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Abstract. Piecewise polynomial collocation methods on special nonuniform grids
are efficient methods for solving weakly singular Fredholm and Volterra integral equa-
tions but there is a widespread belief that those methods are numerically unstable
in the case of large values of the nonuniformity parameter r. We show that this
method by itself is stable and discuss some implementation problems that may lead
to unstable behavior of numerical results.
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1 Introduction

We consider the linear weakly singular Volterra integral equations

y(t) =

∫ t

0

K(t, s)y(s)ds + f(t), t ∈ [0, T ] (1.1)

and Fredholm integral equations

y(t) =

∫ T

0

K(t, s)y(s)ds + f(t), t ∈ [0, T ]. (1.2)
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Note that Volterra equation can be considered to be a special case of a Fred-
holm equation with the kernel being equal to 0 above the diagonal t = s.
Piecewise polynomial collocation methods using a graded grid of the form

tn = T
( n

N

)r

, n = 0, 1, . . . , N

for Volterra equations and of the form (with even N)

tn =
T

2

(

2n

N

)r

, n = 0, 1, . . . ,
N

2
, tN

2
+n = T − tN

2
−n, n = 1, 2, . . . ,

N

2
(1.3)

for Fredholm equations with a suitable nonuniformity parameter r ≥ 1 are
among the most popular methods for solving this type of integral equations
and have been studied quite extensively (see [5, 6, 7] for Fredholm equations
and [1, 2, 3] for Volterra equations). Unfortunately many scientists and prac-
titioners believe that those methods become unstable when the nonuniformity
parameter r is large. We show that this method by itself is stable and dis-
cuss some implementation problems that may lead to unstable behavior of
numerical results.

2 Assumptions and Smoothness Results

We assume that the kernel K belongs to the space Wk,ν(D), k ∈ IN, ν ∈
IR, ν < 1, where

D = {(t, s) ∈ IR2 : 0 ≤ t ≤ T, 0 ≤ s ≤ T, t 6= s}.

The set Wk,ν(D), with k ∈ IN, ν ∈ IR, ν < 1 consists of all k times continu-
ously differentiable functions K : D → IR satisfying

∣

∣

∣

∣

∣

(

∂

∂t

)i (

∂

∂t
+

∂

∂s

)j

K(t, s)

∣

∣

∣

∣

∣

≤ c







1, if ν + i < 0,

1 + | log |t − s||, if ν + i = 0,

|t − s|−ν−i, if ν + i > 0

with a constant c = c(K) for all (t, s) ∈ D and all nonnegative integers i and
j such that i + j ≤ k.

In order to characterize the smoothness of the solutions of equation (1.2) we

introduce the space C
k,ν
F [0, T ], k ∈ IN, ν ∈ IR, ν < 1. It denotes the collection

of all continuous functions x : [0, T ] → IR, which are k times continuously
differentiable in (0, T ) such that the estimation

∣

∣x(i)(t)
∣

∣ ≤ c







1, if i < 1 − ν ,

1 + | log ̺(t)|, if i = 1 − ν ,

̺(t)1−ν−i, if i > 1 − ν

holds with ̺(t) = min{t, T − t} , 0 < t < T , and with a constant c = c(x) for
all t ∈ (0, T ) and i = 1, . . . , k.

Note that the derivatives staring from the order of (1 − ⌊ν⌋) of the func-

tions in C
k,ν
F [0, T ] may be unbounded at both endpoints of the interval [0, T ].

Now we are ready to state a smoothness result for solutions of the Fredholm
equation.
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Theorem 1. [6] Let f ∈ C
k,ν
F [0, T ], K ∈ Wk,ν(D), k ∈ IN, ν ∈ IR, ν < 1. If

the integral equation (1.2)) has a solution y ∈ L∞(0, T ), then y ∈ C
k,ν
F [0, T ].

It turns out that in the special case of Volterra equation (1.1), the solutions
are smooth at t = T if the data f is smooth at t = T . More precisely, let
C

k,ν
V [0, T ], k ∈ IN, ν ∈ IR, ν < 1 be defined as the collection of all continuous

functions x : [0, T ] → IR, which are k times continuously differentiable in (0, T ]
and such that the estimation

∣

∣

∣
x(i)(t)

∣

∣

∣
≤ c







1, if i < 1 − ν,

1 + | log t|, if i = 1 − ν,

t1−ν−i, if i > 1 − ν

holds with a constant c = c(x) for all t ∈ (0, T ] and i = 0, 1, . . . , k.

For the Volterra equation we have the following result

Theorem 2. [2] Assume f ∈ C
k,ν
V [0, T ] and K ∈ Wk,ν(D), k ∈ IN, ν ∈

IR, ν < 1. Then the integral equation (1.1) has a unique solution y ∈ C
k,ν
V [0, T ].

