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Abstract. We consider two types of nonlinear boundary value problems involving
parameters. The second type of problems includes the Fučík problem. Properties of
spectra are discussed in connection with the number of solutions to BVP.
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1 Introduction

This article is a review paper on nonlinear boundary value problems involving
parameters. We consider two types of equations. The first one is given as

x′′ + λf(x) = 0, (1.1)

where f is continuously differentiable and λ is a parameter. This equation is
considered together with the boundary conditions

x(0) = 0, x(1) = 0. (1.2)

A solution of (1.1), (1.2) is a pair (λ, x(t)) and we are interested in multiple
solutions. This problem is actual in the theory of differential equations and
recent results in this direction are described in survey paper [3]. In our research
we are motivated by this paper and [4].

The second type equations we wish to consider are equations of the form

x′′ = −λf(x+) + µg(x−), (1.3)

where x+ = max{x, 0}, x− = max{−x, 0} and λ, µ are nonnegative parame-
ters. Functions f and g are positive valued continuously differentiable functions
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defined on R+ = [0, +∞). This equation is considered together with the bound-
ary conditions (1.2). If f and g are linear functions (i.e., f = x and g = x)
then equation (1.3) becomes

x′′ = −λx+ + µx−,

and this is the famous Fučík equation which appears also as a simplified model
for suspension bridges.

The spectrum for the Fučík problem is well known. We tried to study
spectra for the problem

{

x′′ = −λf(x+) + µg(x−),

x(0) = 0, x(1) = 0.

If f and g are nonlinear then this spectrum without any other restrictions
fills the first quadrant and the problem does not make sense. We impose an
additional normalization condition, which allows us to study a nonlinear spectra
also. If this normalization condition is omitted then the problem of multiple
solutions makes sense.

In this paper we try to bring together all the above material and to find
interrelations and connections between these problems.

2 Solution Curves

2.1 Time-map functions

Let us look for positive solutions of the problem (1.1), (1.2). Consider first

x′′ + f(x) = 0. (2.1)

Let x(t; α) be a solution of the Cauchy problem (2.1)

x(0) = 0, x′(0) = α. (2.2)

Any positive solution of x′′ + f(x) = 0, x(0) = 0, x(1) = 0 satisfies

t1(α) = 1

for some α > 0 (number 1 in the right side refers to the length of the interval
(0, 1)). Thus the number of positive solutions of the problem depends on the
t1 function.

Similarly any positive solution of (1.1), (1.2) satisfies

U(α, λ) = 1,

where U is a time map for (1.1), (2.2). The respective set of (α, λ) is called
a solution curve. This curve has an important information on the number of
positive solutions to the problem (1.1), (1.2).

Assertion. If t1(α) is known then U(α, λ) is also known.
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The relation is defined by the following formula

U(α, λ) =
1√
λ

t1

(

α√
λ

)

.

The function U(α, λ) behaves like 1/
√

λ on the curves defined by α/
√

λ =
const.

2.2 Cubic nonlinearity

Consider equation with cubic nonlinearity
{

x′′ + λ(x − a)(x − b)(c − x) = 0,

x(0) = 0, x(1) = 0.
(2.3)

The graphs of function f(x) and its primitive function F (x)

F (x) =

∫ x

0

f(s) ds

are presented in Fig. 1.
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Figure 1. Function f(x), a = 1, b = 2, c =
7, and the primitive F (x).

Figure 2. Phase portrait for x′′ + λ(x −

a)(x − b)(c − x) = 0, the saddle points at
x = a and x = c.

We are looking for positive solutions of (2.3).

2.3 Case 0 < a < b < c

Suppose that F (c) > F (a). The phase portrait is depicted in Fig. 2. The
properties of the solution curve follow from the below statements.

Proposition 1. For any λ > 0 there exists α∗ ∈ (0, α1) such that U(α∗, λ) = 1,
α1 is the initial value of a solution entering the saddle point at x = a.

Proposition 2. There exists λ0 such that for λ < λ0 there is one solution to

the problem (2.3), (1.2), for λ = λ0 there are two solutions and for λ > λ0

there are three solutions.

The pictures in Fig. 3 show the function U and the respective solutions in the
case of a = 1, b = 2, c = 7.

The solution curve and solutions entering the saddle point is presented in
Fig. 4.

