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Abstract. The aim of the present investigation is to study the properties of a Sisko
fluid flowing between two intersecting planes. The problem is similar to Taylor’s
scraping problem for a viscous fluid. We determine the solution of the complicated
set of non-linear partial differential equations describing the flow analytically. The
analysis is carried out in detail reflecting the effects of varying the angle of the scraper
on the flow. In addition, the tangential and normal stress are also computed. We
also show the well known Taylor scraper problem as a special case.

Key words: non-newtonian fluid model, Sisko fluid, homotopy perturbation
method.

1 Introduction

Non-Newtonian fluid models have been the source of considerable interest to
researchers in the last two decades. In particular, this work focuses on the
model of non-Newtonian fluids proposed by Sisko [23]. Many real fluids follow
the Sisko model. Polymeric suspensions such as waterborne coatings are known
to be non-Newtonian in nature and are known to follow the Sisko model [25].
The viscosity of such coatings depends on the shear rate and the strain history.
An example that lends itself to such types of coating is metallic automotive
basecoat. Of course the most well know Sisko fluids are lubricating greases [23].
In fact most psueodplastic fluids, drilling fluids and cement slurries without
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yield stress follow the Sisko model [8]. In [2] it is shown that the Sisko model
is one of the best of 11 models analyzed for non-Newtonian fluids.

The dynamics of scraping of non-Newtonian fluids has many applications
in the food industry, such as cleaning of pipes that conduit fluids used in
the processing of various foods. The mathematical model representing the
dynamics of scraping of a viscous fluid was originally proposed by Taylor, better
known as the Taylor scraper [24]. The geometry of the flow of interest here has
been studied by several other authors. For instance, Stokes flow between two
intersecting planes was studied by Moffat [19]. The creeping corner flow induced
by a steady in-plane motion of the walls was later examined by Batchelor
[3], but the investigations were restricted to Newtonian fluids. Mansutti and
Rajagopal [17] studied the non-inertial flow of a shear thinning fluid between
intersecting planes. They showed that sharp and pronounced boundary layers
develop adjacent to the solid boundaries, even at zero Reynolds number. In
addition, Bhatnagar et al. [4] have extended the analysis to an Oldroyd-B fluid.

In the case of most non-Newtonian fluids a purely radial flow is not possible
if the inertial terms are to be retained in the equations of motion. Kaloni and
Kamel [12] have shown that there cannot be a purely radial flow of Cosserat
fluids in convergent channels. Later, Hull [11] studied the non-inertial flow of a
general linear viscoelastic fluid with this geometry. He have shown that radial
flow is obtained for a wedge of 90◦ and no others. In addition, similar results
are valid for the Rivlin-Ericksen fluids. Further recent work on non-Newtonian
fluids can be found in [13].

Our objective in this paper is to consider a model which tries to depict
the scraping of a Sisko fluid such as waterborne paint or grease. There are
many possible applications of such models. For instance in scraping certain
wet paints, also in the scraping of cement slurries. In addition, scraping of
drilling fluids from pipes can also be considered. Having described the problem
and a short history of the work we now turn our attention to the method of
solution. Until recently, nonlinear analytical techniques for solving nonlinear
problems have been dominated by the perturbation methods, which have found
wide applications in engineering [14, 15, 16, 20]. But, like other nonlinear ana-
lytical techniques, perturbation methods have their own limitations. The main
restriction is that almost all perturbations are based on small parameters so
that the approximate solution can be expressed in a series of small parame-
ters. This so called small parameter assumption greatly restricts application of
perturbation techniques, as it is well known, an overwhelming majority of non-
linear problems have no small parameters at all. The restrictions in traditional
perturbation methods, have been addressed in [9, 10], who gave a heuristical
method based on the homotopy in topology. The method offers alternatives
that overcome the restrictions posed by traditional perturbation methods. On
the other hand it can take full advantage of the classical perturbation tech-
niques so there has been a considerable amount of research in applying HPM
for solving various strongly nonlinear equations. For instance Abbasbandy [1]
have used it for the Laplace transforms, Cveticanin [6] applied it to study
pure nonlinear differential equations and El-Shahed [7] applied this technique
to the integro-differential equation for Voltera’s model. In addition, Siddiqui
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et al. [21, 22] have recently applied this method to analyze flow problems
in non-Newtonian fluid mechanics. We also note that Homotopy Perturbation
Method is a member of a class of perturbation methods that are independent of
the small parameter restriction, other methods include the Optimal Homotopy
Analysis Method and the Variational Iteration Method [18].

