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Abstract. We consider a bond-pricing model described in terms of partial differen-
tial equations (PDEs). Classical Lie point symmetry analysis of the considered PDEs
resulted in a number of point symmetries being admitted. The one-dimensional op-
timal system of subalgebras is constructed. Following the symmetry reductions, we
determine the group-invariant solutions.
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1 Introduction

Over the last few decades, there has been a great interest in the modelling
and analysis of problems arising in finance markets. Some of these problems
are modelled in terms of PDEs. A zero-coupon bond is a contract that pays
a known fixed amount at some expiry time T. Thus its pricing equation is an
example of a model which can be used to evaluate interest rate derivatives. A
number of studies have been devoted to the use of symmetry techniques for
PDEs arising in the field of finance mathematics (see e.g. [4, 8, 12, 14]). The
theory and applications of symmetries may be found in excellent texts such
as [3, 7, 10, 15]. Ibragimov and Gazizov [8] have considered and analyzed the
classical Black-Sholes-Merton model.

It can be shown that a stochastic process describing the spot rate x,

dx(t) = µx(t)dt + σxdZ(t),

leads to the Black-Scholes model given by

ut +
1

2
σ2x2uxx + rxux − ru = 0,
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where {u(x, t), t ≥ 0} is the asset price, µ is the measure of the average rate of
growth of the asset price, σ is the volatility of the underlying asset, t is time,
r is the risk free interest rate, σ2 is the variance, {Z(t), t ≥ 0} is the Wiener
process and dZ(t) is its increment. Here r, µ and σ are constants.

Pooe et al. [12], assumed that the spot rate follows the stochastic process
(see also [4, 5]) given by

dx(t) = a(x, t) dt + w(x, t) dZ(t),

and ended up solving the model

ut +
1

2
w2uxx + (a − λ(x, t)w)ux − xu = 0.

Here λ(x, t) is the market price of risk, a(x, t) and w(x, t) represent the expected
rate of return and volatility, respectively. The value of interest rate derivatives
such as bonds, swaps, naturally depends on the interest rates. The choice of the
coefficients u(x, t) and w(x, t) is important for subsequent modelling of bond
prices.

Sinkala et al. [14] assumed that the spot rate follows the stochastic process

dx(t) = κ(θ − x(t)) dt + σ
√

x dZ(t) (1.1)

and this gave rise to the model

ut +
1

2
σ2xuxx + κ(θ − x)ux − xu = 0,

where κ and θ are constants. The stochastic process in equation (1.1) is referred
to as the square root process [14].

The Ornstein-Uhlenbeck process

dx(t) = κ(θ − x(t)) dt + σ dZ(t), (1.2)

leads to the asset price satisfying the PDE

ut +
1

2
σ2uxx + κ(θ − x)ux − xu = 0,

which was coupled with equation (1.2). Such a system was solved subject to
the terminal condition u(x, T ) = 1.

As a synthesis of all these equations Mahomed [9] developed a method for
solving the general linear (1 + 1) parabolic equation

ut = a(x, t)uxx + b(x, t)ux + c(x, t)u.

In essence a number of rate models which led to analytical solutions have
been used and more models yet to be solved. The aim of this paper is to
analyze a bond-pricing model and to determine its closed-form solutions using
Lie point symmetry techniques. In the present work we assume that the risk
free spot rate follows the Itô’s process or stochastic process of the form

dx(t) = b(x(t), t)w2(x(t), t) dt + w(x(t), t) dZ(t),
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with specified drift term b(x(t), t) and the volatility w(x(t), t). We first derive
the governing equation and determine its Lie point symmetries in Section 2. In
Section 3 we adopt methods of [10] to construct the one-dimensional optimal
systems of subalgebras. The symmetry reductions and construction of group-
invariant solutions are provided in Section 4 and lastly the concluding remarks
are given.

2 Governing Equations and Symmetry Analysis

We adapt the following definition and lemma from [16, 17].

If {x(t), t ≥ 0} is a stochastic process, {Z(x(t), t), t ≥ 0} the Wiener process
and a and b are smooth functions, then an equation of the form

dx(t) = a(x(t), t) dt + b(x(t), t) dZ(t)

is called a stochastic differential equation for which the solution is called the
Itô’s process.

In this paper, we follow [4] and assume that the risk free spot rate x follows
the stochastic process

dx(t) = [v(x(t), t) − λ(x(t), t)w(x(t), t)]dt + w(x(t), t) dZ(t)

= b(x(t), t)w(x(t), t)2dt + w(x(t), t) dZ(t) (2.1)

and hence the PDE corresponding to (2.1) is given by

uxx +
2

w2
ut + b(x, t)ux − 2x

w2
u = 0. (2.2)

Considering the power law volatility w(x, t) = cx3/2 and the nonlinear drift

term b(x, t) =
3

4x
− q

x3/2
, we note that the risk free spot rate x follows the

stochastic process

dx =
[3

4
x2 − qx3/2

]

c2 dt + cx3/2 dZ(t)

and we may rewrite equation (2.2) as

uxx +
2

c2x3
ut + 2

(

3

4x
− q

x3/2

)

ux − 2

c2x2
u = 0. (2.3)

