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Abstract. The present paper continues the study of acceleration of convergence
started in the paper [A. Aasma, Proc. Estonian Acad. Sci. Phys. Math., 2006, 55,
4, 195-209]. The new, non-classical convergence acceleration concept, called strong
µ-acceleration of convergence (µ is a positive monotonically increasing sequence), is
introduced. It is shown that this concept allows to compare the speeds of convergence
for a larger set of sequences than the classical convergence acceleration concept.
Regular matrix methods are used to accelerate the convergence of sequences.

Key words: Convergence acceleration, matrix methods, speed of convergence.

1 Introduction

The present paper continues the study of acceleration of convergence of real
or complex sequences started in [1]. Therefore all the notions not defined in
this paper can be found in [1]. Throughout the paper we assume that indices
and summation indices are integers, changing from 0 to ∞, if not specified
otherwise.

Classically the convergence acceleration is defined as follows (cf. [5, 6]).

Definition 1. Let x = (xk) and y = (yk) be convergent sequences with limits
ς and ξ, respectively. If

lim n

|yn − ξ|

|xn − ς|
= 0, (1.1)

then it is said that y converges faster than x.

Definition 2. The sequence transformation T : x → y is said to accelerate
the convergence of the sequence x if y converges faster than x.
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Some methods, alternative to the classical concept of estimation and com-
parison of speeds of convergence of sequences, are used in [3, 4]. In [1] another
alternative method is proposed, where the concept, called µ-faster convergence
(µ is a positive monotonically increasing sequence) is introduced. It is shown
that this concept allows the comparison of speeds of convergence for a larger
set of sequences than the classical concept and this comparison is more precise.

Let A = (ank) be a matrix with real or complex entries. A sequence
x = (xk) is said to be A-summable if the sequence Ax = (An x) is convergent,
where

Anx =
∑

k

ankxk.

We denote the set of all A-summable sequences by cA. Thus, a matrix A

determines the summability method on cA, which we also denote by A.
A method A is said to be regular if for each x = (xn) ∈ c, where c is the

set of all convergent sequences, the equality limn Anx = limn xn holds. The
convergence acceleration and µ-acceleration of convergence by regular matrix
methods were studied correspondingly in [3, 4, 5, 6, 7] and [1].

In the present paper the concept of strong µ-faster convergence is defined
and compared with the usual faster convergence concept, determined by Def-
initions 1 and 2. It is shown here that the new concept allows the comparison
of speeds of convergence for a larger set of sequences than the classical concept
and this comparison is more precise. It is also proved that if for a sequence
x = (xn) with the limit ς the sequence of absolute differences (|xn − ς|) is
monotonically decreasing, then the strong µ-faster convergence of a sequence
y with respect to x coincides with the usual faster convergence of y with respect
to x. Also the concept of strong µ-acceleration of convergence by a regular
matrix method is defined and it’s properties are studied.

2 Main Results

Let ϕ be a set of sequences such that

ϕ = {x = (xk) | xk = const, if k > k0}

for some k0 ≥ 0. For every sequence x ∈ c \ ϕ we denote

µx = {µ = (µn) | 0 < µn ր ∞, ln = µn |xn − lim nxn| = O(1), ln 6= o(1) }.

Let us remind some notions from [1]. The sequence µ is called a speed of
convergence of x. A sequence µ∗ = (µ∗

n
) ∈ µx is called the limit speed of

convergence of x if for all µ = (µn) ∈ µx the relation µn/µ∗

n = O(1) holds.
The limit speed of convergence µ∗ = (µ∗

n
) of a sequence y is said to be higher

than the limit speed of convergence λ∗ = (λ∗

n) of a sequence x if the ratio
λ∗

n/µ∗

n is upper-bounded, but not lower-bounded. It is said that a sequence y
converges µ-faster than x if the limit speed of convergence of y is higher than
the limit speed of convergence of x or y ∈ ϕ and x does not belong to ϕ.

Now we introduce the concept of strong µ-faster convergence.
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Definition 3. Let λ∗ = (λ∗

n) and µ∗ = (µ∗

n) be correspondingly the limit
speeds of convergence of convergent sequences x and y. We say that y converges
strongly µ-faster than x, if λ∗

n/µ∗

n −→ 0 or y ∈ ϕ and x does not belong to ϕ.