In summary, in this paper, we consider the flow of a non-Newtonian fluid
between two rigid boundaries forming a wedge, the problem is similar to one
proposed by Taylor [24]. The fluid under consideration is assumed to obey
the model proposed by Sisko [23]. The problem is formulated in the following
sections, and is solved by using the Homotopy Perturbation Method. By setting
certain parameters we verify that the solutions take a form similar to [24].

2 Basic Equations

We start with the general constitutive equation of an incompressible Sisko fluid
which is given as

T = −pI+aA1 + b
(
trA2

1

)m
A1 = −pI + S,

where S =
2∑

i=1

Si with

S1 = aA1,S2 = b
(
trA2

1

)m
A1,

p is the pressure and the coefficients a, b are material constants. For steady
motion the Rivlin-Ericksen tensors satisfy the recursion relation

AΓ+1 = (gradAΓ )V + AΓ gradV+ (AΓ gradV)
T
, A0 = I. (2.1)

For a steady motion the field equations are given by:

divV=0,

ρ (gradV)V= −gradp+ divS, (2.2)

where ρ is the constant density; the body force in this case is negligible.

3 Problem Statement and the Equations of Motion

We consider two rigid planes in contact with each other having a constant
inclination θ0. We assume that one plane is sliding over the other with constant
velocity U , we call the plane tilted at angle θ = θ0, the scraper, and the
horizontal moving boundary, a plate. The situation is depicted in Fig. 1.

We propose that the Sisko fluid is in between the planes and flows due to the
steady motion of one of the planes. For two dimensional flow, we will employ
polar coordinates (r, θ). The boundary conditions are

V = Uer at θ = 0, V = 0 at θ = θ0. (3.1)

Math. Model. Anal., 14(4):515–529, 2009.
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U

θ

θ = 0

θ = θ0

Figure 1. Two rigid planes intersecting at a fixed angle θ0.

We assume that the velocity field and the pressure field in the fluid domain
(0 < θ < θ0) are of the form

V=u (r, θ) er + v (r, θ) eθ, p = p (r, θ) .

It is well known that for corner flows, the inertia forces are almost negligible
and hence the field equation (2.2) reduces to

divS =gradp. (3.2)

Writing (3.2) in a component form [5], we have

∂p

∂r
= −

a

r

∂Ω

∂θ
+

2b

r

∂

∂r

(
rMm ∂u

∂r

)
+
b

r

∂

∂θ

{(
Mm

)(1

r

∂u

∂θ
+
∂v

∂r
−
v

r

)}

−
2b

r

{(
Mm

)(1

r

∂v

∂θ
+
u

r

)}
, (3.3)

and

1

r

∂p

∂θ
=a

∂Ω

∂r
+
b

r2
∂

∂r
r2

{
Mm

(1

r

∂u

∂θ
+
∂v

∂r
−
v

r

)}
+

2b

r

∂

∂θ

{
Mm

(1

r

∂v

∂θ
+
u

r

)}
, (3.4)

where

M = 4

(
∂u

∂r

)2

+ 4

(
1

r

∂v

∂θ
+
u

r

)2

+ 2

(
1

r

∂u

∂θ
+
∂v

∂r
−
v

r

)2

,

Ω =
∂v

∂r
+
v

r
−

1

r

∂u

∂θ
.

Eliminating the pressure from (3.3) and (3.4) and then introducing the stream
function ψ (r, θ) such that

u =
1

r

∂ψ

∂θ
, v = −

∂ψ

∂r
, (3.5)

we end up with

ar∇4ψ =
2b

r

∂2

∂θ∂r

{
rΨm

(1

r

∂2ψ

∂θ∂r
−

1

r2
∂ψ

∂θ

)}
(3.6)

