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Abstract. We compare four different heuristic methods for polynomial regression
model induction. The methods are very different in their approaches. Our main
concern in this study is in the differences of candidate model spaces the methods
deal with (completely predefined versus non-predefined), as well as search strategies
used. We investigate the advantages and disadvantages of the approaches represented
by the methods in terms of predictive error, complexity of the induced models and
required computational resources. For empirical comparisons, we use twelve test
problems.
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1 Introduction

In regression modelling, to describe the relation between variables, typically
a linear model is used. Linear models are very flexible and often used when
there is no theoretical model available. A linear model may be defined by a
linear summation of basis functions:

ŷ =

K∑

i=1

aifi(x)

where K is the number of the model’s basis functions fi(x) =
∏D

j=1
x

rij

j , D
is the number of the original predictor variables, rij is the order of the j-
th variable in the i-th basis function (a non-negative integer), ai are model’s
parameters. Note that when all rj ’s of a basis function are equal to 0, we have
the intercept term.

mailto:gintsj@cs.rtu.lv;jurisl@cs.rtu.lv


18 G. Jekabsons and J.Lavendels

The problem is that the model to use should be neither too simple (causing
underfitting) nor too complex (causing overfitting). Otherwise, model’s ability
to generalize to new data will be relatively poor.

A model should be selected based on its generalizability, rather than on
its goodness of fit. In general, a data set containing N samples can be fit
exactly by an equation with N terms (i.e., polynomial of order N − 1). Thus,
the complexity must be regulated for an induced model to be useful. To
generalize well from the known data to new situations, a compromise must be
made between the accuracy on training data, possible with complex models,
and the robustness on new data, characteristic of simple ones. In addition,
reducing model’s complexity may help decrease the cost of acquiring data.
The goal of model selection is to identify the model, from a set of competing
models, which best captures the regularities underlying the process of interest
and does not overfit.

When computing power was expensive, analysts were forced to employ
rigid models even when the relationships between independent and dependent
variables were not clear enough to warrant the necessary prior specifications.
Because of modern computers, researchers have increasingly turned to mod-
elling techniques which consider searching through very large sets of candidate
models seeking for a model which has the best generalizability, requiring high
computation resources.

Yet searching through all the candidate models in the candidate model
space in most problems is impractical. Therefore a convenient paradigm for
viewing such problems is that of heuristic search with each state in the space
specifying a specific candidate model (e.g. a subset of basis functions). One
can use heuristic search methods that traverse the space of models, e.g. by
adding and deleting the basis functions, and select the best found model.

Usually, the space of polynomial models is chosen such that the order of
each polynomial does not exceed previously chosen highest allowed order p,
i.e. rij = 0, 1, . . . , p and

∑D

j=1
rij ≤ p. The well known classical heuristic

method for searching for the best model in such completely predefined spaces
is Forward Selection (also known as Sequential Forward Selection, SFS) [1].
Some other methods include also use of some stochastic elements. They are,
for example, Random Restart Hill Climbing, Random Mutation Hill Climbing,
Simulated Annealing, as well as Genetic Algorithms (e.g. see [6]). In this
paper, we will consider Sequential Forward Selection, and Random Mutation
Hill Climbing (RMHC) as the former is the most widely known and the latter
already has shown a rather reasonable performance in our previous studies [8]
as well as in studies of other authors (e.g. [6]).

The above described approach presumes a fixed library of basis functions
out of which competing models are built (and it requires user to specify p).
Thus, modelling reduces to subset selection. Another approach is to work
with non-predefined model spaces. One can use such polynomial refinement
operators which allow generating polynomials of arbitrary order. The method
Constrained Induction of Polynomial Equations for Regression (CIPER) [10]
does exactly that. Or one can use another class of heuristic methods which
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solve the overall problem by solving portions of the problem at a time - blocks
of terms at a time, and connect those blocks into a multi-stage model. The
Group Method of Data Handling (GMDH) methods [3, 4, 5] fall into this
category.

