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Abstract. We consider a second order nonlinear differential equation with nonlocal
(integral) condition. The spectrum of it differs essentially from the known ones.
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1 Introduction

Investigations of Fučík spectra started in the 1960s. Let us mention the work
[3] and the bibliography therein. Of the recent works let us mention [4, 5, 6].
The Fučík spectra have been investigated for the second order equation with
different two-points boundary conditions. There are fewer works on the higher
order problems.

Our goal is to get formulas for the spectra (λ, µ) of the second order bound-
ary value problem (BVP)

x′′ =







−(α + 1)µ2α+2|x|2αx, if x ≥ 0,

−(α + 1)λ2α+2|x|2αx, if x < 0,
(1.1)

(α ≥ 0) subject to the boundary conditions

x(0) = 0,

1
∫

0

x(s) ds = 0. (1.2)

The spectra is obtained under the normalization condition |x′(0)| = 1, because
otherwise the problem may have a continuous spectra.
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We try to extend investigation of Fučík type spectra in two directions. The
first one considers the classical equation with integral boundary condition ([7]).
The second direction deals with equations of the type

x′′ = −µf(x+) + λg(x−),

the good reference for it is the work [6].

This paper is organized as follows. In Section 2 we present results on the
Fučík spectrum for the problem x′′ = −µ2x+ + λ2x− with the boundary con-
ditions (1.2). In Section 3 we consider problem (1.1) with Dirichlet conditions.
In Section 4 we provide formulas for Fučík spectrum of the problem (1.1),
(1.2). This is the main result of our work. Our formulas for the spectra are
given in terms of the functions Sα(t), which are generalizations of the lemnis-
catic functions [8] (sl t and cl t), and their primitives Iα(t). The formulas for
relations between lemniscatic functions and their derivatives are known from
[2].The specific case of α = 1 is considered in details as an example.

2 Fučík Equation with the Integral Condition

Consider the second order BVP

x′′ = −µ2x+ + λ2x−, µ, λ > 0, (2.1)

where x+ = max{x, 0}, x− = max{−x, 0}, subject to the boundary conditions

x(0) = 0,

1
∫

0

x(s) ds = 0. (2.2)

Definition 1. The Fučík spectrum is a set of points (λ, µ) such that the
problem (2.1), (2.2) has nontrivial solutions.

The first result describes decomposition of the spectrum into branches F+

i

and F−

i (i = 0, 1, 2, . . .) for the problem (2.1), (2.2).

Proposition 1. The Fučík spectrum
∑

=
+∞
⋃

i=0

F±

i consists of a set of curves

F+

i = {(λ, µ)| x′(0) > 0, the nontrivial solution x(t) of the problem

has exactly i zeroes in (0, 1)},

F−

i = {(λ, µ)| x′(0) < 0, the nontrivial solution x(t) of the problem

has exactly i zeroes in (0, 1)}.
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Theorem 1 [[7], section 2]. The Fučík spectrum
∑

=
+∞
⋃

i=1

F±

i for the problem

(2.1), (2.2) consists of the branches given by

F+

2i−1 =
{

(λ, µ)
∣

∣

∣

2iλ

µ
− (2i − 1)µ

λ
−

µ cos(λ − λπi
µ

+ πi)

λ
= 0,

iπ

µ
+

(i − 1)π

λ
≤ 1,

iπ

µ
+

iπ

λ
> 1

}

,

F+

2i =
{

(λ, µ)
∣

∣

∣

(2i + 1)λ

µ
− 2iµ

λ
− λ cos(µ − µπi

λ
+ πi)

µ
= 0,

iπ

µ
+

iπ

λ
≤ 1,

(i + 1)π

µ
+

iπ

λ
> 1

}

,

F−

2i−1 =
{

(λ, µ)
∣

∣

∣

2iµ

λ
− (2i − 1)λ

µ
− λ cos(µ − µπi

λ
+ πi)

µ
= 0,

(i − 1)π

µ
+

iπ

λ
≤ 1,

iπ

µ
+

iπ

λ
> 1

}

,

F−

2i =
{

(λ, µ)
∣

∣

∣

(2i + 1)µ

λ
− 2iλ

µ
−

µ cos(λ − λπi
µ

+ πi)

λ
= 0,

iπ

µ
+

iπ

λ
≤ 1,

iπ

µ
+

(i + 1)π

λ
> 1

}

,

where i = 1, 2, . . ..

Visualization of the spectrum to this problem is given in Figure 1.