+
b

r

∂2

∂θ2

{
Ψm

( 1

r2
∂2ψ

∂θ2
−
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)}
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+
2b

r

∂

∂θ

{
Ψm

(1

r

∂2ψ

∂θ∂r
−

1

r2
∂ψ

∂θ

)}
−
b

r

∂2

∂r2

{
r2Ψm

( 1

r2
∂2ψ

∂θ2
−
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)}

+
b

r2
∂2

∂r2

{
r2Ψm

( 1

r2
∂2ψ

∂θ2
−
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)}
+ 2b

∂2

∂θ∂r

{
Ψm

(1

r

∂2ψ

∂θ∂r
−

1

r2
∂ψ

∂θ

)}
,

where

Ψ = 8
(1

r

∂2ψ

∂θ∂r
−

1

r2
∂ψ

∂θ

)2

+ 2
( 1

r2
∂2ψ

∂θ2
−
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)2

,

the boundary conditions in terms of ψ (r, θ) are:

1

r

∂ψ

∂θ
= U ,

∂ψ

∂r
= 0 at θ = 0,

1

r

∂ψ

∂θ
= 0,

∂ψ

∂r
= 0 at θ = θ0.

4 Solution of the Problem

The homotopy perturbation is a combination of classical perturbation technique
and homotopy technique, by this technique we construct the homotopy [9];

h
(
ψ̃, q

)
= L

(
ψ̃

)
− L (ψ0) + qL (ψ0) + q

{
N

(
ψ̃

)
− f (r, θ)

}
= 0, (4.1)

where q ∈ [0, 1] is an embedding parameter, and ψ0 (r, θ) is an initial guess
approximation of (3.6). In addition, L,N are respectively the linear and the
nonlinear operators appearing in the model and f (r, θ) is the known analytic
function. The solution of (4.1) can be expressed as

ψ̃ = ψ̃0 + qψ̃1 + ... . (4.2)

and therefore, the approximate solution of (4.1) can be readily obtained as

ψ = lim
q→1

ψ̃ = ψ̃0 + ψ̃1 + ... . (4.3)

Following a similar procedure the problem under consideration (3.6) can be
written as

L(ψ̃)−L(ψ0)+qL(ψ0)+
q

ar




2b

r

∂2

∂θ∂r

{
rΘm

(1

r

∂2ψ̃

∂θ∂r
−

1

r2
∂ψ̃

∂θ

)}

+
b

r

∂2

∂θ2

{
Θm

( 1

r2
∂2ψ̃

∂θ2
−
∂2ψ

∂r2
+

1

r

∂ψ̃

∂r

)}

+
2b

r

∂

∂θ

{
Θm

(1

r

∂2ψ̃

∂θ∂r
−

1

r2
∂ψ̃

∂θ

)}

−
b

r

∂2

∂r2

{
r2Θm

( 1

r2
∂2ψ̃

∂θ2
−
∂2ψ̃

∂r2
+

1

r

∂ψ̃

∂r

)}

+
b

r2
∂2

∂r2

{
r2Θm

( 1

r2
∂2ψ̃

∂θ2
−
∂2ψ̃

∂r2
+

1

r

∂ψ̃

∂r

)}

+2b
∂2

∂θ∂r

{
Θm

(1

r

∂2ψ̃

∂θ∂r
−

1

r2
∂ψ̃

∂θ

)}




= 0,

(4.4)
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Θ = 8
(1

r

∂2ψ̃

∂θ∂r
−

1

r2
∂ψ̃

∂θ

)2

+ 2
( 1

r2
∂2ψ̃

∂θ2
−
∂2ψ̃

∂r2
+

1

r

∂ψ̃

∂r

)2

,

and where

L = ∇
2

(
∇

2

)
, ∇

2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

For the initial guess approximation, we take

∇
4ψ0 = 0, (4.5)

1

r

∂ψ0

∂θ
= U ,

∂ψ0

∂r
= 0 at θ = 0, (4.6)

1

r

∂ψ0

∂θ
= 0,

∂ψ0

∂r
= 0 at θ = θ0. (4.7)

The solution of (4.5) together with boundary conditions (4.6) and (4.7), is
given by ψ0 = UrF0 (θ), where [24]

F0 (θ) =
θ20 sin θ − θ sin θ

(
θ0 − sin θ0 cos θ0

)
− θ cos θ sin2 θ0

θ20 − sin2 θ0
. (4.8)

Combining (4.2) and (4.4), and equating the coefficients of like powers of q on
both sides, we get a system of equations which we consider in the following
subsections.

Next we consider the zeroth and first oder systems.

