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Abstract. We consider matrix Wiener-Hopf plus Hankel operators acting between
Lebesgue spaces on the real line with Fourier symbols presenting some even properties
(which in particular include unitary matrix-valued functions), and also with Fourier
symbols which contain sectorial matrices. In both situations, different conditions
are founded to ensure the operators invertibility, one-sided invertibility, Fredholm
property, and the so-called n and d–normal properties. An example is provided to
illustrate the proposed theory.
Key words: matrix Wiener-Hopf plus Hankel operator, invertibility, Fredholm
property, unitary matrix-valued function, sectorial matrix-valued function.

1 Introduction and General Framework

The Wiener-Hopf operators received their name due to the pioneering work of
Norbert Wiener and Eberhard Hopf [21] about the study of integral equations
of the form

cϕ(x) +

∫ +∞

0

k(x − y)ϕ(y) dy = f(x) , x ∈ R+ ,

for an unknown ϕ from L2(R+) where f ∈ L2(R+) is arbitrarily given, and
c ∈ C and k ∈ L1(R) are fixed and known. Indeed, from these Wiener-Hopf
equations arise the (classical) Wiener-Hopf operators defined by

Wφf(x) = cf(x) +

∫ +∞

0

k(x − y)f(y) dy, x ∈ R+, (1.1)

where φ belongs to the Wiener algebra

W = {φ : φ = c + Fk, c ∈ C, k ∈ L1(R)}
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which is a Banach algebra when endowed with the norm

‖c + Fk‖W = |c| + ‖k‖L1(R)

and the usual multiplication operation. Having in mind the convolution op-
eration, the definition of Wφ in (1.1) gives rise to an understanding of the
Wiener-Hopf operators as convolution type operators. Therefore, they can
also be represented as

Wφ = r+F
−1φ · F : L2

+(R) → L2(R+), (1.2)

where L2
+(R) denotes the subspace of L2(R) formed by all the functions sup-

ported in the closure of R+ = (0, +∞), r+ is the restriction operator from
L2(R) into L2(R+), and F denotes the Fourier transformation.

Looking now to the structure of the operators in (1.2), we recognize that
possibilities other than only the Wiener algebra can be considered for the
so-called Fourier symbols φ of Wiener-Hopf operators. Namely, we may con-
sider to choose φ among the L∞(R) elements (i.e., as a measurable essentially
bounded function in the real line).

Within the context of (1.1), the Hankel integral operators H have the form

Hf(x) =

∫ +∞

0

k(x + y)f(y) dy , x ∈ R+ (1.3)

for some k ∈ L1(R). It is well known that H , as an operator defined between
L2 spaces, is a compact operator. However, as indicated above, it is also
possible to provide a rigorous meaning to the expression (1.3) when the kernel
k is a temperate distribution whose Fourier transform belongs to L∞(R).

Although during a long period of time the operators of type (1.1) and type
(1.3) were studied separately, in the last years integral equations governed
by algebraic sums of Wiener-Hopf and Hankel operators have been receiving
increasing attention (cf. [1, 2, 4, 6, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20]).
A great part of the interest is directly originated by concrete mathematical-
physics applications where Wiener-Hopf plus Hankel operators appear. This
is the case of problems in wave diffraction phenomena which are modeled by
boundary-transmission value problems that can be equivalently translated into
systems of integral equations characterized by such kind of operators (see, e.g.,
[5, 7, 8]).

It is therefore easy to understand that a fundamental goal in those studies
consists in obtaining conditions that lead to the regularity properties of the
Wiener-Hopf plus Hankel operators, i.e., their invertibility, Fredholm property,
and other properties that are directly dependent on the kernel and image of
the operators.

