

where the function v(x) tends to zero as x → ∞, and m1 is an arbitrary
number in the interval (0, m0) for m0 = m0(2.6). The mesh ω se

1 on the set
[0, ∞) is the extension of the mesh ω s

1(3.7) for x > d; the step-size in ω se
1 for

x ≥ σ is h(2)(3.7).
With these estimates for the functions V (x, t) and zV (x, t) for x ≥ σ, we

estimate V (x, t) − zV (x, t) for x ≤ σ. For x ≤ σ the grid Gh is uniform with
step-size in x equal to h(1)(3.7).
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For the component zV (x, t), we obtain the estimate

|V (x, t) − zV (x, t)| ≤ M
[

N−1 lnN + N−1
0

]

, (x, t) ∈ Gh.

Thus, for the solution of the scheme (3.2), (3.7), we obtain the ε-dependent
estimate

|u(x, t) − z(x, t)| ≤ M
[

(ε + ln−1 N)−1 N−1 + N−1
0

]

, (x, t) ∈ Gh (3.8a)

and the ε-uniform estimate

|u(x, t) − z(x, t)| ≤ M
[

N−1 lnN + N−1
0

]

, (x, t) ∈ Gh, (3.8b)

which are unimprovable with respect to N, N0, ε and N, N0 respectively.

The interpolant z(x, t) = z(2.4)

(

x, t; z(3.2), (3.7)(·), G
s

h

)

satisfies the esti-
mate

|u(x, t) − z(x, t)| ≤ M
[

N−1 lnN + N−1
0

]

, (x, t) ∈ G. (3.9)

Theorem 2. Let the components in the representation (2.5) of the solution
u(x, t) of the boundary value problem (2.2), (2.1) satisfy the estimates of The-
orem 1. Then the difference scheme (3.2), (3.7) converges ε-uniformly, while
the scheme (3.2), (3.3) converges under the condition (3.6). The discrete so-
lutions and their interpolants satisfy the respective estimates (3.4), (3.8) and
(3.5), (3.9).

4 Optimal Approximations of Problem Solutions

Consider approximations of solutions of the problem (2.2), (2.1), using an
analog of Kolmogorov’s widths (e.g., see [1, 3]) and the references therein).

4.1. We are interested in approximations of the set U of solutions of the
class of the boundary value problems (2.2), (2.1) (defined by the conditions
(2.3)) in the space X of continuous functions on G with the discrete maximum
norm. We assume that the solutions are sufficiently smooth on G for fixed
values of the parameter ε and also the solutions and their components in the
representation (2.5) satisfy the estimates (2.6) from Section 2.

Let G
h

be the set of points (we say the grid) on G. The number of nodes in

the grid G
h

on G is denoted by P and G
h

= G
h
(P ). Let TP be a triangulation

(partition) of the set G, generated by G
h

(e.g., see [8]); assume that the nodes

of G
h

are the vertices of triangular elements are formed by the straight line

segments that pass through the nodes of G
h
.

Let ρ1(T
j
P ) and ρ2(T

j
P ), where T

j
P is a triangular element in the partition

TP , be the radii of the inscribed and circumscribed circles for the element
T

j
P , j = 1, . . . , J and J = J(P ) is the number of triangular elements in the

partition TP (assume that the condition J ≈ P holds). The value η(T j
P ) =

ρ−1
1 (T j

P ) ρ2(T
j
P ) is the anisotropy coefficient for the element T

j
P . Let a discrete

function uh(x, t), (x, t) ∈ G
h

be defined on the set G
h

and we denote by

Math. Model. Anal., 13(1):99–112, 2008.
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uh(x, t), (x, t) ∈ G its linear interpolant constructed from the values of uh(x, t)
at the vertices of the triangular elements. The set of the interpolants for the
fixed triangulation TP is denoted by Uh

P . For a fixed number of nodes P in G,

the set of all admissible grid sets G
h

and of triangulations TP based on them
will be denoted by TP (we say that TP is the set of partitions of the domain G).
The set of partitions TP and the set of interpolants Uh

P (for each triangulation
in TP ) define the space X . We define the width d∗P (U , X) (the optimal width)
by the relation

d∗P (U , X) = inf
TP

sup
u∈U

inf
u h∈Uh

P

||u − uh ||, (4.1)

|| · || is the norm in C. A definition of Kolmogorov’s width can be found, for
example, in [1], Chapter 3. The quantity d∗P (U , X) is interpreted as the error
of the optimal approximation of the set U in the space X (on a grid with P

nodes) or, briefly, the error of the optimal approximation.
Let

d1∗
P

(

U , X∧

)

(4.2a)

be the width (4.1), where the set G
h

is a rectangular grid G
∧

h in G:

G
∧

h = ω ∧
1 × ω ∧

0 (4.2b)

with an arbitrary distribution of nodes in the meshes ω ∧
1 and ω ∧

0 in x and t

respectively.