Figure 1. The Fučík spectrum for problem (2.1), (2.2).
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3 Spectrum for the Fučík Type Problem with Dirichlet

Conditions

Consider the equation

x′′ =







−(α + 1)µ2α+2|x|2αx, if x ≥ 0,

−(α + 1)λ2α+2|x|2αx, if x < 0,
(3.1)

with the boundary conditions

x(0) = x(1) = 0, |x′(0)| = 1, (3.2)

where α ≥ 0, λ, µ > 0.

Theorem 2 [[6], subsection 3.2.1]. The Fučík spectrum
∑

=
+∞
⋃

i=0

F±

i for

the problem (3.1), (3.2) consists of the branches given by

F+
0 =

{

(λ, 2Aα)
}

, F−

0 =
{

(2Aα, µ)
}

,

F+

2i−1
=

{

(λ, µ)
∣

∣

∣
i
2Aα

µ
+ i

2Aα

λ
= 1

}

,

F+

2i =
{

(λ, µ)
∣

∣

∣
(i + 1)

2Aα

µ
+ i

2Aα

λ
= 1

}

,

F−

2i−1 =
{

(λ, µ)
∣

∣

∣
i
2Aα

µ
+ i

2Aα

λ
= 1

}

,

F−

2i =
{

(λ, µ)
∣

∣

∣
i
2Aα

µ
+ (i + 1)

2Aα

λ
= 1

}

,

where Aα =

1
∫

0

ds√
1 − s2α+2

, i = 1, 2, . . ..

Visualization of the spectrum to this problem is given in Figure 2.

Remark 1. To simplify our formulas we consider equation in the form (3.1),
but in the work [6] the authors consider the equation x′′ = −µx+ + λx−.

4 Spectrum for the Fučík Type problem with Integral

Condition

4.1 Some auxiliary results

The function Sn(t) is defined as a solution of the initial value problem

{

x′′ = −(n + 1)x2n+1,

x(0) = 0, x′(0) = 1,
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Figure 2. The Fučík spectrum for problem (3.1), (3.2).

where n is a positive integer.
Functions Sn(t) possess some properties of the usual sin t functions (notice

that S0(t) = sin t). We mention several properties of these functions which are
needed in our investigations. The functions Sn(t):

1. are continuous and differentiable;

2. are periodic with the minimal period 4An, where An =

1
∫

0

ds√
1 − s2n+2

;

3. take maximal value +1 at the points (4i + 1)An and minimal value −1
at the points (4i − 1)An (i = 0,±1,±2, . . .);

4. take zeroes at the points 2iAn.

For boundary value problems with the integral condition the following re-
mark may be of value. Let us consider

In(t) :=

∫ t

0

Sn(ξ) dξ.

This function is periodic with the minimal period 4An and can be expressed
in terms of the so called hypergeometric functions.

Remark 2. A solution of the problem

{

x′′ = −(n + 1)γ2n+2|x|2nx,

x(0) = 0, x′(0) = 1.

can be written in terms of Sn(t) as x(t) = Sn(γt)/γ.

Math. Model. Anal., 13(1):87–97, 2008.
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4.2 The spectrum

Consider the problem

x′′ =

{

−(α + 1)µ2α+2|x|2αx, if x ≥ 0,

−(α + 1)λ2α+2|x|2αx, if x < 0,
(4.1)

x(0) = 0,

1
∫

0

x(s)ds = 0, |x′(0)| = 1, (4.2)

where α ≥ 0, λ, µ > 0.

Theorem 3. The Fučík spectrum
∑

=
+∞
⋃

i=1

F±

i for the problem (4.1), (4.2)

consists of the branches given by

F+

2i−1
=

{

(λ, µ)
∣

∣

∣
i
λ

µ
Iα(2Aα) − (i−1)

µ

λ
Iα(2Aα) +

µ

λ
Iα(λ − 2iλAα

µ
−2iAα)= 0,

2Aα

µ
i +

2Aα

λ
(i − 1) ≤ 1,

2Aα

µ
i +

2Aα

λ
i > 1

}

,

F+

2i=
{

(λ, µ)
∣

∣

∣
i
λ

µ
Iα(2Aα) − i

µ

λ
Iα(2Aα) +

λ

µ
Iα(µ − 2iµAα

λ
− 2iAα)= 0,

2Aα

µ
i +

2Aα

λ
i ≤ 1,

2Aα

µ
(i + 1) +

2Aα

λ
i > 1

}

,

F−

2i−1=
{

(λ, µ)
∣

∣

∣
i
µ

λ
Iα(2Aα) − (i−1)

λ

µ
Iα(2Aα) +

λ

µ
Iα(µ − 2iµAα

λ
− 2iAα)=0,

2Aα

µ
(i − 1) +

2Aα

λ
i ≤ 1,

2Aα

µ
i +

2Aα

λ
i > 1

}

,

F−

2i=
{

(λ, µ)
∣

∣

∣
i
µ

λ
Iα(2Aα) − i

λ

µ
Iα(2Aα) +

µ

λ
Iα(λ − 2iλAα

µ
− 2iAα)=0,

2Aα

µ
i +

2Aα

λ
i ≤ 1,

2Aα

µ
i +

2Aα

λ
(i + 1) > 1

}

,

where i = 1, 2, . . ..