As can be seen, the four methods are very different in their approaches
to polynomial model induction. It is not clear which one to use in different
situations. This is a very important question also in practical applications of
the methods. Our main concern in this study is in the differences of types of
candidate model spaces the methods deal with (completely predefined versus
non-predefined), as well as search strategies used. Our objective in this study
is to investigate the advantages and disadvantages of the approaches repre-
sented by the methods in terms of predictive error, complexity of the induced
models and required computational resources. For empirical comparisons, we
use twelve test problem data sets with various sizes of data sample and num-
bers of variables paying most attention to situations with relatively short data
samples (which is often the case in practical applications) where the partial
polynomials outperform the full polynomials the most.

The rest of the paper is organized as follows. Section 2 deals with regres-
sion model selection criteria used in the modelling methods to regulate model
complexity and to guide the search. Section 3 describes the four methods of
polynomial regression model induction. Section 4 describes the performed em-
pirical experiments, presents the results, and draws some conclusions about ad-
vantages and disadvantages of the methods (and their represented approaches).

2 Model Selection Criteria

One of the ways to perform model selection is to use complexity penalization
criteria: train the models using all available data, measure model complexity
(usually by the number of parameters, K) and choose the model which is best
according to a function of K, the training error, the number of cases in training
data set, N and (perhaps) a prior estimate of error variance, σ2. Complexity
penalization criteria usually do not require high computational resources and
allow one to use all the data for training.

Some of the most widely known complexity penalization criteria are Akaike’s
Information Criterion, AIC [2], small sample corrected Akaike’s Information
Criterion, AICC [7], and the two-stage code version of the Minimum Descrip-
tion Length criterion (MDL) [9]. In general, one can define such criteria as a
sum of deviance of the model and the complexity penalty:

CR = deviance + penalty.

The deviance term is equal to minus twice the log-likelihood. In a regression
problem with known σ2 this is the least-squares measure S divided by σ2, and
if σ2 is not known, the deviance is N log (S/N). The penalty term for AIC is
2K, for AICC is 2K + (2K(K + 1))/(N − K − 1), and for MDL is K log (N).
The best fitting model is that whose criterion value is the lowest.
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Note that the AIC definition with known σ2 behaves equally to the Pre-
dicted Squared Error (PSE) [3] – one of the implemented criteria in Neuroshell2
software [11], which we used for GMDH modelling (see section 3.4).

3 The Methods for Induction of Polynomial Regression

Models

The first two considered methods work with completely predefined candidate
model spaces. A small example of such space is given in Figure 1. A search
method traverses such space step by step seeking for the state (a subset of basis
functions included in model) with the best value of the selection criterion, and
guided by the so constructed evaluations. The goal is to find as good state
as possible, hopefully global minimum – the best model, with as less state
transitions as possible, since each transition requires evaluation of a number
of models, what includes least-squares estimation of parameters for each model.

Figure 1. A small example of completely predefined candidate model space.

3.1 Sequential forward selection

SFS is one of the simplest most widely known search methods [1]. It starts
with an empty set of selected basis functions and iteratively adds the function
leading to the highest performance increase to the set of selected functions,
until the performance cannot be enhanced any further by adding a single
function.

SFS method is deterministic in the sense that no matter how many times
we restart it from the beginning, we will always obtain the same solution. The
method usually requires relatively small amount of computational resources,
but because of its greedy and deterministic nature, it has a tendency to get
trapped in local minima [4, 8].
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3.2 Random mutation hill climbing

To escape from local minima, non-deterministic heuristic search methods can
be used. Such methods include some use of stochastic elements, for example,
restarts of search at random states or random transitions to states that may
not be the best greedy choices. Consequently the non-deterministic methods
may give different solutions in each restart.

One of the non-deterministic heuristic search methods is RMHC [6]. So
far, it has shown rather reasonable performance in our previous studies [8].
RMHC works similarly to SFS except that it can also delete already existing
basis functions and that the starting state of the search as well as the next
current state of each iteration is chosen randomly. Usually RMHC is run with
an outer loop, which restarts the search for a given number of times. Because
of the restarts, RMHC is usually overall slower than SFS, but, because of its
reduced sensitivity to local minima, usually finds solutions with better values
of selection criteria. In our experiments of this study, the number of restarts is
equal to 10. However, note that the initial state of RMHC in our experiments
is the same as for SFS – the empty subset. One reason for this choice is
computational – building smaller models is much faster. The other reason is
that in our earlier studies it could be seen that in many real-world applications,
where only small data sample was available, often there was only a little or
no improvement in generalizability of models found by RMHC with random
restarts, but the time consumption was much higher.

