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Abstract. The total least squares (TLS) method is a successful approach for linear
problems if both the matrix and the right hand side are contaminated by some noise.
In a recent paper Sima, Van Huffel and Golub suggested an iterative method for solv-
ing regularized TLS problems, where in each iteration step a quadratic eigenproblem
has to be solved. In this paper we prove its global convergence, and we present an
efficient implementation using an iterative projection method with thick updates.
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1 Introduction

Many problems in data estimation are governed by overdetermined linear sys-
tems

Ax ≈ b, A ∈ R
m×n, b ∈ R

m, m ≥ n, (1.1)

where both the matrix A and the right hand side b are contaminated by some
noise. A possible approach to this problem is the total least squares (TLS)
method which determines perturbations ∆A ∈ R

m×n to the coefficient matrix
and ∆b ∈ R

m to the vector b such that

‖[∆A, ∆b]‖2
F = min! subject to (A + ∆A)x = b + ∆b, (1.2)

where ‖ · ‖F denotes the Frobenius norm of a matrix (cf. [11, 17]).
In this paper we consider ill-conditioned problems which arise, for example,

from the discretization of ill-posed problems such as integral equations of the
first kind (cf. [6, 12, 15]). Then least squares or total least squares methods for
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solving (1.1) often yield physically meaningless solutions, and regularization is
necessary to stabilize the solution.

Motivated by Tikhonov regularization a well established approach is to
add a quadratic constraint to problem (1.2) yielding the regularized total least
squares (RTLS) problem

‖[∆A, ∆b]‖2
F = min! subject to (A + ∆A)x = b + ∆b, ‖Lx‖ ≤ δ, (1.3)

where (as in the whole paper) ‖ · ‖ denotes the Euclidean norm. δ is a reg-
ularization parameter, and L ∈ R

k×n, k ≤ n defines a (semi-) norm on the
solution through which the size of the solution is bounded or a certain degree
of smoothness can be imposed on the solution. Stabilization by introducing a
quadratic constraint was extensively studied in [3, 4, 10, 13, 16, 18, 21, 22, 23].
Tikhonov regularization was considered in [2], and regularization by truncated
total least squares in [7].

Based on the singular value decomposition of [A, b] numerical methods were
developed for solving the TLS problem (1.2) [11, 17], and even a closed formula
for its solution is known. However, this approach can not be generalized to
the RTLS problem (1.3). Assuming that the regularization parameter δ > 0 is
chosen such that the solution of the total least squares problem xTLS satisfies
‖LxTLS‖ ≥ δ (otherwise the regularization would not be necessary) problem
(1.3) can be replaced by

‖[∆A, ∆b]‖2
F = min! subject to (A + ∆A)x = b + ∆b, ‖Lx‖ = δ. (1.4)

Golub, Hansen and O’Leary [10, 16] analyzed the properties of the equality
constrained TLS problem and suggested a method for solving it. Generalizing
an approach of Björck [5] for TLS problems without regularization, Guo and
Renaut [13, 21] took advantage of the fact, that the RTLS problem (1.3) is
equivalent to the minimization of the Rayleigh quotient of the augmented
matrix [A, b]T [A, b] subject to the regularization constraint, and suggested an
algorithm based on inverse iteration.

Inspired by the fact that quadratically constrained least squares problems
can be solved by a quadratic eigenvalue problem [9], Sima, Van Huffel and
Golub [22, 23] developed an iterative method for solving (1.4) called RTL-
SQEP (Regularized Total Least Squares via Quadratic Eigenvalue Problems).
Here in each step the right–most eigenvalue and the corresponding eigenvector
of a quadratic eigenproblem has to be determined. Taking advantage of a vari-
ational characterization of eigenvalues of nonlinear symmetric eigenproblems
we proved the existence of a right-most real eigenvalue which can be character-
ized as the maximum of a Rayleigh functional [18]. For this approach Sima et
al. [23] proved that every limit point of the sequence generated by RTLSQEP
solves the first order necessary conditions of (1.4). In this paper we prove that
it is even a global minimizer of problem (1.4).

Beck and Teboulle [4] considered the inequality constrained problem (1.3)
for which they proved a global convergence result (even for a more general
rational objective function). However, in this case the individual iteration steps
can not be performed via quadratic eigenproblems, and are more expensive.
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The paper is organized as follows. In Section 2 we introduce the RTLS
problem and the RTLSQEP approach for solving it taking advantage of a
representation due to Beck and Teboulle, and we prove its convergence to a
global minimizer. Computational aspects are discussed in Section 3, and we
conclude the paper with numerical examples in Section 4 demonstrating that
the RTLSQEP method is a powerful approach.

