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Abstract. Analytical methods unifying the study of heat conduction in various
type of composite materials are described. Analytical formulas for the effective
(macroscopic) conductivity tensor are presented.
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1 Introduction

The goal of this survey paper is to describe analytical methods applied to the
study of steady heat conduction in various types of composites. We present
several exact and approximate analytical formulas for the effective (macro-
scopic) conductivity tensor which are deduced by using different approaches
based on the recent results in the theory of partial differential equations and
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complex analysis. The study of effective characteristics has recently become
a separate subject with its own philosophy and machinery. The most popu-
lar models studied for composites are those of conductivity, elasticity, elasto-
plasticity and thermo-elasticity (see, e.g., [1, 5, 13, 18]). We restrict our at-
tention on the conducting properties of the composite in the steady state sit-
uation. Moreover, so called two-dimensional composite materials are mainly
on the discussion since in this case it is possible to deduce certain analytical
formulas for the effective conductivity by using the technique of harmonic and
analytic functions.

The analytical approach to the study of heat conduction allows us to unify
partly the theory of the effective thermal properties in composite materials.
This paper is connected with [17].

2 Mathematical Models for Heat Conduction in Com-

posites

Let x = (x1, x2, x3) ∈ RN , for N = 1, 2, 3. Let Ω be a domain occupied by the
conducting material. We denote by T (x) the temperature distribution, and
by q(x) the heat flux.

The equations representing dependence of the flux q(x) on the temperature
T (x) are called (the heat conduction) constitutive relation. In the linear case
it has a form of Fourier’s law

q = −λ∇T, (2.1)

where ∇T is the gradient of T (x).
In the linear case the proportionality coefficient λ depends solely on spatial

variable x, λ is called the local thermal conductivity or simply the conductivity.
The thermal conductivity is considered as a scalar positive function λ = λ(x)
for locally isotropic materials and as a tensor function for locally anisotropic
materials which in Cartesian coordinates has the form of the symmetric posi-
tively defined matrix

λ = λ(x) =




λ11(x) λ21(x) λ31(x)
λ12(x) λ22(x) λ23(x)
λ13(x) λ23(x) λ33(x)


 .

If the conductivity λ depends on the temperature, i.e., λ = λ(x, T ), this case
is called the non–linear heat conduction.

At the presence of sources and sinks with intensity f(x), we get the follow-
ing relation

∇ · q = f in Ω.

If there is no source or sink, then we have the free divergence equation

∇ · q = 0. (2.2)

Substituting (2.2) into (2.1) we obtain an elliptic equation

∇ · (λ∇T ) = 0. (2.3)
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For macroscopically isotropic material the conductivity λ(x) is a constant:

∇2T = 0. (2.4)

3 Boundary Value Problems

Let us present different types of boundary value problems for heat conduction
in composites (i.e., boundary value problems for equations (2.3) and (2.4)).
To be more precise, we formulate these problems in the case of composites
consisting of the matrix (which is a multiply connected region Ω in R2 or R3)
with outer boundary curve/surface Γ and of n inclusions Dk, k = 1, . . . , n,
encircled by smooth closed curves/surfaces Lk = ∂ Dk. It is convenient to use
the notation Λ(x) for the conductivity tensor for the material occupied by the
host domain Ω, and Λk(x), k = 1, . . . , n, – for the conductivity tensors for the
material occupied by the corresponding inclusions.

We suppose that either N = 2 or N = 3, and make corresponding remarks
when these situations differ essentially. According to the chosen orientation
on the boundary of Ω, we will denote by T (t) the boundary values of the tem-
perature distribution on Γ , and the boundary limits on Lk of the temperature
from the domain Ω and domains Dk by T+(t), T−

k (t), respectively.
The given temperature distribution f(t) on the outer boundary Γ leads to

the Dirichlet condition on Γ :

T (t) = f(t), t ∈ Γ. (3.1)

If the outer boundary constitutes the ideal thermal isolator ( i.e., there is
no heat exchange between the composite and the medium outside of it), then
we arrive at the homogeneous Neumann condition

∂ T

∂n
(t) = 0, t ∈ Γ. (3.2)

If there is a heat transfer trough the outer boundary when the normal heat
flux q ·n is known at the outer surface, then condition (3.2) should be replaced
by a more complicated one (see (2.1))

λ∇T · n(t) = g(t), t ∈ Γ. (3.3)

Instead of (3.3) the heat transfer satisfying Newton’s law can be considered at
the boundary

λ
∂ T

∂n
(t) + γT (t) = h(t), t ∈ Γ. (3.4)