The smoothness results of Theorems 1 and 2 are sharp in the following sense:
even if f ∈ C∞[0, T ] the solutions of the corresponding equations (1.2) and

(1.1) have, in general, the singularities allowed by the spaces C
k,ν
F [0, T ] and

C
k,ν
V [0, T ], respectively.

3 Grid and the Spline Spaces

For a given N ∈ IN let

ΠN = {t0, t1, . . . , tN : 0 = t0 < t1 < . . . < tN = T }

be a partition (a mesh) of the interval [0, T ] (for ease of notation we suppress

the index N in tn = t
(N)
n indicating the dependence of the grid points on N).

We look for approximate solutions to integral equations in the form of
piecewise polynomial functions. Such functions are called polynomial splines.

Definition 1. Let k and d be given integers satisfying −1 ≤ d ≤ k − 1. We
call

S
(d)
k (ΠN ) = {w : w

∣

∣

(tn−1,tn)
=: wn ∈ πk, n = 1, . . . , N ;

w
(i)
n (tn) = w

(i)
n+1(tn) 0 ≤ i ≤ d, n = 1, . . . , N − 1}

the space of (real) polynomial splines of degree k and of continuity class d. Here
πk denotes the set of polynomials of degree not exceeding k and w

∣

∣

(tn−1,tn)
is

the restriction of w : [0, T ] → IR to the subinterval (tn−1, tn).

Math. Model. Anal., 13(1):29–36, 2008.
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4 Collocation Method

We define m ≥ 1 interpolation points in every subinterval [tn−1, tn]
(n = 1, . . . , N) of the grid ΠN by

tnj = tn−1 + ηjhn, j = 1, . . . , m (n = 1, . . . , N),

where hn = tn − tn−1 and η1, . . . , ηm are some fixed parameters (called collo-
cation parameters) which do not depend on n and N and satisfy

0 ≤ η1 < . . . < ηm ≤ 1.

We look for an approximate solution u to the solution y of equation (1.2) in

S
(−1)
m−1(ΠN ), m, N ∈ IN. We determine u = u(N) ∈ S

(−1)
m−1(ΠN ) by the colloca-

tion method from the following conditions:

u(tnj) =

T
∫

0

K(tnj , s)u(s)ds + f(tnj), j = 1, . . . , m; n = 1, . . . , N.

If η1 = 0, then by u(tn1) we denote the right limit lim
t→tn−1+0

u(t). Similarly,

if ηm = 1, then u(tnm) denotes the left limit lim
t→tn−0

u(t). Since the solutions

of equation (1.2) are not smooth, it is necessary to use a suitably chosen
nonuniform grid in order to achieve the optimal convergence rate.

5 “Unstable” Behavior of the Numerical Method

Consider an example of weakly singular Volterra integral equation

y(t) =

∫ t

0

|t − s|−νy(s)ds + f(t), t ∈ [0, T ],

where f(t) corresponds to the solution y(t) = t1−ν . In this case it is possible to
find exact formulas (e.g. by using tables of integrals) for the integrals needed
for forming the system of collocation equations. In the case ν = 0.5, m = 3,

and collocation parameters η1 = 1
4 , η2 = 1

2 , η3 = 3
4 the theoretical convergence

rate in the supremum norm is (see [2])

‖y − u‖∞ ≤ c























N−r(1−ν), if 1 ≤ r <
m

1 − ν
,

N−m(1 + log N), if r =
m

1 − ν
= 1,

N−m, if r >
m

1 − ν
or r =

m

1 − ν
> 1,

but the straightforward numerical implementation gives the results presented
in Table 1. In the table εN = ‖u(N) − y‖∞ denotes the actual error, in the
columns with the labels ρ are the quotients of the errors for the values of
N that are the consecutive powers of 2 and the number in the parenthesis
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Table 1. Numerical results, “exact” system integrals.

ν = 0.5 r = 1 r = 2 r = 4 r = 8

N εN ̺(1.4) εN ̺(2.0) εN ̺(4.0) εN ̺(8.0)
4 1.7E-2 1.2 1.1E-2 1.6 6.3E-3 2.8 1.4E-2 1.9
8 1.4E-2 1.2 6.0E-3 1.8 1.9E-3 3.4 3.1E-3 4.5
16 1.1E-2 1.3 3.2E-3 1.9 4.9E-4 3.8 1.4E-2 0.2
32 8.1E-3 1.3 1.7E-3 1.9 1.2E-4 4.0 7.7E+1 0.0
64 6.0E-3 1.3 8.4E-4 2.0 3.1E-5 4.0 6.8E+5 0.0
128 4.4E-3 1.4 4.2E-4 2.0 1.1E-3 0.0 7.4E+7 0.0
256 3.2E-3 1.4 2.1E-4 2.0 6.7E-2 0.0 1.5E+8 0.5
512 2.3E-3 1.4 1.1E-4 2.0 7.8E+0 0.0 3.6E+8 0.4
1024 1.7E-3 1.4 5.3E-5 2.0 4.8E+2 0.0 1.9E+8 1.9