Proof Consider the problem (4.1), (4.2). It is clear that x(t) must have zeroes
in (0, 1). That is why F±

0 = ∅. We will prove the theorem for the case of F+

2i−1.

Suppose that (λ, µ) ∈ F+

2i−1
and let x(t) be a respective nontrivial solution of

the problem (4.1), (4.2). The solution has (2i−1) zeroes in (0, 1) and x′(0) = 1.
Let these zeroes be denoted by τ1, τ2 and so on.

Consider a solution of problem (4.1), (4.2) in the intervals (0, τ1), (τ1, τ2),
. . . , (τ2i−1, 1). Notice that |x′(τj)| = 1 (j = 1, . . . , 2i − 1). We obtain that
problem (4.1), (4.2) in these intervals reduces to the eigenvalue problems. So
in the odd numbered intervals we have the problem

x′′ = −(α + 1)µ2α+2x2α+1
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with boundary conditions x(0) = x(τ1) = 0 in the first such interval and with
boundary conditions x(τ2i−2) = x(τ2i−1) = 0 in the other ones, but in the
even intervals we have the problem

x′′ = −(α + 1)λ2α+2x2α+1

with boundary condition x(τ2i−3) = x(τ2i−2) = 0 in each such interval, but for
the last one the only condition is x(τ2i−1) = 0. In view of (4.2) the solution
x(t) must satisfy the condition

τ1
∫

0

x(s) ds +

τ3
∫

τ2

x(s)ds + . . . +

τ2i−1
∫

τ2i−2

x(s) ds

=
∣

∣

∣

τ2
∫

τ1

x(s)ds +

τ4
∫

τ3

x(s) ds + . . . +

1
∫

τ2i−1

x(s) ds
∣

∣

∣
. (4.3)

Since x(t) = Sα(µt) in the interval (0, τ1) and x(τ1) = 0 we obtain τ1 =
2Aα

µ
. Analogously we obtain for the other zeroes

τ2 =
2Aα

µ
+

2Aα

λ
, τ3 = 2

2Aα

µ
+

2Aα

λ
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ2i−2 = (i − 1)
2Aα

µ
+ (i − 1)

2Aα

λ
,

τ2i−1 = i
2Aα

µ
+ (i − 1)

2Aα

λ
.

In view of these facts it is easy to get that

τ1
∫

0

x(s) ds =

τ3
∫

τ2

x(s)ds =

τ5
∫

τ4

x(s) ds = . . . =

τ2i−1
∫

τ2i−2

x(s) ds =
1

µ2
Iα(2Aα).

Therefore

τ1
∫

0

x(s) ds +

τ3
∫

τ2

x(s) ds + . . . +

τ2i−1
∫

τ2i−2

x(s) ds = i
1

µ2
Iα(2Aα).

Now we consider a solution of the problem (4.1), (4.2) in the remaining
intervals. Since x(t) = −Sα(λt − λτ1) in (τ1, τ2) we obtain

τ2
∫

τ1

x(s) ds =

τ4
∫

τ3

x(s) ds =

τ6
∫

τ5

x(s) ds = . . . =

τ2i−2
∫

τ2i−3

x(s) ds = − 1

λ2
Iα(2Aα).

Math. Model. Anal., 13(1):87–97, 2008.
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But in the last interval (τ2i−1, 1) we obtain

1
∫

τ2i−1

x(s) ds =
1

λ2
Iα

(

λ − λ
2Aα

µ
i − 2Aαi

)

.

It follows from the last two lines that

∣

∣

∣

τ2
∫

τ1

x(s) ds +

τ4
∫

τ3

x(s) ds + . . . +

τ2i−2
∫

τ2i−3

x(s) ds +

1
∫

τ2i−1

x(s) ds
∣

∣

∣

= (i − 1)
1

λ2
Iα(2Aα) − 1

λ2
Iα

(

λ − λ
2Aα

µ
i − 2Aαi

)

.