4.1 Zeroth order system.

The first two linear equations in the system with their boundary conditions
comprise the zeroth order problem and are given as

∇
4

(
ψ̃0

)
−∇

4

(
ψ0

)
= 0, (4.9)

1

r

∂ψ̃0

∂θ
= U ,

∂ψ̃0

∂r
= 0 at θ = 0, (4.10)

1

r

∂ψ̃0

∂θ
= 0,

∂ψ̃0

∂r
= 0 at θ = θ0. (4.11)

The solution of (4.9) together with boundary conditions (4.10) and (4.11) is
given by

ψ̃0 = UrF0 (θ) ,

where F0 (θ) is defined in (4.8).
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4.2 First order system

The next set of equations that result comprise the 1st order system:

∇
4

(
ψ̃1

)
+∇

4

(
ψ0

)
+

1

ar




2b

r

∂2

∂θ∂r

{
rΦm

(1

r

∂2ψ̃0

∂θ∂r
−

1

r2
∂ψ̃0

∂θ

)}

+
b

r

∂2

∂θ2

{
Φm

( 1

r2
∂2ψ̃0

∂θ2
−
∂2ψ

∂r2
+

1

r

∂ψ̃0

∂r

)}

+
2b

r

∂

∂θ

{
Φm

(1

r

∂2ψ̃0

∂θ∂r
−

1

r2
∂ψ̃0

∂θ

)}

−
b

r

∂2

∂r2

{
r2Φm

( 1

r2
∂2ψ̃0

∂θ2
−
∂2ψ̃0

∂r2
+

1

r

∂ψ̃0

∂r

)}

+
b

r2
∂2

∂r2

{
r2Φm

( 1

r2
∂2ψ̃0

∂θ2
−
∂2ψ̃

∂r2
+

1

r

∂ψ̃0

∂r

)}

+2b
∂2

∂θ∂r

{
Φm

(1

r

∂2ψ̃0

∂θ∂r
−

1

r2
∂ψ̃0

∂θ

)}




= 0,

(4.12)
where

Φ = 8
(1

r

∂2ψ̃0

∂θ∂r
−

1

r2
∂ψ̃0

∂θ

)2

+ 2
( 1

r2
∂2ψ̃0

∂θ2
−
∂2ψ̃0

∂r2
+

1

r

∂ψ̃0

∂r

)2

,

1

r

∂ψ̃1

∂θ
= 0,

∂ψ̃1

∂r
= 0 at θ = 0,

1

r

∂ψ̃1

∂θ
= 0,

∂ψ̃1

∂r
= 0 at θ = θ0.

After substituting the zeroth order solution into (4.12), the resulting equation
takes the form

∇
4ψ̃1 =

b

a

2m

r2m+3

{
d2

dθ2
(
G2m+1

)
−

(
4m2

− 1
)
G2m+1

}
, (4.13)

where G = F0 + F ′′

0 , suggesting the solution of the form

ψ̃1 =
F1

r2m−1
.

The partial differential equation (4.13) reduces to the following ordinary dif-
ferential equation

F iv
1 +2(4m2 + 1)F ′′

1 + (4m2
−1)2F1 =

b

a
2mU2m+1

×

{ d2

dθ2
(G2m+1)−(4m2

− 1)G2m+1

}
. (4.14)

The corresponding boundary conditions are

F1 = 0, F ′

1 = 0 at θ = 0, (4.15)

F1 = 0, F ′

1 = 0 at θ = θ0. (4.16)

It is not possible to attain the solution of (4.14) for a generalm, we therefore
discuss the following special cases.
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4.2.1 The case with m = 0

For m = 0, (4.14) reduces to the form

F iv
1 + 2F ′′

1 + F1 = 0,

which, together with the boundary conditions (4.15) and (4.16) gives the trivial
solution.

4.2.2 The case with m = 1

For m = 1, (4.14) becomes

F iv
1 + 10F ′′

1 + 9F1 =
6b

a
U3

{
d2

dθ2
(
G3

)
− 3G3

}
,

which, along with boundary conditions (4.15) and (4.16) gives the solution of
the extended Taylor problem for a third grade fluid.