4.2. Consider the width d1∗
P (4.2) on a class of grids G

∧

h(4.2) which are piece-
wise uniform in x:

G
∧

h = G
∧S

h ≡ ω ∧S
1 × ω ∧

0 , (4.3)

where ω ∧S
1 is a piecewise uniform mesh, i.e., uniform on the sets [0, σ ∧] and

[σ ∧, d]. In that case we obtain the (unimprovable with respect to P , ε) esti-
mate

d1∗
P

(

U , X∧; G
∧

h(4.3)

)

≤

{

M P−1 lnP for ε lnP ≤ m1,

M ε−1 P−1 for ε lnP > m1,
(4.4a)

and also the ε–uniform (unimprovable) estimate

d1∗
P

(

U , X∧; G
∧

h(4.3)

)

≤ M P−1 lnP. (4.4b)

This means that the width converges ε–uniformly.

The parameters of the grid (4.3) related to the width d1∗
P

(

U , X∧; G
∧

h(4.3)

)

(which we call the optimal piecewise-uniform grid for the width) satisfy the
estimates

N ∧ ≤

{

M P 1/2 ln1/2 P for ε lnP ≤ m1,

M P 1/2 ε−1/2 for ε lnP > m1;
(4.5a)

N ∧
0 ≤

{

M P 1/2 ln−1/2 P for ε lnP ≤ m1,

M P 1/2 ε1/2 for ε lnP > m1;

η(P, ε) ≤ M ε−1,
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where N∧ +1 and N∧
0 +1 are the number of nodes in the meshes ω ∧S

1 and ω ∧
0

respectively and P = (N∧+1)(N∧
0 +1). The estimates (4.5a) are unimprovable

with respect to P and ε. Thus, for the optimal grid, the anisotropy of the grid
is of O(ε−1) for ε = o(1).

The value N∧
σ , where N∧

σ + 1 is the number of nodes in the set [σ ∧, d],
satisfies the estimate

N∧
σ ≤

{

M P 1/2 ln−1/2 P for ε lnP ≤ m1,

M P 1/2 ε1/2 for ε lnP > m1;
(4.5b)

moreover,

m1 ε lnP ≤ σ∧ = σ∧(P, ε) ≤ M1 ε lnP for ε lnP ≤ m1. (4.5c)

The estimate (4.5a) is unimprovable with respect to P and ε. For ε lnP ≥ M1,
the value σ satisfies the relation σ = d.

Under condition (4.5c), we have

N∧
σ (N ∧)−1 ≈ ln−1 P. (4.5d)

Thus, in the optimal piecewise-uniform grid for the width, most of nodes in the
mesh in x are placed before the transition point, i.e., in the part of the mesh
with the smallest step-size. It is quite obvious that one would get a similar
result for an ordinary differential equation.

4.3. For the width d1∗
P in the case of the grids

G
∧

h = G
∧u

h ≡ ω ∧u
1 × ω ∧

0 , (4.6)

where ω ∧u
1 is the uniform mesh and ω ∧

0 ω ∧
0(4.2), we obtain the estimate

d1∗
P

(

U , X∧; G
∧

h(4.6)

)

≤ M P−1 (ε + P−1)−1. (4.7)

The parameters of the optimal grid satisfy the estimates

N ∧ ≤ M P 1/2 (ε + P−1)−1/2, N ∧
0 ≤ M P 1/2 (ε + P−1)1/2, (4.8)

η ≤ M (ε + P−1)−1.