Remark 1. It is easy to see that if y converges strongly µ-faster than x, then
y converges also µ-faster than x, but not vice versa. If y = (yn) converges
strongly µ-faster than x = (xn), then λ∗

n
|yn − ξ| = o(1), where λ∗ = (λ∗

n
) is

the limit speed of x and ξ is the limit of y. But for the case, if y converges only
µ-faster, but not strongly µ-faster than x, there exists a subsequence (ykn

) of
y so that λ∗

n
|ykn

− ξ| 6= o(1).

It was proved in [1] that if a sequence y = (yn) ∈ c converges faster than
x = (xn) ∈ c \ ϕ, then y converges also µ-faster than x. We prove that the
similar property holds for the concept of strong µ-faster convergence.

Theorem 1. If a sequence y = (yn) ∈ c converges faster than x = (xn) ∈ c\ϕ,
then y converges also strongly µ-faster than x.

Proof For y ∈ ϕ the assertion of Theorem 1 is clearly true. Thus, suppose
that y ∈ c \ ϕ converges faster than x ∈ c \ ϕ, i.e. relation (1.1) holds, and
show that then y converges also strongly µ-faster than x. By Corollary 2.1
of [1] there exists the limit speed of convergence λ∗ = (λ∗

n
) ∈ λx of x. Using

relation (1.1) we have now

lim n

λ∗

n |yn − ξ|

λ∗

n
|xn − ς|

= 0.

Consequently, by Proposition 2.1 from [1] there exists ϑ = (ϑn), 0 < ϑn ր ∞,
such that

ϑn

λ∗

n
|yn − ξ|

λ∗

n
|xn − ς|

= O(1).

Denoting ϑnλ∗

n
= µn, we get from the last relation that µn |yn − ξ| = O(1)

with 0 < µn ր ∞ and µn/λ∗

n −→ ∞. Consequently for the limit speed of
convergence µ∗ = (µ∗

n) of y we have µ∗

n/λ∗

n −→ ∞. Thus y converges strongly
µ-faster than x by Definition 3. �

The opposite assertion to Theorem 1, however, is not valid.

Example 1. Let x = (xn) ∈ c \ ϕ be given by the relations

xn =
1

(n + 1)2n
if n = 3k,

(n + 1)38nxn = o(1) if n = 3k + 1,

2n(n + 1)2xn 6= O(1), 2n(n + 1)xn = o(1) if n = 3k + 2,

where k = 0, 1, . . . . It was proved in [1] that applying Aitken’s process to the
subsequence (x3k) of x we get the sequence y = (yn), where

yn =
9

8n (1323n3 + 6993n2 + 12024n + 6736)
.
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It is easy to see now that y converges not faster than x and x converges
not faster than y, but y converges strongly µ-faster than x. Indeed, we can
determine the limit speeds of convergence of x and y respectively by λ∗ = (λ∗

n)
and µ∗ = (µ∗

n), where

λ∗

n
= 2n(n + 1), µ∗

n
= 23n(n + 1)3.

As µ∗

n/λ∗

n −→ ∞, then y converges strongly µ-faster than x by Definition 3.

Suppose now that x = (xn) ∈ c\ϕ with the limit ς be a sequence for which
the sequence of absolute differences (|xn − ς|) is monotonically decreasing.
We show that in this case the strong µ-faster convergence coincides with the
classical faster convergence.

Theorem 2. Let x = (xn) ∈ c \ ϕ be a sequence (with the limit ς), for which
the sequence of absolute differences (|xn − ς|) is monotonically decreasing. If
a sequence y = (yn) (with limit ξ) converges strongly µ-faster than x, then y
converges also faster than x.

Proof It is not difficult to see that the limit speed λ∗ = (λ∗

n) of a sequence x
can be defined by the equality λ∗

n
= 1/|xn − ς|. If µ∗ = (µ∗

n
) is the limit speed

of y, then we get
µ∗

n |yn − ξ|

λ∗

n |xn − ς|
= µ∗

n |yn − ξ| = O(1).