4.2.3 The case with m = 2

The final case we consider is for m = 2, where (4.14) takes the form

F iv
1 + 34F ′′

1 + 225F1 =
12b

a
U5

{ d2

dθ2
(
G5

)
− 15G5

}
. (4.17)

The solution of (4.17) subjected to the boundary conditions (4.15) and (4.16)
is given by

F1 =C1 cos 3θ + C2 sin 3θ + C3 cos 5θ + C4 sin 5θ

+
12b

a
U5

{
E13 cos θ + E14θ sin 3θ + E15θ sin 5θ

+E16 sin 3θ + E17θ cos 3θ + E18θ cos 5θ

}
, (4.18)

where the Ci and Ei are constants depending upon θ0 and are given by:

C1 = −12U5 b

a
E39, C2 = 12U5 b

a
E37, C3 = 12U5 b

a
E38, C4 = −12U5 b

a
E36,

d1 = −
2k

θ20 − sin2 θ0
, d2 = −

2 sin2 θ0

θ20 − sin2 θ0
, k = θ0 − sin θ0 cos θ0,

E1 =
5d5

1

8
+

10d3
1d

2
2

8
+

5d1d
4
2

8
, E2 =

5d5
1

16
−

10d3
1d

2
2

16
−

15d1d
4
2

16
,

E3 =
d5
1

16
−

10d3
1d

2
2

16
+

5d1d
4
2

16
, E4 =

5d4
1d2

8
+

10d2
1d

3
2

8
+

5d5
2

8
,

E5 =
−15d4

1d2

16
+

10d2
1d

3
2

16
−

5d5
2

16
, E6 =

5d4
1d2

16
−

10d2
1d

3
2

16
+
d5
2

16
, E7 = −16E1,

E8 = −24E2, E9 = −40E3, E10 = −16E4, E11 = −24E5, E12 = −40E6,

E13 =
1

192
E7, E14 =

1

96
E8, E15 = −

1

160
E9, E16 =

1

192
E10,
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E17 = −
1

96
E11, E18 =

1

160
E12, E19 = E16 + E17 + E18,

E20 = −E13 sin θ0 + E14 sin 3θ0 + 3E14θ0 cos 3θ0 + E15 sin 5θ0 + 5E15θ0 cos 5θ0

+ E16 cos θ0 + E17 cos 3θ0 − 3E17θ0 sin 3θ0 + E18 cos 5θ0 − 5E18θ0 sin 5θ0,

E21 = E13 cos θ0 + E14θ0 sin 3θ0 + E15θ0 sin 5θ0 + E16 sin θ0 + E17θ0 cos 3θ0

+ E18θ0 cos 5θ0,

E22 = 3 sin 3θ0 − 5 sin 5θ0, E23 = E20 + 3E13 sin 3θ0, E24 = cos 5θ0 − cos 3θ0,

E25 = E21 − E13 cos 3θ0, E26 = 3E24 cos 3θ0, E27 = 5E24 cos 5θ0,

E28 = E23E24, E29 = E22 sin 3θ0, E30 = E28 sin 5θ0, E31 = E22E25,

E32 = E26 − E29, E33 = E27 − E30, E34 = E28 − E31, E35 = 5E32 − 3E33,

E36 = E19E32 − 3E34, E37 =
E36

E35

, E38 =
E33E37 − E34

E32

,

E39 =
E30E37 − E38E29 − E31

E22E24

, E40 = E39 + E13.

Combining the expressions for ψ̃0 and ψ̃1, the solution of the problem under
discussion after making use of (4.3) is given by

ψ = UrF0 +
F1

r3
, (4.19)

where F0 and F1 are respectively given by (4.8) and (4.18). Using (3.5), the
velocity components u and v are obtained as

u = UF ′

0 +
F ′

1

r4
, v = −UF0 +

3F1

r4
.

In order to discuss the forces acting on the scraper, we devote the next
section to the determination of the normal and shear stresses.

5 Normal and Shear Stresses

We start by noting that the pressure distribution for this problem is given by

p = −
a

r
UG′

−
a

5r5
(9F ′

1 + F ′′′

1 ) −
12b

5r5
U5 d

dθ

(
G5

)
.

Substituting the expressions for pressure field, extra stress tensors and then
writing the Cauchy stress tensor in component form, the normal and the shear
stresses are given as

Tθθ =
aU

r
G′ +

aU3

30r5
(F ′′′

1 + 49F ′

1) +
12b

5r5
d

dθ

(
G5

)
,

Trθ =
aU

r
G+

aU3

6r5
(F ′′

1 − 15F1) +
12b

r5
G5.
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Let us denote respectively by Tn and Tt the normal and tangential stresses to
the scraper (i.e for θ = θ0) at a distance r from the point of contact. Then the
component L of the total stress perpendicular to the plate is given by

L = Tn cos θ0 + Tt sin θ0.