Math. Model. Anal., 14(4):503–514, 2009.
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Figure 3. Function U and the respective solutions in the case of a = 1, b = 2, c = 7: a)
function U, λ = 1, b) function U, λ = 2.33545, c) λ = 1 one solution, d) λ = 2.33545 two
solutions.
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Figure 4. Solution curve, the lower
branch in fact starts at the origin.

Figure 5. Solutions, entering the saddle
points at (a, 0) and (c, 0) in grey, solutions
of the problem in black.

2.4 Case a < 0 < b < c

Consider the case a < 0 < b < c, F (c) > F (a). Some solutions are presented in
Fig. 5. As example, we consider equation:

x′′ + λ(x + 0.5)(x − 0.5)(5.5 − x) = 0.

The solution curve is shown in Fig. 6. Therefore there are 0, 1 and 2 solutions
for various λ.

2.5 Quintic nonlinearity

Consider the following equation

x′′ + λf(x) = 0, λ > 0,
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Figure 6. Approximation of the solution
curve.
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Figure 7. Function f(x) (dashed) and
F (x) =

R

x

0
f(s) ds.

where the function f(x) is defined as

f(x) = (x − a)(x − b)(c − x)(x − d)(x − e), 0 < a < b < c < d < e.

Suppose the primitive F (x) satisfies F (a) < F (c) < F (e).

As an example, let us consider equation

x′′ + λ(x − 1)(x − 2)(5 − x)(x − 6)(x − 9) = 0.

There are three saddle points at (1, 0), (5, 0), (9, 0) and two centers at (2, 0),
(6, 0).

The functions f(x) and F (x) are presented in Fig. 7. The phase portrait is
depicted in Fig. 8 and the solution curve is presented in Fig. 9.

Figure 8. The phase portrait.
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Figure 9. The solution curve.

The graphs of the time map U(α, λ) for various λ are presented in Fig. 10.

In a similar manner the other cases of zero distributions of f(x) can be
considered and solution curves (bifurcation diagrams) can be constructed (pro-
vided f has only simple zeros). Also negative solutions can be studied as well
as solutions with prescribed number of zeros.

3 Asymmetrical Equations

In this section we consider two-parameter equation

x′′ = −λf(x+) + µg(x−), (3.1)

Math. Model. Anal., 14(4):503–514, 2009.
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Figure 10. The graphs of the time map U(α, λ): a) λ = 0.1, 1 solution, b) λ = 0.50264, 2
solutions, c) λ = 0.51, 3 solutions, d) λ = 0.51586, 4 solutions.

containing two functions f and g. Here x+ = max{x, 0}, x− = max{−x, 0}
and λ, µ are nonnegative parameters. Functions f and g are continuous positive
valued for x > 0 and f(0) = g(0) = 0.

If f(x) = x and g(x) = x then (3.1) becomes the Fučik equation

x′′ = −λx+ + µx−.
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Figure 11. Fučík problem spectrum.
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Figure 12. Functions U(1, λ) (solid line)
and V (1, µ) (dashed line).

The problem (3.1), (1.2) generally has a continuous spectrum. To consider
reasonable spectral problem we impose the normalization condition

|x′(0)| = 1. (3.2)
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The time maps for problems x′′ = −λf(x+) and x′′ = µg(x−) with normaliza-
tions x′(0) = 1 and x′(0) = −1 respectively are defined as:

U(1, λ) =
1√
λ

t1

( 1√
λ

)

, V (1, µ) =
1√
µ

τ1

( 1√
µ

)

.

We note that the other normalization conditions may be imposed also.

A detailed description of the spectrum is given in [1].

Theorem 1. The Fučík type spectrum for the problem (3.1), (1.2) with the

normalization (3.2) is given by the relations:

F+
0 =

{

(

λ, µ
)

: λ is a solution of U(1, λ) = 1, µ ≥ 0
}

,

F−
0 =

{

(

λ, µ
)

: λ ≥ 0, µ is a solution of V (1, µ) = 1
}

,

F+
2i−1 = {(λ; µ) : iU(1, λ) + iV (1, µ) = 1} ,

F−
2i−1 = {(λ; µ) : iV (1, µ) + iU(1, λ) = 1} ,

F+
2i = {(λ; µ) : (i + 1)U(1, λ) + iV (1, µ) = 1} ,

F−
2i = {(λ; µ) : (i + 1)V (1, µ) + iU(1, λ) = 1} .