2 Regularized Total Least Squares via Quadratic Eigen-

problems

We briefly introduce the RTLS problem and the approach of Sima, Van Huffel,
and Golub for solving it. It is well known (cf. [17], and [3] for a different
derivation) that the RTLS problem (1.3) is equivalent to

‖Ax − b‖2

1 + ‖x‖2
= min! subject to ‖Lx‖2 ≤ δ2. (2.1)

We assume that the regularization parameter δ > 0 is less than ‖LxTLS‖,
where xTLS denotes the solution of the total least squares problem (1.2) (oth-
erwise no regularization would be necessary). Then at the optimal solution of
(2.1) the constraint ‖Lx‖ ≤ δ holds with equality, and we may replace (2.1)
by

f(x) :=
‖Ax − b‖2

1 + ‖x‖2
= min! subject to ‖Lx‖2 = δ2. (2.2)

Theorem 1. Let N (L) be the null space of L. If

f∗ = inf{f(x) : ‖Lx‖2 = δ2} < min
x∈N (L), x 6=0

‖Ax‖2

‖x‖2
, (2.3)

then problem (2.2) admits a global minimum.

Conversely, if problem (2.2) admits a global minimum, then

f∗ = inf{f(x) : ‖Lx‖2 = δ2} ≤ min
x∈N (L), x 6=0

‖Ax‖2

‖x‖2
. (2.4)

Proof Assume that problem (2.2) does not admit a global minimum, and
let {xm} be a minimizing sequence, i.e. limm→∞ f(xm) = f∗, ‖Lxm‖2 = δ2.
Then every limit point of {xm} is a global minimizer of (2.2), and therefore
{xm} must be unbounded. xm can be uniquely represented as xm = ym + zm

where ym ∈ Range(LT L) and zm ∈ N (LT L), and trivially {ym} is bounded
and {zm} inherits the unboundedness from {xm}.
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Without loss of generality we assume that tm := ‖zm‖ → ∞, and that the
sequence wm := zm/tm converges to some w∗. Then it follows that

f(xm) =
‖Axm − b‖2

1 + ‖xm‖2
=

‖Azm + Aym − b‖2

1 + ‖zm‖2 + ‖ym‖2

=
‖Awm‖2 + 2(Awm)T (Aym − b)/tm + ‖Aym − b‖2/t2m

1/t2m + ‖wm‖2 + ‖ym‖2/t2m

→
(w∗)T AT Aw∗

‖w∗‖2
for m → ∞

contradicting condition (2.3).

Conversely, assume that problem (2.2) admits a global minimum x∗, and
that (2.4) is violated, i.e.

f∗ > min
x∈N (L), x 6=0

‖Ax‖2

‖x‖2
.

Then N (L) 6= ∅, and for y ∈ N (L), y 6= 0 and ym := my we obtain the
contradicition

f∗ ≤ f(ym) =
‖Aym − b‖2

1 + ‖ym‖2
=

‖Ay − b/m‖2

1/m2 + ‖y‖2
→

‖Ay‖2

‖y‖2
< f∗.

�

Under the condition (2.3) problem (2.2) is obviously equivalent to the
quadratic optimization problem

‖Ax − b‖2 − f∗(1 + ‖x‖2) = min! subject to ‖Lx‖2 = δ2, (2.5)

i.e. x∗ is a global minimizer of problem (2.2) if and only if it is a global
minimizer of (2.5). More generally we consider for fixed y ∈ R

n the quadratic
optimization problem

g(x; y) := ‖Ax − b‖2 − f(y)(1 + ‖x‖2) = min! subject to ‖Lx‖2 = δ2. (2.6)

The following existence result was proven in Sima et al. [23]:

Lemma 1. Problem (2.6) admits a global minimizer if and only if

f(y) ≤ min
x∈N (L),x 6=0

xT AT Ax

xT x
. (2.7)

Lemma 2. Assume that y satisfies condition (2.7) and ‖Ly‖ = δ, and let z be

a global minimizer of problem (2.6). Then it holds that

f(z) ≤ f(y). (2.8)
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Algorithm 1 Regularized Total Least Squares.

Require: x0 satisfying condition (2.7) and ‖Lx0‖ = δ
for m = 0, 1, 2, . . . until convergence do

Determine global minimizer xm+1 of

g(x; xm) = min! subject to ‖Lx‖2 = δ2 (2.9)

end for

Proof It is easy to prove that

(1 + ‖z‖)2(f(z) − f(y)) = g(z; y) ≤ g(y; y) = (1 + ‖y‖2)(f(y) − f(y)) = 0.