Similarly, the component D parallel to the plate is

D = Tn sin θ0 − Tt cos θ0.

Now, we construct tables of values for both viscous fluid and Sisko fluid flows
and see the effects of Tn, Tt, L and D by giving different values to angle θ0.

Table 1. Values of L, D, Tn, and Tt divided by 2µU/r
for various values of θ0 for a viscous fluid.

θo Tnr/2µU Ttr/2µU Lr/2µU Dr/2µU

0 ∞ ∞ ∞ ∞

15 43 3.82 42 7.5
30 10.8 2.03 10.3 3.67
45 4.8 1.31 4.30 2.44
60 2.61 0.98 2.15 1.77
75 1.61 0.80 1.19 1.36
90 1.07 0.68 0.68 1.07

105 0.73 0.60 0.38 0.85
120 0.50 0.53 0.21 0.70
135 0.33 0.47 0.10 0.56
150 0.20 0.42 0.04 0.46
165 0.08 0.37 0.01 0.38
180 0 0.32 0 0.32

Table 2. Values of L, D, Tn, and Tt divided by 2µU/r for a various values
of θ0 for a Sisko fluid.

θo Tnr/2µU Ttr/2µU Lr/2µU Dr/2µU

0 ∞ ∞ ∞ ∞

15 6.38 × 10
17

4.16 × 10
18

4.60 × 10
17 −4.18 × 10

10

30 8.06 × 10
10

9.51 × 10
10

1.17 × 10
11 −4.20 × 10

18

45 ∞ ∞ ∞ ∞

60 79811 329857 244802 -235704
75 8304.75 8775.77 6193 -10794
90 ∞ ∞ ∞ ∞

105 -54.71 99.09 99.60 11.18
120 -36.54 -177.15 -157 82.35
135 ∞ ∞ ∞ ∞

150 -13.67 -29.75 -22.65 21.27
165 -391.55 -26.87 -31.871 26.79
180 ∞ ∞ ∞ ∞

We now look at various values of L, D, Tn, and Tt/2µU/r for various
values of θ0 for both viscous and Sisko fluid flows, these values are given in
Tables 1, 2. It can be seen that D decreases as θ0 increases for viscous flow
and it attains its least positive value at θ0 = π, but for Sisko fluid flow D
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u

θ

a = 1

a = 2

a = 3

Figure 2. Variation of velocity component
u versus the parameter a. For computing
this graph r = 1.5, U = 0.8, b = 2 and θo =

4π/9.

u

θ

b = 0.3

b = 0.6

b = 0.9

Figure 3. Variation of velocity component
u versus the parameter b. For computing
this graph r = 1.5, U = 0.8, a = 2 and θo =

4π/9.

u

θ

r = 0.01

r = 0.012

r = 0.013

Figure 4. Variation of velocity component
u versus the radial distance r. For comput-
ing this graph b = 0.5, U = 0.8, a = 2 and
θo = 4π/9.

v

θ

a = 1

a = 2

a = 3

Figure 5. Variation of velocity component
v versus the parameter a. For computing
this graph r = 1.5, U = 0.8, b = 2 and θo =

4π/9.

v

θ

b = 0.01

b = 0.02

b = 0.03

Figure 6. Variation of velocity component
v versus the parameter b. For computing
this graph r = 1.5, U = 0.8, a = 2 and θo =

4π/9.

u

θ

r = 0.014

r = 0.012

r = 0.01

Figure 7. Variation of velocity component
v versus the radial distance r. For comput-
ing this graph b = 0.05, U = 0.8, a = 2 and
θo = 4π/9.

remains negative in the range 0 < θ0 < 5π/12 and then it increases in the
range 5π/12 < θ0 < π. For viscous flow, the most interesting and perhaps
unexpected feature of the calculations is that L does not change sign in the
range 0 < θ0 < π. But for Sisko fluid flow the case is different, here L changes
sign in the range 2π/3 < θ0 < π. By this comparison, we note that for Sisko
fluid flow we have to keep the angle θ0 larger as compared to the viscous fluid
flow to scrape the fluid easily. We further see that for viscous fluid flow there
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526 A.M. Siddiqui, A.R. Ansari, A. Ahmad and N. Ahmed (Late)

Tt

r

a = 440

a = 2

Figure 8. Variation of tangential stress Tt

versus the parameter a. For computing this
graph b = 5, U = −0.8 and θo = 4π/9.