To be more concrete, let us recall the definitions of some of these concepts.
For this purpose, consider a bounded linear operator acting between Banach
spaces T : X → Y . Assuming that Im T is closed (i.e. T is normally solvable),
the cokernel of T can be defined by the quotient CokerT = Y/Im T . Then,
T is said to be properly d-normal if dimCoker T is finite and dimKerT is
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infinite, properly n-normal if dimKerT is finite and dimCoker T is infinite,
and Fredholm if both dimKerT and dimCokerT are finite. Additionally, we
say that T is left-invertible or right-invertible if there exist T−

l : Y → X or
T−

r : Y → X such that T−

l T = IX or TT−
r = IY , respectively. As usual, in the

case when both T−

l and T−
r exist, the operator T is said to be invertible (or

both-sided invertible). Alternatively, it can be shown that T is left-invertible
if and only if T is injective, normally solvable, and Im T is a complementable
subspace of Y . In the same way, T is right-invertible if and only if T is
surjective and the (always closed) KerT is complementable in X .

For some classes of Fourier symbols of Wiener-Hopf plus Hankel operators
the regularity properties of the operators are already known. This is the case of
the continuous or, even, piecewise continuous functions on the compactificated
real line (cf. the above references). Despite those advances, for some other
classes of Fourier symbols a complete description of the regularity properties
is still missing.

In the present paper, we will work not only with the scalar version of the
above operators but with their matrix analogue. Namely, for N ∈ N, we will
consider matrix Wiener-Hopf plus Hankel operators of the form

WHΦ = WΦ + HΦ : [L2
+(R)]N → [L2(R+)]N , (1.4)

with WΦ = r+F
−1Φ·F and HΦ = r+F

−1Φ·FJ , where J is the reflection oper-

ator given by the rule JΨ(x) = Ψ̃(x) = Ψ(−x), x ∈ R, and Φ ∈ [L∞(R)]N×N .
Our goal is to obtain characterizations for the regularity properties of (1.4),
in the cases where:

(i) the Fourier symbol presents some even symmetry when combined with
its conjugate transpose;

(ii) the Fourier symbol is a matrix function which allows certain factoriza-
tions depending on sectorial elements.

Therefore, we will generalize the results of [1], and will also consider other
classes of Fourier symbols which were not treated in [1]. We recall that Φ ∈
[L∞(R)]N×N is called unitary if ΦΦ∗ = Φ∗Φ = IN×N , where Φ∗ stands for the
conjugate transpose of Φ.

2 Matrix Wiener-Hopf plus Hankel Operators with Sym-

metry

For a Banach algebra B, we are going to denote by GB the group of all invert-
ible elements in B. In addition, for

C− = {z ∈ C : ℑm z < 0}, C+ = {z ∈ C : ℑm z > 0},

we will denote by H∞(C±) the set of all bounded and analytic functions in C±.
Fatou’s theorem ensures that functions in H∞(C±) have non-tangential limits
on R almost everywhere. Thus, let H∞

± := H∞
± (R) be the set of all functions

in L∞(R) that are non-tangential limits of elements in H∞(C±). Moreover, it
is well known that H∞

± are closed subalgebras of L∞(R). Finally, C(Ṙ) will
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denote the space of all continuous (complex-valued) functions on R for which
both limits at ±∞ exist and coincide.

In the Wiener-Hopf operators case there is a well known theorem – due to
Ronald G. Douglas and Donald Sarason – about the regularity properties of
this kind of operators and the distances from the Fourier symbols to certain
spaces. More precisely, the theorem may be written in the following form.

Theorem 1 [Douglas and Sarason [11]]. If Φ ∈ [L∞(R)]N×N is unitary,
then:

(a) WΦ is invertible if and only if dist(Φ,G[H∞
+ ]N×N ) < 1 or if and only if

dist(Φ,G[H∞
− ]N×N) < 1 ;

(b) WΦ is left-invertible if and only if dist(Φ, [H∞
+ ]N×N ) < 1 ;

(b′) WΦ is right-invertible if and only if dist(Φ, [H∞
− ]N×N ) < 1 ;

(c) WΦ is Fredholm if and only if dist(Φ,G[C(Ṙ)+ H∞
+ ]N×N ) < 1 or if and

only if dist(Φ,G[C(Ṙ) + H∞
− ]N×N ) < 1 ;

(d) WΦ is n-normal if and only if dist(Φ, [C(Ṙ) + H∞
+ ]N×N ) < 1 ;

(d′) WΦ is d-normal if and only if dist(Φ, [C(Ṙ) + H∞
− ]N×N ) < 1.