In view of this equality and (4.3) we obtain

i
1

µ2
Iα(2Aα) = (i − 1)

1

λ2
Iα(2Aα) − 1

λ2
Iα

(

λ − λ
2Aα

µ
i − 2Aαi

)

.

Multiplying it by µλ, we obtain

i
λ

µ
Iα(2Aα) − (i − 1)

µ

λ
Iα(2Aα) +

µ

λ
Iα(λ − 2iλAα

µ
− 2iAα) = 0. (4.4)

Considering the solution of problem (4.1), (4.2) it is easy to prove that

τ2i−1 ≤ 1 < τ2i or
2Aα

µ
i +

2Aα

λ
(i − 1) ≤ 1 <

2Aα

µ
i +

2Aα

λ
i.

This result and (4.4) prove the theorem for the case of F+

2i−1. The proof for
other branches is analogous. �

Remark 3. If α = 0 we obtain problem (2.1), (2.2). The spectrum of this
problem is given in Figure 1.

4.3 The example for α = 1

Now we consider the problem (4.1), (4.2) for the case of α = 1. It can be
written as











x′′ = −2µ4x3+ + 2λ4x3−, µ, λ ≥ 0,

x(0) = 0,
1
∫

0

x(s) ds = 0, |x′(0)| = 1.
(4.5)

where x3+ = max{x3, 0}, x3− = max{−x3, 0}.
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Theorem 4. The Fučík spectrum of the problem (4.5) consists of the branches

given by

F+

2i−1 =
{

(λ, µ)
∣

∣

∣

2iλ

µ

π

4
− (2i − 1)µ

λ

π

4
−

µ arctan cl (λ − λ2A
µ

i − 2Ai)

λ
= 0,

i
2A

µ
+ (i − 1)

2A

λ
≤ 1, i

2A

µ
+ i

2A

λ
> 1

}

,

F+

2i =
{

(λ, µ)
∣

∣

∣

(2i + 1)λ

µ

π

4
− 2iµ

λ

π

4
− λ arctan cl (µ − µ 2A

λ
i − 2Ai)

µ
= 0,

i
2A

µ
+ i

2A

λ
≤ 1, (i + 1)

2A

µ
+ i

2A

λ
> 1

}

,

F−

2i−1 =
{

(λ, µ)
∣

∣

∣

2iµ

λ

π

4
− (2i − 1)λ

µ

π

4
− λ arctan cl (µ − µ 2A

λ
i − 2Ai)

µ
= 0,

(i − 1)
2A

µ
+ i

2A

λ
≤ 1, i

2A

µ
+ i

2A

λ
< 1

}

,

F−

2i =
{

(λ, µ)
∣

∣

∣

(2i + 1)µ

λ

π

4
− 2iλ

µ

π

4
−

µ arctan cl (λ − λ2A
µ

i − 2Ai)

λ
= 0,

i
2A

µ
+ i

2A

λ
≤ 1, i

2A

µ
+ (i + 1)

2A

λ
1
}

,

where cl (t) is the lemniscatic cosine function, A =

1
∫

0

ds√
1 − s4

, i = 1, 2, . . ..

Proof We will prove this theorem only for F+

2i−1
. The proof for other branches

is analogous. It is well-known that S1(t) = sl (t), where sl t is the lemniscatic
sine function. It is known (see, [1]) that

t
∫

0

sl s ds =
π

4
− arctan cl t.

Thus we obtain

I1(2A) =
π

4
− arctan cl 2A =

π

4
− arctan(−1) = 2

π

4
,

I1(λ − 2iλA

µ
− 2iA) =

π

4
− arctan cl (λ − 2iλA

µ
− 2iA).

Math. Model. Anal., 13(1):87–97, 2008.
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Using these expressions, equation from Theorem 3 can be written as

i
λ

µ
I1(2A) − (i − 1)

µ

λ
I1(2A) +

µ

λ
I2(λ − 2iλA

µ
− 2iA)

= 2i
λ

µ

π

4
− 2(i − 1)

µ

λ

π

4
+

µ

λ
(
π

4
− arctan cl (λ − 2iλA

µ
− 2iA))

=
2iλ

µ

π

4
− (2i − 1)µ

λ

π

4
−µ

λ
arctan cl (λ−2iλA

µ
−2iA))= 0.

�

Visualization of the spectrum to this problem is given in Figure 3.

Figure 3. The Fučík spectrum for problem (4.5).

Remark 4. If α = 0, then we obtain problem (2.1), (2.2). The spectrum of this
problem is given in Figure 1. These spectra are structurally identical.

Remark 5. Let us mention also that the proof of Theorem 4 may be conducted
in the same way as for Theorem 3.
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