Remark 1. Each subset F±
i is associated with nontrivial solutions with definite

nodal structure. For example, the set

F+
4 =

{

(λ; µ) : 3
1√
λ

t1

( 1√
λ

)

+ 2
1√
µ

τ1

( 1√
µ

)

= 1

}

is associated with nontrivial solutions that have three positive humps and two
negative ones. The total number of interior zeros is exactly four. Similarly, the
set

F−
4 =

{

(λ; µ) : 2
1√
λ

t1

( 1√
λ

)

+ 3
1√
µ

τ1

( 1√
µ

)

= 1

}

is associated with nontrivial solutions that have two positive humps and three
negative ones.

3.1 Samples of time maps

Let us consider equation

x′′ = −(r + 1)xr, r > 0,

which may be integrated explicitly. One has that

t1

( 1√
λ

)

= 2Aλr−1/2(r+1), where A =

∫ 1

0

1
√

1 − ξr+1
dξ,

so t1 is decreasing in λ for r ∈ (0, 1), t1 is constant for r = 1, and t1 is increasing
in λ for r > 1. The function

u(λ) =
1√
λ

t1

( 1√
λ

)

= 2Aλ−1/r+1

is decreasing for r > 0.

Math. Model. Anal., 14(4):503–514, 2009.
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3.2 Some properties of spectra

Due to Theorem 1 the spectrum of the problem (3.1), (1.2), (3.2) is a union of
pairs (λ, µ) such that one of the relations

U(1, λ) + V (1, µ) = 1, F±
1 ; 2U(1, λ) + V (1, µ) = 1, F+

2 ,

U(1, λ) + 2V (1, µ) = 1, F−
2 ; 2U(1, λ) + 2V (1, µ) = 1, F±

3 ,

3U(1, λ) + 2V (1, µ) = 1, F+
4 , 2U(1, λ) + 3V (1, µ) = 1, F−

4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3.3)

holds. The coefficients at U and V indicate the numbers of “positive” and
“negative” humps of the respective eigenfunctions.

3.3 Monotone U, V

Suppose that both functions U(1, λ) and V (1, µ) are monotonically decreasing.
Then the same do the multiples iU and iV , where i is a positive integer.

Theorem 2. Suppose that the functions U(1, λ) and V (1, µ) monotonically de-

crease from +∞ to zero. Then the spectrum of the problem is essentially the

classical Fučík spectrum, that is, it is a union of branches F±
i , which are the

straight lines for i = 0, hyperbola looking curves, which have both vertical and

horizontal asymptotes, for i > 0.

3.4 Non-monotone functions U and V

It is possible that the functions

U(1, λ) =
1√
λ

t1

( 1√
λ

)

, V (1, µ) =
1√
µ

τ1

( 1√
µ

)

are not monotone. Then spectra may differ essentially from those in the mono-
tone case (see also [2]).

Proposition 3. Suppose that U(1, λ) and V (1, µ) monotonically decrease to

zero starting from some values λ∗ and µ∗. Then the subsets F±
i of the spectrum

behave like the respective branches of the classical Fučík spectrum for large

numbers i, that is, they form hyperbola looking curves which have vertical and

horizontal asymptotes.

Indeed, notice that for large enough values of i the functions iU(1, λ) and
iV (1, µ) monotonically decrease to zero in the regions {λ ≥ λ∆, 0 < u < 1},
{µ ≥ µ∆, 0 < v < 1} respectively (for some λ∆ and µ∆) and are greater than
one for 0 < λ < λ∆ and 0 < µ < µ∆ respectively. Therefore one may complete
the proof by analyzing the respective relations in (3.3).

If one (or both) of the functions U and V is non-monotone then the spectrum
may differ essentially from the classical Fučík spectrum. Consider the case
depicted in Fig. 12.



Multiplicity in Parameter-Dependent Problems 511

Proposition 4. Let the functions U and V behave like depicted in Fig. 12, that

is, V monotonically decreases from +∞ to zero and U has three segments of

monotonicity, U tends to zero as λ goes to +∞. Then the subset F±
1 consists

of two components.

Indeed, let λ1, λ2 and λ3 be successive points of intersection of the graph of
U with the line U = 1. Denote λ∗ the point of minimum of U(λ) in the interval
(λ1, λ2). Let µ∗ be such that U(λ∗) + V (µ∗) = 1. It is clear that there exists
a parabola like curve with vertical asymptotes at λ = λ1 and λ = λ2 with a
minimal value µ∗ at λ∗ which belongs to F+

1 . There exists also a hyperbola
looking curve with the vertical asymptote at λ = λ3 and horizontal asymptote
at µ = µ1, where µ1 is the (unique) point of intersection of the graph of V with
the line V = 1. There are no more points belonging to F+

1 .