behind ρ shows what the quotient of the errors should be if the theoretical
error estimates were exact. As we see, in the case of relatively small values of
r the computational results are in a good agreement with the theoretical error
estimates but for larger values of the nonuniformity parameter r the numerical
results show a clear unstable behavior. In the next section we analyze the
possible causes of numerical instability and identify the reason of the clearly
unsatisfactory results obtained for r ≥ 4 in the case of the test equation.

6 Numerical Stability of the Piecewise Polynomial Col-

location Method

Let us first recall some general results about stability of solution methods for
linear equations following the framework presented in [4, Chapter 1.3]. Let X

be a Banach space and let A ∈ L(X) be an invertible linear operator. Consider
the equation

Ax = f, x, f ∈ X.

When constructing a numerical method for the equation one usually introduces
a finite dimensional subspace Xn of X , replaces A with an approximation An

that maps Xn to Xn and replaces the right hand side f with an approximation
from Xn:

Anxn = fn, xn, fn ∈ Xn.

This defines a numerical method but for actual implementations it is also
necessary to reduce it to a matrix equation. For this purposes one usually
introduces a basis {ei}

n
i=1 in Xn and reduces the previous operator equation

to the matrix equation for the coefficients of the approximate solution xn

relative to the chosen basis. By defining

Rn : IRn → Xn Rnc =

n
∑

i=1

ciei

and

Ln = R−1
n : Xn → IRn [Ln(

n
∑

i=1

ci ei, )]j = cj ,

Math. Model. Anal., 13(1):29–36, 2008.
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we can write the resulting linear matrix equation as

Mc = b,

where M = LnAnRn and b = Lnfn; our approximate solution to the original
equation is then xn = Rnc.

It is usually not possible to compute the values of the coefficient matrix M

and the vector b exactly, so we actually solve the matrix equation

(M + δM)(c + δc) = b + δb

and the actual error of the numerical solution is ‖x − xn − Rnδc‖ which we
can split into two parts:

‖x − xn − Rnδc‖ ≤ ‖x − xn‖ + ‖Rnδc‖.

The first part depends on how well our method approximates the original
equation and the second part depends on the stability of the resulting matrix
equation. Using the condition number of M defined by

cond(M) = ‖M‖‖M−1‖

we have
‖δc‖

‖c‖
≤

cond(M)

1 − ‖δM‖‖M−1‖

(

‖δb‖

‖b‖
+

‖δM‖

‖M‖

)

,

hence the uniform (with respect to n) boundedness of Rn and cond(M) to-
gether with good approximation properties of the numerical method imply
the stability of the actual numerical implementation, provided the errors in
computing the coefficients of the linear system and the right hand side remain
small; instability of the numerical method may be caused either by the bad
approximation properties of the method or by a bad choice of the basis in Xn

leading to unbounded condition number of the matrix M .
Let us analyze the piecewise polynomial collocation method for solving

weakly singular integral equations according to the presented scheme. Denote
by T the (Fredholm or Volterra) integral operator and by PN the piecewise
polynomial interpolation operator defined on the grid ΠN , then the collocation
method for the original equation

y = Ty + f

can be written as
u − PNTu = PNf.

In the proofs of the convergence theorems for Volterra and Fredholm equations
it is shown that the method has good approximation properties and that (I −
PNT ) converges to (I − T ) in L(L∞) (see [2] and [6], respectively). Hence
(assuming additionally that the kernel of I −T contains only the zero element
in the case of Fredholm equation) we have that the operator AN = I − PNT

has a finite condition number in the space L∞(0, T ) that converges to the
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condition number of the operator I − T , thus it has a finite condition that is
independent of r also in the space of piecewise polynomial functions defined on

ΠN . Now, if we use for the basis functions in S
(−1)
m−1 the piecewise Lagrangian

polynomial functions φij ∈ S
(−1)
m−1 defined by

φij(t) =







φj

( t − ti−1

ti − ti−1

)

, if t ∈ [ti−1, ti],

0, otherwise,

where the functions φj are the Lagrangian polynomials of degree m− 1 corre-
sponding to the collocation parameters ηk, k = 1, . . . , m and use the maximum
norm in IRn, then clearly we have