It is also called the third type boundary value problem.
Other types of condition arise on internal components of the boundary of

Ω, i.e., on the interface matrix-inclusions. The most natural are continuity
of the temperature and of the heat flux. Then, they have the following form
(perfect contact conditions):

T+(t) = T−

k (t), λ(x)
∂T+

∂n
(t) = λk(x)

∂T−

k

∂n
(t), t ∈ Lk, k = 1, . . . , n. (3.5)

Math. Model. Anal., 13(1):67–78, 2008.
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It is also natural to assume that the temperature distribution and the normal
heat flux have jumps along a part of the interface matrix-inclusions:

T+(t) − T−

k (t) = hk(t), k = 1, . . . , n, (3.6)

λ(x)
∂T+

∂n
(t) = λk(x)

∂T−

k

∂n
(t) + gk(t).

If at least a part of the interface matrix-inclusions consists of poorly conducting
material then we have to replace the first series of the above conditions by a
more complicated one, namely, we have the following problem:

λ(x)
∂T+

∂n
(t) + γk(T+(t) − T−

k (t)) = 0, (3.7)

λ(x)
∂T+

∂n
(t) = λk(x)

∂T−

k

∂n
(t), t ∈ Lk.

The coefficients γ−1
k introduced in (3.7) are known as the Kapitza resistance

(see, e.g., [13]). The limit cases γk = 0, and γk = ∞ were discussed in [16].
A special problem can be also considered, namely, with the boundary con-

ditions given on the exterior boundary and the domains Dk occupied by an
ideal conductor (λk = ∞). In this case, we arrive at the modified Dirichlet
problem [12]

T (t) = tk, t ∈ Lk, (3.8)

where tk are undetermined constants which have to be found in the solution
to the problem.

4 Complex Potentials

The aim of this subsection is to rewrite equations as well as boundary value
problems for heat conduction in composites (or in porous media) in terms
of complex analysis. Thus, we have studied here only the two-dimensional
situation (N = 2) considering the corresponding domains as domains on the
complex plane C. In this case, it is supposed that the heat flux is spreading in a
direction orthogonal to the cylinder in which parallel cylindrical inclusions are
implemented. The base of the cylinder is a multiply connected domain Ω, and
the bases of the inclusions are domains Dk. There is also another statement
of the 2D problem when a thick plate with isolated sides is considered.

First, we consider the limit cases when Ω is occupied by a conducting
material on the boundary of which boundary conditions (3.1), (3.3) or (3.4) are
given. Consider the Dirichlet problem (3.1). It is known that each harmonic
function in a simply connected domain is the real part of a complex potential.
If a function T (x, y) is harmonic in a multiply connected domain Ω then it
can be expressed as:

T (z) = Re [Φ(z) +

n∑

k=1

Ak ln(z − zk)], z = x1 + ix2 ∈ Ω, (4.1)
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according to the decomposition theorem (see [16]). Here, function Φ(z) is
analytic and single-valued in Ω, and Ak are real numbers. If we assume that
∞ ∈ Ω, Dk (k = 1, 2, . . . , n) are connected components of the complement of
Ω to C, and zk are points in Dk, then the connectivity of Ω is equal to n− 1
and

n∑

k=1

Ak = 0.

Substituting T (z) from (4.1) into (3.1), we arrive at the boundary value prob-
lem with respect to Φ(z). The constants Ak have also to be determined. One
can find a discussion of this problem for multiply connected domains in [12]
and a complete solution to this problem for any circular multiply connected
domain is given in [16]. A similar argument can be applied to the problems
(3.2) and (3.4).

Consider now the modified Dirichlet problem (3.8). In this case, instead of
(4.1) we have T (z) = Re Φ(z). However, the undetermined constants tk are
included in the boundary condition

Re Φ(t) = tk, t ∈ Lk (k = 1, 2, . . . , n).

We also suppose (again for simplicity) that the materials inside matrix and
inclusions are isotropic and homogeneous, which means the constancy of con-
ductivity coefficients λ, λk, k = 1, . . . , n. Therefore, the temperature T is a
harmonic function in the domains Ω and Dk, k = 1, . . . , n (i.e., satisfies in
these domains the Laplace equation (2.4)).