In our experiments, we used the implementations of both SFS and RMHC
in our in-house software. Selection criterion used in both methods was AICC
and, as a rule of thumb, the highest allowed order of polynomials, p, was set
as high as possible but so that the number of all basis functions did not exceed
the number of data cases.

3.3 Constrained induction of polynomial equations for regression

While the two methods described above can only refine the current model
by adding a new basis function to it or deleting an existing one, and require
the user to specify the maximal order of the polynomial, CIPER can also
add a variable to an already existing basis function [10]. Using this kind of
refinement, CIPER can generate polynomials of arbitrary order and the need
to predefine the set of basis functions disappears. A small example of CIPER’s
candidate model space is given in Figure 2.

For polynomial regression model evaluation CIPER uses a slightly modifi-
cated the two-stage code MDL criterion [10]:

MDL = N log (S/N) + L log (N),

where L =
∑K

i=1

∑D

j=1
rij is the “length” of polynomial, i.e. the sum of the

orders of all basis functions in the polynomial.

CIPER employs beam search through the space of candidate models start-
ing with a model which has only the intercept term in it [10]. CIPER, in
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Figure 2. A small example of CIPER’s candidate model space (for simplicity, the coeffi-
cients of the terms as well as the intercept term are omitted).

common with SFS, is deterministic. The method also usually requires rela-
tively short amount of computational resources. But unlike SFS (and RMHC),
CIPER can not move in direction of simpler models – it only can make the
models more complex.

CIPER’s candidate model space, in comparison with that of SFS and
RMHC, has lower branching factor [10], which on the one hand leads to higher
probability to get trapped in local minima and on the other hand makes the
method faster and permits the use of high beam widths to avoid the entrap-
ment. The default beam width of CIPER is 16 (in our experiments it was also
fixed to 16).

CIPER was already empirically compared with linear regression, Stepwise
Regression with F-test, Regression Trees, and Model Trees in [10]. It usually
outperformed the other methods.

3.4 Group method of data handling

Another method which can be used for polynomial regression model induction
is GMDH [4, 5]. The method is mainly referred as a method for self-organizing
polynomial (neural) networks. The most widely known of its varieties work
exclusively with polynomials and therefore also the result of the method can
be written in polynomial form.

The building blocks of GMDH usually are second or third order polynomials
(often partial) of two or three input variables. Such building blocks, also called
partial descriptions (PDs), like neurons in neural networks, are arranged in
layers (see Figure 3). The coefficients of each PD are estimated using the
ordinary least-squares method by trying to approximate the original dependent
variable y of training data. The exact number of layers, composition and
structure of PDs and connections is not set a priori, but is the object of search
layer by layer. The number of PDs selected in each layer, F, is preferred to
be as large as possible. However, in practice it is known that GMDH methods
perform enough well for F equal to the number of original input variables.
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Figure 3. An example of GMDH polynomial network structure.

GMDH is said to be advantageous in handling a relatively big number of
variables (including irrelevant ones) and noisy or small data samples [4]. In
comparison with such one-step-greedy methods as SFS, RMHC, and CIPER,
described above, GMDH grows models by a block of terms at a time – so
arguably the local minima are avoided more efficiently [4].

There exists a wide spectrum of GMDH methods, even if we consider only
those which work only with polynomial PDs (e.g. see [3, 4, 5, 11]). In our
experiments, we used a variety of GMDH implemented in Neuroshell2 tool
developed by Ward Systems Group, Inc. [11], which is also similar to the well
known Algorithm for Synthesis of Polynomial Networks, ASPN [3]. In our
experiments, the following GMDH settings were used: maximal complexity
of PD is a full polynomial of third order with three inputs; full exhaustive
optimization of each PD (this is the only choice in which we know for sure
what the software is doing as all other choices are not fully described in the
user’s manual); F is equal to the number of original input variables; PDs of
each successive layer can take inputs from PDs of immediately preceding layer
as well as the original input variables; as a selection criterion, PSE was used
as it is one of the most frequently used complexity penalization criteria for
GMDH (e.g. [3, 4, 11]).