Last relation implies equality (1.1), since µ∗

n/λ∗

n −→ ∞. �

It is said (see [1]) that a regular method A µ-accelerates the convergence
of a sequence x ∈ c if the sequence Ax converges µ-faster than x.

Definition 4. We say that a matrix method A strongly µ-accelerates the
convergence of a sequence x ∈ c if the sequence Ax converges strongly µ-faster
than x.

Theorem 3. For every x ∈ c\ϕ there exists a regular matrix A, which strongly
µ-accelerates the convergence of x.

Proof By Corollary 2.1 of [1] every x ∈ c \ ϕ has the limit speed λ∗ = (λ∗

n
).

We show that there exists a regular matrix A so that the limit speed of the
sequence (Anx) is higher than λ∗. As every x = (xn) ∈ c (with limit ς) can
be presented in the form

x = x0 + ςe, where x0 =
(

x0

n

)

∈ c0 and e = (1, 1, ...), (2.1)

where c0 is the set of sequences, converging to zero, then we get

λ∗

n
|xn − ς| = λ∗

n

∣

∣x0

n

∣

∣ = O(1) or
∣

∣x0

n

∣

∣ = O

(

1

λ∗

n

)

and λ∗

n

∣

∣x0

n

∣

∣ 6= o(1).
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As the limit speed λ∗ is a monotonically increasing unbounded sequence, then
there exists a subsequence

(

λ∗

kn

)

of λ∗ such that λ∗

kn

/λ∗

n
−→ ∞. We define a

matrix A = (ank) by the equalities

ank =

{

1 k = kn,

0 k 6= kn.

With the help of Theorem 2.3.7 from [2] it is not difficult to check that the
matrix A is regular. Now we have

∣

∣

∣
An x0

∣

∣

∣
=

∣

∣

∣

∑

k

ankx0

k

∣

∣

∣
=

∣

∣

∣
x0

kn

∣

∣ = O
( 1

λ∗

kn

)

or, equivalently,

λ∗

kn

∣

∣An x0
∣

∣ = O(1).

Denoting µ = (µn) =
(

λ∗

kn

)

, we get

µn

∣

∣An x0
∣

∣ = O(1), where µn/λ∗

n −→ ∞.

Therefore A strongly µ-accelerates the convergence of x0. As Ane = 1, then
with the help of (2.1) we conclude

µn |An x − ς| = µn

∣

∣An x0 + ςAn e − ς
∣

∣ = µn

∣

∣An x0
∣

∣ .

Consequently A strongly µ-accelerates also the convergence of x. �

We note that the assertion of Theorem 3 does not hold for the concept
of classical faster convergence. Indeed, it is not possible to accelerate the
convergence of x = (xn) ∈ c \ϕ by any regular matrix method if, for example,
x is defined by the relation

xn =







1

n + 1
n = 2k,

0 n = 2k + 1.

It follows from the proof of Theorem 3.2 of [1] that for every triangular
regular matrix A there exists a convergent sequence x, which converges µ-
faster than its A-transform Ax. For strong µ-acceleration of convergence we
can extract from the proof of Theorem 3.2 of [1] the following result.

Proposition 1. If a triangular regular matrix A has a column with infinite
number of non-zero elements, then there exists a sequence x, converging strongly
µ-faster than its A-transform Ax.

As we see from Proposition 1, for some triangular regular methods A it
is possible to choose a sequence x, converging strongly µ-faster than its A-
transform Ax, but it is not so for all triangular regular matrices.
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Example 2. Let A = (ank) be defined by the relation

ank =



















δnk n = 2j,

1

2
n = 2j + 1, k = n − 1, n,

0 k < n − 1,

where j = 0, 1, . . . . Then for every convergent sequence x = (xk) we get

Anx =







xn n = 2j,

1

2
(xn−1 + xn) n = 2j + 1,

where j = 0, 1, . . . . Now a sequence x can converge µ-faster than its A-
transform Ax only in the case, if xn−1/xn 6= O(1). But never x can converge
strongly µ-faster than its A-transform Ax.
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