Let T , and Tk be temperature distributions in Ω and Dk, k = 1, . . . , n,
respectively, continuously differentiable up to the boundaries of these domains
satisfying (2.4). Suppose that the perfect contact relations (3.5) are valid on
each curve Lk = ∂ Dk, k = 1, . . . , n. Then, one can introduce functions

ϕ(z) = T (z)+ iV (z), z ∈ Ω, ϕk(z) =
λ+ λk

2λ
(Tk(z) + iVk(z)) , z ∈ Dk, (4.2)

which are analytic in Ω, Dk, respectively, continuously differentiable in the
closures of the considered domains. In fact (see, e.g., [9]), the function ϕ(z) is
in general a multi-valued analytic function since Ω is a multiply connected do-
main. But in our case, T (z) possesses (see [8]) a unique harmonic extension up

to the function, harmonic in a simply connected domain D = Ω
n⋃

k=1

Lk

n⋃
k=1

Dk

due to the first relations in (3.5). Therefore, due to the uniqueness of analytic
continuation ϕ(z) is a single-valued analytic function in Ω as the restriction
of the corresponding function defined on D.

In order to represent the boundary conditions (3.5) in the complex form,
we write the normal and tangent derivatives on a fixed curve Lk:

∂

∂n
= n1

∂

∂x1
+ n2

∂

∂x2
,

∂

∂s
= −n2

∂

∂x1
+ n1

∂

∂x2
, (4.3)

where n = n1 + in2, s = n2 − in1, and z = x1 + ix2. By applying the second
operator of (4.3) to the first condition of (3.5), after some calculations (see [17])

Math. Model. Anal., 13(1):67–78, 2008.
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applied to the new complex potentials in the domains Ω and Dk, respectively,

ψ =
∂ϕ

∂z
=

∂T

∂x1
− i

∂T

∂x2
, ψk =

λk + λ

2λ

∂ϕk

∂z
=
λk + λ

2λ

(
∂Tk

∂x1
− i

∂Tk

∂x2

)
,

we arrive at the following conjugation condition

ψ+(t) = ψ−

k (t) + ρkn2ψ−

k (t), t ∈ Lk, (4.4)

where ρk =
λk − λ

λk + λ
is a contrast parameter introduced by Bergman [2, 3].

Integrating (4.4) along Lk with constant of integration equal to zero (see [16]),
we obtain the following boundary value problem for analytic functions in a
multiply connected domain, namely, for the complex potentials ϕ,ϕk

ϕ+(t) = ϕ−

k (t) − ρkϕ
−

k (t), t ∈ Lk, k = 1, . . . , n.

This problem is a special case of so-called R-linear conjugation problem (Marku-
shevich’s problem) (see [4, 11] for the description of qualitative results on
solvability of R-linear conjugation problem with arbitrary coefficients).

If at least one of the first conditions in (3.5) is replaced by a non-zero
jump condition, i.e., we have (3.6), then one can proceed in a similar way
as before. We introduce the complex potentials by formulas (4.2). If hk are
smooth enough, e.g., hk ∈ C1,α(Lk), then one can find (single-valued) analytic
in Dk functions h−k (z) satisfying the Schwarz boundary conditions:

Reh−k (t) = hk(t), t ∈ Lk.

Then, the first conditions of (3.6) can be rewritten in the form

T+(t) − T̃−

k (t) = 0, t ∈ Lk, k = 1, . . . , n,

where T̃−

k (z) = T−

k (z) + Reh−k (z), z ∈ Dk. The same result is valid for the
second condition (3.6). As a result, we have the following boundary value
problem with non-zero inhomogeneous term ck(t) on at least one curve Lk:

ϕ+(t) = ϕ−

k (t) − ρkϕ
−

k (t) + ck(t), t ∈ Lk.

Exact calculation of the inhomogeneous term can be easily done. It does not
have much influence on further analysis.

Application of the same arguments to (3.7) yields a R-linear conjugation
problem with derivatives. Let us assume for simplicity that the inclusions
are circular cylinders, i.e., Dk = {z ∈ C : |z − ak| < rk} , k = 1, . . . , n. Then,
problem (3.7) becomes

ϕ+(t) = ϕ−

k (t) − ρkϕ
−

k (t) + µk(t− ak)(ϕ−

k )′(t) + µk
r2k

t− ak
(ϕ−

k )′(t),

where |t− ak| = rk, µk =
1 + ρk

2rkγk
.



Heat Conduction in Composites 73

Finally, we have to rewrite the boundary conditions on the outer boundary
Γ in the complex form too, e.g., the Dirichlet condition (3.1). By solving

Re f0(t) = f(t), t ∈ Γ,

with respect to the function f0(z) analytic outside D = Ω
n⋃

k=1

Lk

n⋃
k=1

Dk, i.e.,

in extD. Then by introducing an auxiliary unknown function ϕ0(z) analytic
in extD, ϕ0(∞) = 0 and using the same complex potential ϕ(z) for Ω, we
rewrite (3.1) in the form of R-linear conjugation problem:

ϕ+(t) = ϕ0(t) − ϕ0(t) + f0(t), t ∈ Γ.