The estimates (4.7), (4.8) are unimprovable.
The width d1∗

P on the grid (4.6) converges under the (unimprovable) con-
dition P−1 ≪ ε; more precisely,

P−1 = o(ε), P → ∞, ε ∈ (0, 1]. (4.9)

Theorem 3. Let the components in the representation (2.5) of the solution to
the boundary value problem (2.2), (2.1) satisfy the estimates (2.6) for K = 2.
The width d1∗

P (U , X ∧) on the grid (4.3) converges ε-uniformly, while on the
grid (4.6) it converges under the condition (4.9). The widths d1∗

P (U , X ∧) on
the grids (4.3) and (4.6) satisfy the estimates (4.4) and (4.7) respectively;
the parameters of the optimal grids for the widths satisfy the estimates (4.5)
and (4.8).

Math. Model. Anal., 13(1):99–112, 2008.
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5 Schemes on Piecewise-Uniform Grids with Improved

Convergence

5.1. Let us consider the difference scheme (3.2) on a grid that corresponds to
the optimal grid (4.5) for the width (4.2), (4.3). On the set G, we construct a
grid which is piecewise uniform in x:

Gh = G
S

h ≡ ω S
1 × ω0, (5.1a)

where ω S
1 and ω0 are piecewise uniform and uniform meshes respectively; N+1

and N0 + 1 are the number of nodes in the meshes ω S
1 and ω0 respectively,

moreover, (N + 1)(N0 + 1) = P . The values N = N(P, ε) and N0 = N0(P, ε)
are defined by the relations (see (4.5a)):

N ≤

{

M P 1/2 ln1/2 P for ε lnP ≤ m1,

M P 1/2 ε−1/2 for ε lnP > m1;
(5.1b)

N0 ≤

{

M P 1/2 ln−1/2 P for ε lnP ≤ m1,

M P 1/2 ε1/2 for ε lnP > m1;

these relations are unimprovable with respect to P and ε, while the constant
m1 is defined below. The mesh step-sizes of ω S

1 are constant on the intervals
[0, σ] and [σ, d], and are respectively

h(1) = σ N−1
(1) , h(2) = (d − σ)N−1

(2) ,

where N(1) + 1 and N(2) + 1 are the number of mesh points on [0, σ] and
[σ, d], and σ ∈ (0, d]; h(2) ≈ (N0)

−1, moreover, N(1) = N for σ = d. Here

η(P, ε) ≤ M ε−1. By virtue of (4.5d), we have N(2) N−1 ≤ M ln−1 P , i.e.,
most nodes in the mesh in x are placed before the transition point, similarly
to the grid (4.3).

The value σ satisfies the condition

σ = σ(ε, P )min
[

d, M1 ε lnP
]

, (5.1c)

where M1 = 2−1 m−1
(2.6). Set

m1 = M−1
1 d; (5.1d)

in particular, in (5.1b) one can have M = 1. The grid G
S

h has now been
constructed.

In the grid (5.1), the transition point in the mesh ω S
1 coincides with the

right endpoint of the interval [0, d] under the condition ε lnP ≥ m1. In that

case, the grid G
S

h is uniform. The grid (5.1) is the piecewise uniform grid where
the optimal rate (with respect to P ) of convergence to the difference scheme
(3.2) on piecewise uniform meshes is achieved up to a constant multiplier (it
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is optimal with respect to the order). This corresponds to the optimal grid
(4.3) for the width (4.5). We call the grid (5.1) optimal with respect to the
convergence rate of the scheme (3.2) on piecewise-uniform meshes that are
constructed based on widths (or, briefly, the optimal piecewise-uniform grid
based on widths).

For the solution of the difference scheme (3.2) on the grid (5.1), we have
the unimprovable ε-dependent estimate

|u(x, t) − z(x, t)| ≤ M

{

P−1/2 ln1/2 P for ε lnP ≤ m1

P−1/2 ε−1/2 for ε lnP > m1

}

(5.2a)

≤ M P−1/2 (ε + ln−1 P )−1/2, (x, t) ∈ Gh,

and also the unimprovable ε-uniform estimate

|u(x, t) − z(x, t)| ≤ MP−1/2 ln1/2 P, (x, t) ∈ Gh. (5.2b)

Theorem 4. Let the condition of Theorem 2 be satisfied. Then the solution
of the difference scheme (3.2), (5.1) satisfies the estimate (5.2).

5.2. Consider the difference scheme on improved piecewise-uniform grids
that are constructed based on the grids G

s

h(3.7).