The last theorem served as a motivation for obtaining such kind of result
for our Wiener-Hopf plus Hankel operators. However, it is clear that adding
Hankel operators to the above Wiener-Hopf operators will influence several
changes in the regularity properties of the resulting operators. In addition,
we will work not only with unitary matrix-valued functions but with the more
general class which appears in the general assumption of the next result.

Theorem 2. Let Φ ∈ G[L∞(R)]N×N and assume that Φ∗Φ is an even matrix-
valued function.

(a) WHΦ and WΦ − HΦ are invertible if and only if

dist(ΦΦ̃−1,G[H∞

+ ]N×N ) < 1

or if and only if dist(ΦΦ̃−1,G[H∞
− ]N×N ) < 1 .

(b) WHΦ and WΦ − HΦ are left-invertible if and only if

dist(ΦΦ̃−1, [H∞

+ ]N×N ) < 1 .

(b′) WHΦ and WΦ − HΦ are right-invertible if and only if

dist(ΦΦ̃−1, [H∞

− ]N×N ) < 1 .
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(c) WHΦ and WΦ − HΦ are Fredholm if and only if

dist(ΦΦ̃−1,G[C(Ṙ) + H∞

+ ]N×N ) < 1 ,

or if and only if dist(ΦΦ̃−1,G[C(Ṙ) + H∞
− ]N×N ) < 1 .

(d) WHΦ and WΦ − HΦ are n-normal if and only if

dist(Φ Φ̃−1, [C(Ṙ) + H∞

+ ]N×N) < 1 .

(d′) WHΦ and WΦ − HΦ are d-normal if and only if

dist(Φ Φ̃−1, [C(Ṙ) + H∞

− ]N×N) < 1 .

Proof The proof is based on the notion of ∆-relation after extension (intro-
duced in [3]), and which we will now recall. For bounded linear operators
acting between Banach spaces, e.g. T : X1 → X2 and S : Y1 → Y2, we say
that T is ∆-related after extension to S if there is an auxiliary bounded lin-
ear operator acting between Banach spaces T∆ : X1∆ → X2∆, and bounded
invertible operators E and F such that

[
T 0
0 T∆

]
= E

[
S 0
0 IZ

]
F , (2.1)

where Z is an additional Banach space and IZ represents the identity operator
in Z. In the particular case where

T∆ = IX1∆
: X1∆ → X2∆ = X1∆

is the identity operator, we say that T and S are equivalent after extension
operators.

From [3] we can derive that T = WHΦ is ∆-related after extension to the
Wiener-Hopf operator S = W

Φ gΦ−1
, and with T∆ = WΦ − HΦ in (2.1). Thus,

we are now going to analyze the Fourier symbol Φ Φ̃−1.

Let us observe that for Φ ∈ G[L∞(R)]N×N the function Φ Φ̃−1 is unitary
valued if and only if Φ∗Φ is even. Indeed, suppose that Φ∗Φ is even. By the
definition we have:

Φ∗Φ = Φ̃∗Φ̃ .

From here it directly follows that

Φ Φ̃−1 = (Φ∗)−1Φ̃∗ . (2.2)

To simplify further arguments, let us introduce the new notation: Ψ := Φ Φ̃−1.
To prove that Ψ is unitary valued we have to show that

ΨΨ∗ = Ψ∗Ψ = IN×N .
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Performing a direct substitution, we will have that

ΨΨ∗ = ΦΦ̃−1(Φ̃−1)∗Φ∗

Having in mind formula (2.2), from the last equality one obtains:

ΨΨ∗ = (Φ∗)−1(Φ̃∗)(Φ̃−1)∗Φ∗ = (Φ∗)−1(Φ̃∗)(Φ̃∗)−1Φ∗ = (Φ∗)−1Φ∗ = IN×N .

Analogously, we have:

Ψ∗Ψ = (Φ̃−1)∗Φ∗ΦΦ̃−1 = (Φ̃−1)∗Φ∗(Φ∗)−1Φ̃∗ = IN×N .