A similar approach is used for the Neumann problem (3.2) (for complex po-
tential ψ) (see [16]).

5 Effective Conductivity Tensor

Although the notation effective conductivity tensor is intuitively clear for physi-
cists and engineers, the rigorous mathematical definition of the effective con-
ductivity tensor needs a certain theoretical justification. One of the possible
ways for such a justification is the use of homogenization theory.

Following [1, 5, 10], consider a periodic composite. Let the linear sizes of
the periods be of order ε << L, where L is the linear order of the sample D
bounded by a simple closed curve Γ . Consider the Dirichlet problem [10] (p.
20 Russian ed.) in H1

0 (D)



∇(Λε(x)∇Tε(x)) = 0,

Tε(t) = f(t), t ∈ Γ.
(5.1)

Let
Λε(x)∇Tε(x) ⇀ Λ̂∇T0 in L2(D), (5.2)

where ⇀ means the weak convergence in L2(D), Λ̂ is a constant tensor, and
T0 is a solution of the Dirichlet problem

∇(Λ̂∇T0(x)) = 0, T0(t) = f(t), t ∈ Γ.

Then, the tensor Λ̂ is called the effective conductivity tensor. The homogeniza-
tion theory justifies the existence of the weak limit (5.2) and the independence
of the limit of the shape of Γ and boundary conditions. For instance, instead of
the Dirichlet condition (5.1), the Neumann condition can be taken. Moreover,

the homogenization theory implies that Λ̂ can be calculated by the formula

Λ̂q = 〈Λ(x)∇T (x)〉, (5.3)

where 〈F (x)〉 denote the average of the magnitude F over the cell Q

〈F (x)〉 =
1

|Q|

∫

Q

F (x)dx,

Math. Model. Anal., 13(1):67–78, 2008.
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|Q| is the area of Q. For the definition of the periodic cell and the method of
its determination see [14]. The function T (x) is a solution of the quasi-periodic
problem:

∇(Λ(x)∇T (x)) = 0, x ∈ Q,

T (x1 + α, x2, x3) − T (x1, x2, x3) = q1,

T (x1, x2 + β, x3) − T (x1, x2, x3) = q2,

T (x1, x2, x3 + γ) − T (x1, x2, x3) = q3.

(5.4)

Here, q = (q1, q2, q3) is the external flux. One can see that Λ̂ is completely
determined by (5.3) via solution to three problems (5.4) with q = (1, 0, 0),
q = (0, 1, 0), q = (0, 0, 1).

In general, Λ̂ is a symmetric positively defined tensor. It can be reduced
to the diagonal form:

Λ̂ =




λ̂1 0 0

0 λ̂2 0

0 0 λ̂3


 . (5.5)

More precisely, there exists a coordinate system in which the tensor Λ̂ has
the diagonal form (5.5). The axes x′j (j = 1, 2, 3) of this new coordinate

system are called the principal axes. The component λ̂j (j = 1, 2, 3) is called
the conductivity in the x′j–direction. The tensor ellipsoid, invariants of the
tensor and other fundamental properties of tensors can be found in standard
textbooks on tensor algebra.

The tensor Λ̂ for macroscopically isotropic composites has the form:

Λ̂ = λ̂I,

where I is the identity tensor, i.e., in this case λ̂ := λ̂1 = λ̂2 = λ̂3. The scalar
λ̂ is called the effective conductivity.

The variational statement of the problem implies the formula:

λ̂ q = inf
u∈H1

per(Q)
〈λ(x)|∇u(x)|2〉 = 〈λ(x)|∇T (x)|2〉.

Consider a 2D representative symmetric cell. Then, the periodicity cell
problem is reduced to the mixed problem for the domain Q. In this case, the
following formula can used for the effective conductivity in the x1–direction:

λ̂1 =
4

αq1

∫ α/4

−α/4

λ

(
x1,

β

4

)
∂T

∂x1

(
x1,

β

4

)
dx1.

This formula expresses that the effective conductivity in the x1–direction is
equal to the average flux passing along the symmetry segment

x2 =
β

4
, −

α

4
< x1 <

α

4
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divided by the jump of the temperature q1/2 per the half–periodicity cell.

Similar formulas take place for the conductivities λ̂2 and for corresponding
coefficients in R3 (i.e., for 3D-composites).