�

This monotonicity result suggests the method presented in Algorithm 1 for
solving the optimization problem (2.2).

By Lemma 1 the sequence {xm} is defined, and from Lemma 2 it follows
that

0 ≤ f(xm+1) ≤ f(xm).

The quadratic optimization problem (2.6) can be solved via the first order
necessary optimality conditions

(AT A − f(y)I)x + λLT Lx = AT b, ‖Lx‖2 = δ2. (2.10)

Although g(·; y) in general is not convex these conditions are even sufficient if
the Lagrange parameter is chosen maximal.

Theorem 2. Assume that (λ̂, x̂) solves the first order conditions (2.10). If

condition (2.7) holds, ‖Ly‖ = δ and λ̂ is the maximal Lagrange multiplier,

then x̂ is a global minimizer of (2.6)

Proof The statement follows immediately from the following equation which
can be shown similarly as Theorem 1 in Gander [8]. If (λj , z

j), j = 1, 2, are
solutions of (2.10) then it holds that

g(z2; y) − g(z1; y) =
1

2
(λ1 − λ2)‖L(z1 − z2)‖2.

�

Sima et al. [23] suggested to solve the first order conditions (2.10) via a
quadratic eigenvalue problem

(W + λI)2u − δ−2hhT u = 0, (2.11)

where W ∈ R
k×k is a symmetric matrix and h ∈ R

k (the detailed form of W
and h will be given in Section 3 when we discuss a numerical method; notice

Math. Model. Anal., 13(1):55–66, 2008.



60 J. Lampe and H. Voss

however, that W = W (y) and h = h(y) depend continuously on y). In [18] we
studied this quadratic eigenproblem, and we proved that (2.11) always has a

right-most real eigenvalue λ̂ such that

λ̂ ≥ real(λ) for every eigenvalue λ of (2.11).

It is this right-most eigenvalue which corresponds to the global minimizer of
problem (2.6).

We are now in the position to prove the convergence of Algorithm 1.

Theorem 3. Any limit point x∗ of the sequence {xm} constructed by Algo-

rithm 1 is a global minimizer of the optimization problem (2.2).

Proof Let x∗ be a limit point of {xm}, and let {xmj} be a subsequence
converging to x∗. Then xmj solves the first order conditions

(AT A − f(xmj−1)I)xmj + λmj
LT Lxmj = AT b.

By the monotonicity of f(xm) it follows that f(xmj−1) converges to f(x∗).
Since W (y) and h(y) depend continuously on y the sequence of right-most

eigenvalues {λmj′
} converges to some λ∗, and x∗ satisfies

(AT A − f(x∗)I)x∗ + λ∗LT Lx∗ = AT b, ‖Lx∗‖2 = δ2,

where λ∗ is the maximal Lagrange multiplier. Hence, by Theorem 2 x∗ is a
global minimizer of

g(x; x∗) = min! subject to ‖Lx‖2 = δ2,

and for y ∈ R
n with ‖Ly‖2 = δ2 it follows that

0 = g(x∗; x∗) ≤ g(y; x∗) = ‖Ay − b‖2 − f(x∗)(1 + ‖y‖2)

= (f(y) − f(x∗))(1 + ‖y‖2), i.e. f(y) ≥ f(x∗).

�

Remark 1. Sima et al. [23] proved the weaker convergence result, that every
limit point of {xm} satisfies the first order conditions (2.9). Beck and Teboulle
[4] considered problem (2.1) with inequality constraints (even for a more gen-
eral objective function) for which they proved global convergence. Notice
however, that the minimization problem for g(·; xm) with inequality constraint
can not be solved via a quadratic eigenvalue problem, whereas it is much more
expensive to solve problem (2.7) with the inequality constraint.