To prove the above stated equivalence we are left to show that if Φ Φ̃−1 is a

unitary matrix-valued function, then Φ∗Φ is even. If Φ Φ̃−1 is unitary, then we
derive that

Φ Φ̃−1(Φ̃−1)∗Φ∗ = IN×N .

Consequently, we have:

ΦΦ̃−1 = (Φ∗)−1Φ̃∗ .

Hence, Φ∗Φ = Φ̃∗Φ̃ and we have shown the above announced equivalence.

From the above reasoning we have that Φ Φ̃−1 is unitary. We can now apply
Theorem 1 to the operator W

Φ gΦ−1
and obtain all the above stated conditions

in terms of distances. Now, the result follows if we interpret (2.1) as an
equivalence after extension relation between diag[T, T∆] = diag[WHΦ, WΦ −
HΦ] and S = W

Φ gΦ−1
, which allows the transfer of regularity properties from

W
Φ gΦ−1

to WHΦ and WΦ − HΦ. �

Remark 1. Note that the global assumption of the last theorem which requires
that Φ∗Φ is an even matrix-valued function is more general than assuming Φ
to be an unitary matrix-valued function.

3 Matrix Wiener-Hopf plus Hankel Operators with Sec-

torial Components

In the present section we will work out a different characterization for the
regularity properties of matrix Wiener-Hopf plus Hankel operators, and which
is now based on the use of certain sectorial parts of the matrix Fourier symbols
of the operators.

Definition 1. A matrix function S ∈ [L∞(R)]N×N is said to be sectorial if
there exist a real number ε > 0 and two (constant) matrices B, C ∈ GCN×N

such that
ℜe(BS(x)Cz, z) ≥ ε||z||2 ,

for almost all x ∈ R and all z ∈ CN .
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We will denote by SN×N the set of all sectorial matrix functions (in
[L∞(R)]N×N ). Once again, for matrix Wiener-Hopf operators with such kind
of Fourier symbols a description of the possible regularity properties is known.

Theorem 3. [9] If Φ ∈ G[L∞(R)]N×N , then:

(a) WΦ is invertible if and only if Φ = Sh, S ∈ SN×N , h ∈ G[H∞
+ ]N×N or

if and only if Φ = hS, S ∈ SN×N , h ∈ G[H∞
− ]N×N ;

(b) WΦ is left-invertible if and only if Φ = Sh, S ∈ SN×N , h ∈ [H∞
+ ]N×N ;

(b′) WΦ is right-invertible if and only if Φ = hS, S ∈ SN×N , h ∈ [H∞
− ]N×N ;

(c) WΦ is Fredholm if and only if Φ = Sh, S ∈ SN×N , h ∈ G[C(Ṙ) +
H∞

+ ]N×N or if and only if Φ = hS, S ∈ SN×N , h ∈ G[C(Ṙ)+H∞
− ]N×N ;

(d) WΦ is n-normal if and only if Φ = Sh, S ∈ SN×N , h ∈ [C(Ṙ) +
H∞

+ ]N×N ;

(d′) WΦ is d-normal if and only if Φ = hS, S ∈ SN×N , h ∈ [C(Ṙ) +
H∞

− ]N×N .

We will now introduce a corresponding theorem for Wiener-Hopf plus Han-
kel operators (with the help of Wiener-Hopf minus Hankel operators WΦ−HΦ).

Theorem 4. Let Φ ∈ G[L∞(R)]N×N .

(a) WHΦ and WΦ − HΦ are both invertible if and only if

ΦΦ̃−1 = Sh, S ∈ SN×N , h ∈ G[H∞

+ ]N×N

or if and only if ΦΦ̃−1 = hS, S ∈ SN×N , h ∈ G[H∞
− ]N×N .

(b) WHΦ and WΦ − HΦ are both left-invertible if and only if

ΦΦ̃−1 = Sh, S ∈ SN×N , h ∈ [H∞

+ ]N×N .

(c) WHΦ and WΦ − HΦ are both right-invertible if and only if

ΦΦ̃−1 = hS, S ∈ SN×N , h ∈ [H∞

− ]N×N .