5.2.1. For the solution of the difference scheme (3.2), (3.7) we have the
estimate (3.8). Under the condition

N ≈ N0, i.e., N N0 ≈ P 1/2, (5.3)

which is natural for regular problems on the grid (3.7), we obtain the unim-
provable ε-dependent estimate

|u(x, t) − z(x, t)| ≤ M P−1/2 (ε + ln−1 P )−1, (x, t) ∈ Gh, (5.4a)

and also the unimprovable ε-uniform estimate

|u(x, t) − z(x, t)| ≤ M P−1/2 lnP, (x, t) ∈ Gh. (5.4b)

In the case of the grid (3.7), (5.3), we have

η(P, ε) ≤ M ε−1(ε + ln−1 P ).

We say that the grid (3.7), (5.3) is standard piecewise uniform.

5.2.2. Optimizing the estimate (3.8) for the fixed value P , we find quanti-
ties N , N0 that define the grid (3.7):

N = N (P, ε) ≤ M P 1/2 (ε + ln−1 P )−1/2,

N0 = N0(P, ε) ≤ M P 1/2 (ε + ln−1 P )1/2.
(5.5)

Here P = (N + 1)(N0 + 1) and η(P, ε) ≤ M ε−1.
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For the solution of the difference scheme (3.2), (3.7), (5.5), we obtain the
unimprovable ε-dependent estimate

|u(x, t) − z(x, t)| ≤ M P−1/2 (ε + ln−1 P )−1/2, (x, t) ∈ Gh, (5.6a)

and also the ε-uniform estimate

|u(x, t) − z(x, t)| ≤ M P−1/2 ln1/2 P, (x, t) ∈ Gh. (5.6b)

We say that the grid (3.7), (5.5) is the optimal grid constructed based on
the piecewise-uniform grids G

s

h(3.7) (or, the optimal grid based on piecewise-
uniform grids).

5.2.3. The values N and N0 in the optimal grids (5.1) and (3.7), (5.5)
depend on P and ε. For the scheme (3.2), we consider the piecewise-uniform
grid in which N and N0which define the grid (3.7), are independent of ε, and
they are chosen to satisfy the optimality condition with respect to P (with
respect to the ε–uniform convergence rate of this scheme):

N = N(P ) ≈ P 1/2 ln1/2 P, N0 = N0(P ) ≈ P 1/2 ln−1/2 P. (5.7)

In this case we have η(P, ε) ≤ M ε−1 (ε + ln−1 P ) lnP .
For the solution of the difference scheme (3.2), (3.7), (5.7), we have the

unimprovable (both ε-dependent and ε-uniform) estimate

|u(x, t) − z(x, t)| ≤ M P−1/2 ln1/2 P, (x, t) ∈ Gh, (5.8)

i.e., this scheme is not optimal. We say that the grid (3.7), (5.7) is an improved
grid (compare with the standard one) constructed based on the piecewise-
uniform grids G

s

h(3.7) under the condition (5.7) (or, briefly, an improved
piecewise-uniform grid).

Theorem 5. Let the condition of Theorem 2 be satisfied. Then the solution of
the difference scheme (3.2) on the grid (3.7), (5.3) (on the grids (3.7), (5.5)
and (3.7), (5.7)) satisfies the estimate (5.4) (respectively, the estimates (5.6)
and (5.8)).

Remark 1. If the conditions of Theorem 2 are fulfilled, then interpolants, con-
structed from the solutions of the schemes under consideration, will satisfy the
estimates of Theorems 4, 5, where z(x, t) and Gh are z(x, t) and G respectively.

6 Conclusion

From comparison of estimates (5.2) and (5.4) it follows that the scheme (3.2),
(5.1) related to the optimal piecewise-uniform grid based on widths has best
convergence (under the condition ε + ln−1 P = o(1)) than the scheme (3.2),
(3.7), (5.3) related to the standard piecewise-uniform grid under the condi-
tion (5.3). By virtue of estimates (5.2) and (5.6), the scheme (3.2), (3.7),
(5.5) related to the optimal grid based on piecewise-uniform meshes, has the
same ε-uniform convergence rate as the scheme (3.2), (5.1). The scheme (3.2),
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(3.7), (5.7) related to the improved piecewise-uniform grid, has the same ε-
uniform convergence rate as the scheme (3.2), (5.1), but under the condition
ε + ln−1 P = o(1) the scheme (3.2), (3.7), (5.7) has a lower convergence rate
than the scheme (3.2), (5.1).
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