3 Computational Considerations

By Theorem 2 one has to solve

(AT A − f(xm)I)x + λLT Lx = AT b, ‖Lx‖2 = δ2 (3.1)
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for (λ, x) to implement Algorithm 1, and according to Sima et al. [23], this
can be obtained via the quadratic eigenvalue problem

Tm(λ)u := ((Wm + λI)2 − δ−2hmhT
m)u = 0. (3.2)

Here,
Wm := L−T (AT A − f(xm)I)L−1, hm := L−T AT b,

if L is square and nonsingular. Vector u has to be scaled such that uT hm = δ2

and x = L−1(Wm + λI)u. For k < n it holds that (cf. [18])

Wm := S
−1/2
1 (X1 − f(xm)Ik − X2(X4 − f(xm)In−k)−1XT

2 )S
−1/2
1 ,

hm := S
−1/2
1 (c1 − X2(X4 − f(xm)In−k)−1c2),

where LT L = USUT is an eigen decomposition of LT L

(AU)T (AU) =

(

X1 X2

XT
2 X4

)

, S =

(

S1 0
0 0

)

, UT AT b =

(

c1

c2

)

and the leading blocks have dimension k. Again u is scaled such that uT hm =
δ2, z := (Wm + λI)u, and

x := U

(

S
−1/2
1 z

(X4 − f(xm)I)−1(c2 − XT
2 S

−1/2
1 z)

)

.

Algorithm 1, where the optimization problem (2.9) is solved via the quadratic
eigenvalue problem (3.2) was called RTLSQEP.

An obvious approach for solving the quadratic eigenvalue problems (3.2)
in the m-th iteration step is linearization, i.e. solving the liner eigenproblem

(

−2Wm −W 2
m + δ−2hmhT

m

I 0

)(

v
u

)

= λ

(

v
u

)

and choosing the maximal real eigenvalue, and the corresponding u–part of
the eigenvector, which is an eigenvector of (3.2). This approach is reasonable
if the dimension n of problem (2.2) is small.

For larger dimensions it is not efficient to determine the entire spectrum
of (3.2), and to choose the eigenpair that is needed afterwards. In this case
the right–most eigenvalue and corresponding eigenvector of (2.2) can be deter-
mined via the implicitly restarted Arnoldi method implemented in ARPACK
[19] (and included in MATLAB as function eigs) or by using a Krylov subspace
solver tailored for quadratic eigenvalue problems like the one proposed by Li
and Ye [20] or the SOAR method suggested by Bai and Su [1].

Notice however, that in the RTLS Algorithm 1 we have to solve a sequence
of quadratic eigenvalue problems which suggests to use as much information
as possible from previous steps. For Krylov subspace methods the only degree
of freedom is the choice of the initial vector, and therefore the best one can
do is to start the eigensolver in step m with the eigen solution um−1 of the
preceding step.

Math. Model. Anal., 13(1):55–66, 2008.
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A method which is able to take advantage of the complete information
gathered in the previous steps is the nonlinear Arnoldi [24] method which
allows thick starts, i.e. arbitrary initial search spaces. Hence, solving Tm(λ)u =
0 in step m of the RTLS Algorithm 1 one may start with an orthonormal basis
V of the search space that was used in the preceding step when determining
the solution um−1 = V z of the projected problem V T Tm−1(λ)V z = 0.

Algorithm 2 Nonlinear Arnoldi.

1: start with initial basis V , V T V = I
2: determine preconditioner M ≈ T (σ)−1, σ close to wanted eigenvalue
3: find right-most eigenvalue µ of V T T (µ)V y = 0 and corresponding eigen-

vector y
4: set u = V y, r = T (µ)u
5: while (‖r‖/‖u‖ > ǫ) do

6: v = Mr
7: v = v − V V T v
8: ṽ = v/‖v‖, V = [V, ṽ]
9: find right-most eigenvalue µ of projected problem V T T (µ)V y = 0 and

corresponding eigenvector y
10: set u = V y, r = T (µ)u
11: end while

In the RTLS algorithm a sequence of quadratic eigenvalue problems has to
be solved, and the convergence of the matrices and vectors

Wm =
(

C − f(xm)S̃ − D(X4 − f(xm)In−k)−1DT
)

, (3.3)

hm =
(

g1 − D(X4 − f(xm)In−k)−1c2

)

. (3.4)

with C := S
−1/2
1 X1S

−1/2
1 , S̃ = S−1

1 , D = S
−1/2
1 X2 and g1 = S

−1/2
1 c1 suggest

to reuse information from the previous steps when solving problem (3.1) in
step m. The projected problem

V T Tm(λ)V z = ((Wm + λI)V )T ((Wm + λI)V )z − δ−2(hT
mV )T (hT

mV )z = 0
(3.5)

can be determined efficiently, if the matrices CV , SV , DT V and gT
1 V are

known. These are obtained on-the-fly appending one column and component
to the current matrix and vector, respectively, in every iteration step of the
nonlinear Arnoldi method. Notice, that the explicit form of the matrices C,
D and g1 are not needed to execute these multiplications. Moreover we can
take advantage of further updates multiplying ((Wm + λI)V )T ((Wm + λI)V ).