(d) WHΦ and WΦ − HΦ are both Fredholm if and only if

ΦΦ̃−1 = Sh, S ∈ SN×N , h ∈ G[C(Ṙ) + H∞

+ ]N×N

or if and only if

ΦΦ̃−1 = hS, S ∈ SN×N , h ∈ G[C(Ṙ) + H∞

− ]N×N .
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(e) WHΦ and WΦ − HΦ are both n-normal if and only if

ΦΦ̃−1 = Sh, S ∈ SN×N , h ∈ [C(Ṙ) + H∞

+ ]N×N .

(f) WHΦ and WΦ − HΦ are both d-normal if and only if

ΦΦ̃−1 = hS, S ∈ SN×N , h ∈ [C(Ṙ) + H∞

− ]N×N .

Proof To prove this result we perform the same reasoning as in the proof of
Theorem 2, and make use of the fact that in the ∆-relation after extension we
have T∆ = WΦ−HΦ. This allows us to transfer the above mentioned regularity
properties from the operator W

Φ gΦ−1
to operator diag[WHΦ, WΦ−HΦ] by using

Theorem 3 and the indicated operator relation. �

We assemble in the next corollary the part of Theorem 4 which is the most
practical conclusion of the present work.

Corollary 1. Let Φ ∈ G[L∞(R)]N×N .

(a) If ΦΦ̃−1 = Sh, s ∈ SN×N and h ∈ G[H∞
+ ]N×N , then WHΦ is invertible.

(a′) If ΦΦ̃−1 = hS, s ∈ SN×N and h ∈ G[H∞
− ]N×N , then WHΦ is invertible.

(b) If ΦΦ̃−1 = Sh, with S ∈ SN×N and h ∈ [H∞
+ ]N×N , then WHΦ is

left-invertible.

(c) If ΦΦ̃−1 = hS, with S ∈ SN×N and h ∈ [H∞
− ]N×N , then WHΦ is right-

invertible.

(d) If ΦΦ̃−1 = Sh, with S ∈ SN×N and h ∈ G[C(Ṙ)+H∞
+ ]N×N , then WHΦ

is Fredholm.

(d′) If ΦΦ̃−1 = hS, with S ∈ SN×N and h ∈ G[C(Ṙ)+H∞
− ]N×N , then WHΦ

is Fredholm.

(e) If ΦΦ̃−1 = Sh, with S ∈ SN×N , h ∈ [C(Ṙ) + H∞
+ ]N×N , then WHΦ is

n-normal.

(f) If ΦΦ̃−1 = hS, with S ∈ SN×N , h ∈ [C(Ṙ) + H∞
− ]N×N , then WHΦ is

d-normal.

In this final part we would like to present an example which shows the
applicability of the last result. Let us consider the matrix Wiener-Hopf plus
Hankel operator

WHΦp
: [L2

+(R)]2 → [L2(R+)]2 ,

with the particular Fourier symbol

Φp(x) =

(
2 + sin x 0

cosx 1

)(
eiαx 0

0 1

)
, x ∈ R ,
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where α ∈ R is a given parameter. Direct computations show that

Φp(x) Φ̃−1
p (x)=

(
e2iαx 0

0 1

)(
(2 + sin x)(2 − sin x)−1 0

(e2iαx − 1) cosx(2 − sinx)−1 1

)
=:hpSp,

and

Φp(x) Φ̃−1
p (x)=

(
(2 + sinx)(2 − sin x)−1 0

(1 − e−2iαx) cosx(2 − sin x)−1 1

)(
e2iαx 0

0 1

)
=:spHp.

So, we have that sp and Sp are sectorial matrix functions because the main
minors of that matrices are positive definite and this is a particular case of
sectorial matrix functions. Moreover, depending whether α ≥ 0 or α ≤ 0,
we have hp, Hp ∈ H∞

+ or hp, Hp ∈ H∞
− , respectively. Therefore, applying

Corollary 1, we conclude that:

(a) if α = 0, then WHΦp
is invertible;

(b) if α > 0, then WHΦp
is left-invertible;

(c) if α < 0, then WHΦp
is right-invertible.
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