Tt

r

b = 1

b = 2

b = 4

Figure 9. Variation of tangential stress Tt

versus the parameter b. For computing this
graph a = 0.05, U = 0.8 and θo = 4π/9.

Tt

r

Figure 10. Variation of tangential stress Tt

versus the parameter θo = 0.01 radians. For
computing this graph b = 5, U = −0.8 and
a = 4.

Tn

r

a = 80

a = 40

a = 20

Figure 11. Variation of tangential stress
Tn versus the parameter a. For computing
this graph b = 4, U = 0.8 and θo = 4π/9.

Tn

r

b = 15

b = 5

b = 1

Figure 12. Variation of normal stress Tn

versus the parameter b. For computing this
graph a = 40, U = 0.8 and θo = 4π/9.

Tn

r

Figure 13. Variation of normal stress Tn

versus θ0 = 0.01 radians. For computing
this graph a = 40, U = 0.8 and b = 15.

occurred only one singularity at θ0 = 0 in the stress field, but for Sisko fluid
flow, we have five such points i.e at θ0 = 0, π/4 π/2, 3π/4, π. This means
that holding the scraper at these positions, we cannot scrape the fluid for Sisko
fluid flow or there will be an infinite force required to scrape the fluid.

6 Discussion

In this section we present some graphs to show the behavior of the velocity
field, tangential and normal stresses and the stream function. In Figures 2–4,
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ψ

θ

b = 4

b = 8

b = 10

Figure 14. Stream function against the parameter b. For computing this graph a = 4, U =

−0.8, r = 10 and θo = 4π/9.

the velocity component u is sketched against certain parameters for fixed values
of other parameters. In Fig. 2 it is seen that initially for small values of angle
θ, u decreases in the positive direction but at the later stage reverse flow occurs
and u increases as a increases in the interval θ ∈ (0.4, 1.4). It is worth noting
that the absolute value of u always decreases as a increases. In Fig. 3 we notice
a slightly different trend in that u starts decreasing in the negative direction,
but latter, i.e., θ ∈ (0.4, 1.4) we see that u increases with the parameter b;
the velocity changes are smaller than the changes against the parameter a. In
Fig. 4 we have tried to show the velocity trend against the radial distance r,
it is observed that near the corner, the velocity increases rapidly, reflecting the
presence of a corner singularity in the flow field. In Figs. 5–7, the velocity
component v is sketched against the same parameters. Similarly, in Fig. 5 we
see how v behaves against a, but the magnitude of v is much smaller than
that of u, although the circumstances are the same. In Fig.6 it can be noted
that v increases as b increases. In Fig.7 the component v has been exposed
near the corner and it is observed that it becomes singular at the corner. Fig.8
demonstrates the behavior of the tangential stress versus the parameter a, the
values of the other parameters are fixed. It can be seen that stress increases
with a, but near the corner it also becomes singular. Also, from Fig.9 we note
that the stress is proportional to the parameter b. From the mathematical
analysis in the previous section, we realize, that the whole flow field is singular
at θ0 = 0; Figs.10 and 13 are the justification of this fact as for θ0 = 0.01. We
note that stresses increase very rapidly and the same happens in the case for
other flow quantities (velocity etc.). In Fig.11 and 12, we see that the normal
stress always decreases against the parameter a. It should be noted that both
the normal and tangential stresses are calculated for the upper plane (scraper).
Finally, Fig.14 depicts the stream function ψ, pattern of flow of a Sisko fluid
near the wedge of two intersecting planes versus the parameter b.

7 Conclusion

The flow of a Sisko fluid near the corner of two intersecting rigid planes has been
analyzed. The non-linear partial differential equations modeling the flow are
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solved to obtain the expressions for the stress field, velocity field and pressure
field. It is noted that, if we set b = 0 in the constitutive equation for the Sisko
model [23], on one side, we get the Newtonian model, and on the other side,
the substitution of the constant b = 0 in the solution (4.19), gives the Taylor’s
solution of the well known paint-scraper problem [24]. This is a reasonable
verification of the problem.
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