Since it is very inexpensive to obtain updates of WmV and hT
mV from the

preceding matrices Wm−1V and hT
m−1V (cf. (3.3) and (3.4)) we have decided

to terminate the inner iterations long before the convergence. Our numerical
experiments demonstrated that computing time could be reduced substantially
terminating the inner iteration if the residual of the quadratic eigenvalue was
diminished at least by a factor 10−2.
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4 Numerical Experiments

In order to evaluate the performance of the RTLSQEP method for large dimen-
sions where the quadratic eigenproblems are solved by the nonlinear Arnoldi
method we use test examples from Hansen’s Regularization Tools [14]. Two
functions, baart and shaw, which are both discretizations of Fredholm integral
equations of the first kind, are used to generate matrices Atrue ∈ R

n×n, right
hand sides btrue ∈ R

n and solutions xtrue ∈ R
n such that

Atruextrue = btrue.

In all cases the matrices Atrue and [Atrue, btrue] are ill-conditioned.
To construct a suitable TLS problem, the norm of btrue is scaled such that

‖btrue‖ = max ‖Atrue(:, i)‖ holds. xtrue is scaled by the same factor. The
noise added to the problem is put in relation to the maximal element of the
augmented matrix, maxval = max (max (abs[Atrue, btrue])). We added white
noise of level 5-50%, i.e. σ = maxval · (0.05 . . .0.5) to the data, and obtained
the systems Ax = b to be solved, where A = Atrue + σE and b = btrue + σe,
and the elements of E and e are independent random variables with zero mean
value and unit variance. The matrix L ∈ R

n−1×n approximates the first order
derivative, and δ is chosen to be δ = 0.9‖Lxtrue‖.

The numerical tests were run on a PentiumR4 computer with 3.4 GHz and
3GB RAM under MATLAB R2006b. Tables 1 and 2 contain the CPU times
in seconds averaged over 100 random simulations for dimensions n = 1000,
n = 2000, and n = 4000 with noise levels 5% and 50% for baart and shaw

test problems, respectively. The quadratic eigenproblems were solved by the
Krylov subspace methods for quadratic eigenproblems presented by Li and Ye
and by Bai and Su, and by the nonlinear Arnoldi method with early updates.
We also tried early updates for the Krylov space solvers, but this even delayed
the convergence. Solving the quadratic eigenvalue problems by linearization
and the restarted Arnoldi method (calling eigs) took much more time although
in this case the precompiled FORTRAN routine ARPACK is used. The outer
iteration was terminated if the residual norm of the first order condition was
less than 10−10.

Table 1. Average CPU time; Noise level 5%.

problem n SOAR Li & Ye NL Arn.

baart 1000 0.28 0.15 0.10

2000 0.92 0.45 0.31

4000 3.51 1.62 1.16

shaw 1000 0.40 0.23 0.12

2000 1.33 0.60 0.37

4000 5.09 1.89 1.39

Figures 1 and 2 show the typical convergence behaviour of the RTLSQEP
where the quadratic eigenproblems are solved by the method presented by Li

Math. Model. Anal., 13(1):55–66, 2008.
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Table 2. Average CPU time; Noise level 50%.

problem n SOAR Li & Ye NL Arn.

baart 1000 0.19 0.11 0.10

2000 0.61 0.35 0.31

4000 2.45 1.18 1.14

shaw 1000 0.27 0.14 0.11

2000 1.01 0.44 0.35

4000 4.10 1.73 1.31

and Ye (the SOAR method behaves similarly) and by the nonlinear Arnoldi
method, respectively. An asterisk marks the residual norm of a quadratic
eigenvalue problem in an inner iteration, and a circle denotes the residual
norm of the first order condition in an outer iteration. Notice, however, that
the method presented by Li and Ye requires only one matrix vector product
in every inner iteration, whereas the nonlinear Arnoldi method needs roughly
two matrix vector products. However, due to the early updates the nonlinear
Arnoldi method requires significantly less matrix-vector products than the
Krylov subspace methods.
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Figure 1. Convergence history; quadratic eigenproblems by the Li & Ye algorithm.

5 Conclusions

Regularized total least squares problems can be solved efficiently by the RTL-
SQEP method introduced by Sima, Van Huffel and Golub [23] via a sequence
of quadratic eigenvalue problems. We proved its convergence to a global mini-
mizer. For problems of high dimension the quadratic eigenvalue problems can
be solved efficiently by the nonlinear Arnoldi method with early updates.
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Figure 2. Convergence history; quadratic eigenproblems by Arnoldi algorithm.
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