4 Experimental Comparisons

In our comparisons, we used twelve various publicly available regression data
sets which all can be downloaded from the WEKA project website
(http://www.cs.waikato.ac.nz/ml/weka/). We chose data sets with relatively
small sample sizes, as this is often the case in practical applications. Table 1
presents the basic properties of the data sets.

4.1 Experimental methodology

In all the experiments presented here, we estimated predictive error of the
induced models on unseen data samples using 10-fold Cross Validation (CV).
In contrast to the three deterministic methods, the RMHC, because of its
stochastic nature, was executed 10 times in each CV iteration and the results
were averaged.

Math. Model. Anal., 13(1):17–27, 2008.
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Table 1. The basic properties of the data sets (number of data cases and input
variables) and the maximum order of the polynomials for SFS and RMHC.
* denotes data sets the order of cases was left unchanged as it was already ran-
domized, for all other data sets the order was randomized.

Data set Cases Vars p

autoMpg 392 7 4
autoPrice 159 15 2
bodyfat 252 14 2
bolts 40 7 2
elusage 55 2 8
housing 506 13 2
housingNOX 506 13 2
machine-cpu 209 6 3
pollution* 60 15 1
pwLinear* 200 10 2
servo* 167 4 5
triazines* 186 60 1

The predictive error of a model is measured in terms of relative root mean
squared error, RRMSE defined as model’s root mean squared error divided
by standard deviation of the dependent variable y, both calculated using the
unseen examples of the test set.

4.2 Experimental results

We present the results of the experiments in Tables 2 and 3. Table 2 compares
the methods in terms of their predictive error and its standard deviation.
Table 3 compares the time of the methods needed to induce the models and
the complexity of the induced models in terms of number of parameters and
number of included original input variables. All experiments were performed
on Pentium 4 2.4GHz computer with Hyper Threading turned on.

In terms of predictive error, none of the methods significantly outperformed
the other ones. But some tendencies could be observed. In comparison with
SFS, the RMHC, despite of its better avoidance of local minima, did not
perform as well as was predicted. Apparently, there are two main reasons
for this. The first reason is that such traditional model selection criteria as
AICC (and many other) are asymptotic – when the available data sample is
relatively small, the induced models may overfit the data. The second reason
is the RMHC’s search intensity – in big candidate model spaces it can find
models which have low AICC just by chance (having high predictive errors at
the same time). Yet it seems that the SFS still can successfully find reasonably
good models just because it gets stuck in some early local minima. For the
same reason, it almost always has constructed less complex models than those
of RMHC.

The time consumption of RMHC is much higher than that of SFS which
is explainable by the 10 iterations of its outer loop of the search.



A Comparison of Heuristic Methods for Polynomial Regression Model 25

Table 2. Average RRMSE (%) and its standard deviation of the induced models.

SFS RMHC CIPER GMDH

Data set Err. (STD) Err. (STD) Err. (STD) Err. (STD)
autoMpg 37.82 (4.61) 38.12 (6.02) 38.31 (6.50) 35.07 (6.68)
autoPrice 53.10 (18.64) 49.50 (26.97) 46.62 (16.43) 49.71 (20.47)
bodyfat 15.30 (12.86) 16.79 (12.81) 14.71 (13.01) 15.74 (14.18)
bolts 18.83 (41.36) 9.51 (16.19) 7.05 (13.88) 44.72 (98.56)
elusage 43.93 (12.63) 51.87 (24.90) 43.39 (12.00) 43.39 (12.00)
housing 41.72 (12.82) 41.40 (12.50) 45.21 (18.51) 42.50 (13.59)
housingNOX 37.65 (7.06) 37.54 (7.16) 37.46 (5.67) 38.78 (3.57)
machine-cpu 34.57 (9.09) 62.79 (40.41) 41.60 (16.09) 49.15 (21.34)
pollution 73.11 (22.80) 78.68 (21.36) 80.96 (24.59) 103.44 (36.81)
pwLinear 35.45 (6.96) 35.90 (6.66) 60.42 (23.66) 36.04 (7.16)
servo 39.59 (15.38) 43.70 (15.44) 59.24 (14.87) 39.77 (14.82)
triazines 99.92 (15.75) 163.13 (227.68) 96.19 (11.38) 110.16 (33.61)

Table 3. Average running time (in s), average number of basis functions (K) and
average number of included variables (d) of the induced models (GMDH time
was measured only to a precision of 1 second).