‖Lnw‖∞ ≤ ‖w‖∞ ∀w ∈ S
(−1)
m−1

and

‖Rnc‖∞ ≤ λm|c‖∞, λm = max
0≤t≤1

m
∑

k=1

|φk(t)| = ‖Pm‖C[0,1]→L∞(0,1),

where n = Nm is the dimension of the space S
(−1)
m−1, and Pm is the interpolation

operator corresponding to the functions φk, k = 1 . . . , m. As L−1
n = Rn we

now have

cond(M) = ‖LnANRn‖ ‖R
−1
n A−1

N L−1
n ‖ ≤ ‖Rn‖

2
∞cond(AN ) ≤ const.

Therefore we may conclude that in the case of Lagrangian basis functions
the piecewise polynomial collocation method is stable provided the coefficient
matrix is computed with reasonable accuracy. Thus the “unstable” numer-
ical results obtained previously were just the result of careless application
of Newton-Leibniz rule for computing system integrals that introduced large
round-off errors.

On the basis of the analysis we may conclude that the piecewise polynomial
collocation method using special nonuniform grids is stable for solving weakly
singular integral equations, provided the system integrals are computed with
sufficient accuracy. There are at least three ways to achieve this:

• by using high precision arithmetics in computing the formulas of system
integrals;

• by rewriting the exact formulas in a form that is not sensitive to round-off
errors;

• by computing the system integrals numerically with sufficient accuracy.

In order to demonstrate the accuracy of the conclusions we present the nu-
merical results for the same method and test equation in the case when the
system integrals are computed numerically. We computed the system integrals
with relative error less than 10−10 using a quadrature formula on a nonuniform
grid together with Runge’s error estimate. This made the solution procedure
about 10 times slower than in the case of the "exact" system integrals (inde-
pendently of the value of N). As we see in Table 2, the results are now in
complete agreement with the theoretical error estimates.

Math. Model. Anal., 13(1):29–36, 2008.
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Table 2. Numerical results, numerically computed system integrals.

r = 4 r = 8 r = 16 r = 32

N εN ̺(4.0) εN ̺(8.0) εN ̺(8.0) εN ̺(8.0)
4 6.3E-3 2.8 1.4E-2 1.9 2.6E-2 1.1 2.8E-2 1.0
8 1.9E-3 3.4 3.1E-3 4.5 1.3E-2 2.0 2.5E-2 1.1
16 4.9E-4 3.8 4.6E-4 6.8 2.9E-3 4.4 1.2E-2 2.1
32 1.2E-4 4.0 6.0E-5 7.7 4.4E-4 6.5 2.8E-3 4.3
64 3.1E-5 4.0 7.5E-6 8.0 5.9E-5 7.5 4.3E-4 6.4
128 7.7E-6 4.0 9.3E-7 8.1 7.4E-6 7.9 5.8E-5 7.5
256 1.9E-6 4.0 1.1E-7 8.1 9.2E-7 8.0 7.4E-6 7.9
512 4.8E-7 4.0 1.4E-8 8.1 1.1E-7 8.1 9.2E-7 8.0
1024 1.2E-7 4.0 1.8E-9 8.0 1.4E-8 8.1 1.1E-7 8.0

References

[1] H. Brunner. The numerical solution of weakly singular Volterra integral equations
by collocation on graded meshes. Math. Comp., 45(2):417–437, 1985.

[2] H. Brunner, A. Pedas and G. Vainikko. The piecewise polynomial colloca-
tion method for nonlinear weakly singular Volterra equations. Math. Comp.,
68(227):1079–1095, 1999.

[3] H. Brunner and T. Tang. Polynomial spline collocation methods for the nonlinear
Basset equation. Comput. Math. Appl., 18(5):449–457, 1989.

[4] R. Kress. Linear Integral Equations. Springer-Verlag, Berlin Heidelberg, 1989.
(in Russian)

[5] E. Tamme. Two-grid methods for nonlinear multidimensional weakly singular
integral equations. J. Integral Equations Appl., 7(2):99–113, 1995.

[6] G. Vainikko. Multidimensional Weakly Singular Integral Equations, Lecture Notes

Math. Springer-Verlag, Berlin-Heidelberg-New York, 1993. (in Russian)

[7] G. Vainikko, A. Pedas and P. Uba. Methods for Solving Weakly Singular Integral

Equations. Univ. of Tartu, Tartu, 1984. (in Russian)


	Introduction
	Assumptions and Smoothness Results
	Grid and the Spline Spaces
	Collocation Method
	``Unstable'' Behavior of the Numerical Method
	Numerical Stability of the Piecewise Polynomial Collocation Method
	References