Consider now an application of the formula (5.3) to 2D matrix-inclusion
composites. Using the functions ψ(j)(z) (partial linearly independent solutions
of the problem (4.4), satisfying

ψ(z + α) − ψ(z) = 0, ψ(z + iα−1) − ψ(z) = 0),

we obtain the components of Λ̂:

λ̂11 − iλ̂12 = 1 + 2

n∑

k=1

ρk

∫

Dk

ψ(1)(z) dx1dx2,

λ̂22 + iλ̂12 = 1 + 2i
n∑

k=1

ρk

∫

Dk

ψ(2)(z) dx1dx2.

For macroscopically isotropic composites, we have:

λ̂ = 1 + 2

n∑

k=1

ρk

∫

Dk

ψ(1)(z)dx1dx2. (5.6)

Consider the case when the inclusions Dk are disks |z − ak| < rk. Then,
application of the mean value theorem to (5.6) yields:

λ̂ = 1 + 2

n∑

k=1

ρkπr
2
kψ

(1)(ak).

6 Review of Known Formulas

Consider a two-component macroscopically isotropic composite medium con-
sisted of a collection of non-overlapping identical balls of conductivity λ1

imbedded into a host medium of conductivity λ. The effective conductiv-
ity λ̂ of the considered inhomogeneous medium is calculated by the famous
Clausius-Mossotti approximation (CMA)

λ̂

λ
≈

1 + 2βν

1 − βν
, (6.1)

where β =
λ1 − λ

λ1 + 2λ
, ν is the concentration of the spheres. The formula (6.1)

holds for dilute composites when the concentration ν is small.
In the 2D case, CMA becomes

λ̂

λ
≈

1 + ρν

1 − ρν
, (6.2)

Math. Model. Anal., 13(1):67–78, 2008.
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where ρ =
λ1 − λ

λ1 + λ
is the 2D contrast parameter. Here ν is the area concentra-

tion of disks on the plane (the section of the fiber composite perpendicular to
the direction of fibers).

The formulas (6.1) and (6.2) can be deduced in the framework of Maxwell’s
formalism which is based on solution to the problem for one inclusion. The
same method can be applied to inclusions of other shapes.

Generalized Keller-Dykhne formula (self-dual two-phase system with arbi-
trary concentration ν, compact inclusions of one phase into another) (see also
[7])

λe = λ1
νλ2

1−ν .

In series of papers by Craster and Obnosov (see, e.g., [6, 7]), exact formulas
for the effective conductivity tensor of the few-phases checkerboard composites
have been deduced. The proof is based on the explicit representations of the
local fields for various types of such composites.

In the case of doubly periodic four–phase checkerboard composite when the
representative rectangle has the lengths of the sides l, h the local conductivity
λ = λ(x) takes the value λj in j–phase (j = 1, 2, 3, 4). By using the complete
elliptic integral

K(m) =

∫ π/2

0

dθ√
1 −m2 sin2 θ

,

where the parameter m is implicitly defined by K(m)/K(1 −m) = l/h, and
the parameters

σ1 = λ1 + λ2 + λ3 + λ4, σ2 = λ1λ3 − λ2λ4,

σ3 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

one can introduce the function

k(m, ν) =
l

h

P ν
2
−

1

2

(2m− 1)

P ν
2
−

1

2

(1 − 2m)
,

where Pµ is the Legendre function of the first kind. The effective conductivity
of the considered composite is then explicitly given by the formulas

λ̂1 =
1

k(m, ν)

[
(λ1 + λ2)(λ3 + λ4)

(λ2 + λ3)(λ4 + λ1)

] 1

2

(
σ1

σ3

) 1

2

,

λ̂2 = k(m, ν)

[
(λ2 + λ3)(λ4 + λ1)

(λ1 + λ2)(λ3 + λ4)

] 1

2

(
σ1

σ3

) 1

2

.

The effective conductivity of the square array of the doubly periodic com-
posite with one inclusion in the cell is determined in [15] by the following
equality (there is also a proof that ψ(0)/c is real)

λ̂ = 1 + 2ρπr2
ψ(0)

c
.
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Here ψ(z) is a solution to certain R-linear boundary value problem which is
solved by the method of the functional equation (see [16]). Representing this
solution in term of Eisenstein’s series yields the exact formula for effective
conductivity

λ̂ = 1 + 2ρπr2

+ 2π

∞∑

k=1

ρk+1
∑

n1,n2,...nk

σ(1)
n1
σ(n1)

n2
. . . σ(nk−2)

nk−1
σ

(nk)
1 r4(n1+n2+···+nk)−2(k−1),

where

σ
(n)
k =

(2n+ 2k − 3)!

(2n− 1)!(2k − 2)!
S2(n+k−1),

S2j are Eisenstein-Rayleigh sums, and nj run over unit to infinity in the sum.
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