An interesting feature of spectra in the case of non-monotonicity of functions
U and V is that then some sets F±

i may contain separated subsets (compo-
nents). To this end, the following statement is of value.

Proposition 5. Let Γ be a Jordan curve in the region {(λ, µ) : λ > 0, µ > 0}
such that

1√
λ

t1

( 1√
λ

)

+
1√
µ

τ1

( 1√
µ

)

<
2

N
(resp. >)

for any (λ, µ) ∈ Γ and, at the same time,

1√
λ∗

t1

( 1√
λ∗

)

+
1√
µ∗

τ1

( 1√
µ∗

)

>
2

N
(resp. <)

for some (λ∗, µ∗) ∈ interior Γ. Then the branch F±
N has an isolated component

in the interior of Γ.

3.5 Example

Let f : [0, +∞) → [0, +∞) be piece-wise linear function depicted in Fig. 13:
f(0.1) = 0.2, f(0.2) = 0.1, f(0.22) = 120
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Figure 13. A piece-wise linear function.
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Figure 14. Function u(λ).

Consider equation x′′ = −λf(x+) + µf(x−). Function u(λ) = 1√
λ
t1

(

1√
λ

)

is depicted in Fig. 14.

Math. Model. Anal., 14(4):503–514, 2009.
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The four first branches (subsets) of the spectrum

F±
1 : U(λ) + U(µ) = 1, F+

2 : 2U(λ) + U(µ) = 1,

F−
2 : U(λ) + 2U(µ) = 1, F±

3 : 2U(λ) + 2U(µ) = 1

are depicted in Fig. 15.
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Figure 15. F±
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thick (there is a bounded separated component), F±
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thin (two parabola-

looking and two hyperbola-looking infinite curves), F±
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dashed

3.6 Solution surfaces

If the relation
U(α, λ) + V (α, µ) = 1 (3.4)

is satisfied for some triple (α, λ, µ), α 6= 0, then there exists a nontrivial
solution x(t) of the problem

{

x′′ = −λf(x+) + µg(x−),

x(0) = 0, x(1) = 0,
(3.5)

which has exactly one zero in the interval (0, 1) and satisfies the condition
x′(0) = α. One has that |x′(z)| = α at any point of zero of x(t). If α is fixed
then the relation (3.4) defines the first branch F±

1 of the respective Fučík type
spectrum. If α is free then the relation (3.4) defines a solution surface which
has similar meaning as solution curves (bifurcation diagrams) for problems with
one parameter have. Solution surfaces bear information on Fučík type spectra
for problems with normalizations and on the number of oscillatory solutions of
the problems like (3.5).

4 Conclusions

For the problem

x′′ + λf(x) = 0, x(0) = 0, x(1) = 0

properties of the time-map function t1(α) determine the number of solutions;
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• equation t1(α) = 1 determines the number of positive solutions for λ = 1;

• equation U(α, λ) :=
1√
λ

t1

( α√
λ

)

= 1 determines the number of positive

solutions for fixed λ;

• equation U(α, λ) = 1 defines the solution curve (bifurcation diagram) for
the problem.

For the problem
{

x′′ = −λf(x+) + µg(x−),

x(0) = 0, x(1) = 0

knowledge of time-map functions t1(α) and τ1(α) provides description of the
spectra (for various normalizations) and description of the solution surfaces.

• equations U(α, λ) = 1 and V (α, µ) = 1 give the zero branches of the
Fučík spectrum (with fixed normalization |x′(0)| = α);

• other branches of the Fučík spectrum, which relate to oscillatory solu-
tions, are defined by relations of the type

iU(α, λ) + jV (α, µ) = 1,

where i and j refer to the numbers of positive and negative humps of the
graph of a solution;

• the Fučík spectrum is similar to the classical one if both functions U and
V are monotone in λ and µ respectively;

• the Fučík spectrum may have peculiar features (multicomponent bran-
ches) if one or both functions U and V are non-monotone in λ and µ
respectively;

• equation U(α, λ) + V (α, µ) = 1 defines the solution surface (bifurcation
diagram) for solutions of the problem which have exactly one zero in the
interval (0, 1);

• equations of the type

iU(α, λ) + jV (α, µ) = 1

define solution surfaces (bifurcation diagrams) for those solutions of the
problem which have exactly i positive humps and exactly j negative
humps.
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