SFS RMHC CIPER GMDH

Data set T ime K(d) T ime K(d) T ime K(d) T ime K(d)
autoMpg 45.5 26 (7) 373.9 38 (7) 1.2 7 (5) 8 18 (6)
autoPrice 2.6 16 (10) 57.3 34 (14) 1.4 6 (4) 63 15 (7)
bodyfat 1.7 13 (7) 47.2 25 (9) 1.2 6 (3) 10 6 (2)
bolts 0.02 6 (3) 0.3 5 (3) 0.6 6 (4) 2 2 (2)
elusage 0.01 3 (1) 0.3 4 (1) 0.1 3 (1) <1 3 (1)
housing 49.9 48 (13) 274.7 46 (13) 23.1 14 (10) 114 33 (12)
housingNOX 24.8 35 (12) 174.4 34 (13) 19.1 14 (10) 104 28 (9)
machine-cpu 3.2 24 (6) 22.3 24 (6) 1.1 7 (5) 8 8 (4)
pollution 0.01 8 (7) 0.2 7 (6) 0.7 6 (6) 87 15 (8)
pwLinear 1.0 16 (9) 8.4 18 (9) 2.5 10 (7) 31 17 (7)
servo 3.5 21 (4) 42.6 31 (4) 0.4 6 (4) <1 31 (4)
triazines 0.7 11 (10) 7.6 12 (11) 11.4 8 (8) 2283 49 (18)

In terms of predictive error, the CIPER performs comparably to SFS and
RMHC but works much faster and, what is even more important, it does
not require user to set the maximum order of the polynomials. Though, in
some of test problems it has elevated predictive error, which may be explained
by the fact that the version of CIPER uses a not well studied ad-hoc model
selection criterion which seems to penalize too much the models which contain
products of input variables. Other reasons may be that firstly the search
algorithm of CIPER has low branching factor, and secondly it can only add
new basis functions or add new variables to already existing basis functions
but can not remove any of them from the model. Both these reasons can
cause the algorithm to get stuck in local minima too early. The possibility of
removal or use of another criterion would be a possible improvement of the
search algorithm and needs some additional study.

The high penalization ratio of CIPER’s model selection criterion has also
caused it to choose much less complex models as those of any other method.

Math. Model. Anal., 13(1):17–27, 2008.
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They also include less input variables.

The performance of GMDH was similar to the other methods however not
as good as promised in [5]. In [4] was suggested that in certain situations
GMDH can have a higher predictive error because of combining variables in
pairs or threes, rather than larger groupings, when forming PDs – “the “reach”
of the method is limited when contributions from variables must truly be
simultaneous”.

Selecting the maximum order of the polynomial for SFS and RMHC is a
nontrivial problem, since it can differ from one data set to another and would
also be, for practical reasons, guided by computational complexity issues. The
non-predefined candidate model spaces of CIPER and GMDH makes the task
easier – the methods “choose” the orders themselves and achieve similar results.

5 Conclusion

This paper presents a comparison of four different heuristic methods for poly-
nomial regression model induction. The methods are very different in their ap-
proaches. We investigate the advantages and disadvantages of the approaches
represented by the methods in terms of predictive error, complexity of the
induced models and required computational resources.

In terms of predictive error, overall none of the methods significantly out-
performed the other ones. But some tendencies could be observed. The main
observation can be summarized in the following: because of the non-predefined
candidate model spaces of CIPER and GMDH (in contrast to SFS and RMHC)
the user does not need to set the maximal order of the polynomial – the meth-
ods “choose” the order themselves and achieve similar predictive performance
with less complex models by using less computational resources.

Directions of future research include developments of combinations of these
methods with the aim to combine their advantages. For example, it is possible
to create GMDH polynomial networks with CIPER PDs, making them more
flexible.
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