Here c and q are constants. The power law volatility conforms to actual data
[4]. In fact, the volatility x3/2 has shown to be the best-fit power law [2]. Most
models use linear drift (which are rejected by Aït-Sahalia [2]) and in this paper
we have chosen a nonlinear drift term. Using the computer subprogram Dim-
sym [13] of Reduce [6], we obtain other than the infinite symmetry generator,
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with the base vectors

X1 =
(c4q2x3/2t2 − c2tx3/2 + 4

√
x − 4c2qtx)u

2x3/2c2

∂

∂u
+ t2

∂

∂t
− 2tx

∂

∂x
,

X2 =
(c2q2t

√
x − 2q)u

2
√

x

∂

∂u
+ t

∂

∂t
− x

∂

∂x
,

X3 =
∂

∂t
, X4 = u

∂

∂u
,

which span the four dimensional Lie symmetry algebra (see also [4]).

The main purpose for finding symmetries is to generate or construct in-
variant solutions. Note that any linear combination of the above generators
may lead to the construction of group invariant solutions. In order to ensure
a minimal set of reductions that are not equivalent by any transformation one
may construct the one dimensional optimal system (see e.g. [10]).

3 One-Dimensional Optimal System of Subalgebras

It is well known that reduction of the independent variables by one is possible
using any linear combination of our generators of symmetry Xi, i = 1, . . . , 4.
We construct a set of minimal combinations known as optimal systems [10].
To construct the optimal systems we need the commutators of the admitted
symmetries given in Table 1.

Table 1. Lie bracket of the admitted symmetry algebra, [Xi, Xj ] = XiXj − XjXi

[Xi, Xj ] X1 X2 X3 X4

X1 0 −X1
1

2
X4 − X2 0

X2 X1 0 −
`

X3 + 1

2
c2q2X4

´

0

X3 2X2 − 1

2
X4 X3 + 1

2
c2q2X4 0 0

X4 0 0 0 0

An optimal system of a Lie algebra is a set of l−dimensional subalgebras
such that every l−dimensional subalgebra is equivalent to a unique element of
the set under some element of the adjoint representation [10];

Ad(exp(ǫXi))Xj =

∞
∑

n=0

ǫn

n!
(adXi)

n
Xj = Xj − ǫ[Xi, Xj] +

ǫ2

2!
[Xi, [Xi, Xj]]− . . .

(3.1)
The adjoint representation is constructed using the formula (3.1) and is given
in Table 2.

Let us consider the linear combination of the symmetry generators:

X = a1X1 + a2X2 + a3X3 + a4X4. (3.2)

Now, if we let a1 6= 0 in (3.2), one may rescale a1 such that a1 = 1. Acting on
X by Ad (exp (κX3)), with κ being the root of the quadratic equation

κ2 − a2κ + a3 = 0,
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Table 2. Adjoint representation table. At position (i, j) we have Ad(exp(ǫXi))Xj

for i = 1, . . . , 4.

Ad X1 X2 X3 X4

X1 X1 X2 + ǫX1 X3 − ǫ
`

1

2
X4 − 2X2

´

X4

+ǫ2X1

X2 e−ǫX1 X2 eǫX3 + 1

2
c2q2(1 − eǫ)X4 X4

X3 X1 − ǫ(2X2 − 1

2
X2) X2 − ǫ(X3 + 1

2
c2q2X4) X3 X4

ǫ2(X3 + 1

2
c2q2X4)

X4 X1 X2 X3 X4

we obtain X [i] = X1 + a′

2X2 + a′

4X4. Here the coefficients a′

2 and a′

4 are given
by

a′

2 = a2 − 2κ, a′

4 =

(

1

2
c2q2

)

(κ2 − κ) +
(κ

4
+ a4

)

.

Thus the one-dimensional subalgebra spanned by X with a1 6= 0 is equivalent
to the one spanned by X1 + αX2 + βX4, α, β ∈ R. Assuming a1 = 0, a2 6= 0
and setting a2 = 1, we get X [i] = X2 + a3X3 + a4X4. Acting on X [i] by

Ad

(

exp

(

− 2a4

c2q2
X1

))

we have X [ii] = X2 + a′

3X3, where a′

3 = a3 +
2a4

c2q2
.

No further simplification is possible. In other words, every one-dimensional
subalgebra generated by X with a2 6= 0 is equivalent to the subalgebra spanned
by X2 + αX3, α ∈ R.

Assume now that a2 = 0 and a3 6= 0. Set a3 = 1. Then this leads to
an irreducible one-dimensional subalgebra X [iii] = X3 + a4X4. Thus the one-
dimensional subalgebra spanned by X with a3 6= 0 is equivalent to the one
spanned by either X3+αX4, α ∈ R. The last subalgebra is obtained by setting
a3 = 0 and a4 = 1. In this case we have X4. Hence the set of one-dimensional
optimal systems is

{

X1 + αX2 + βX4; X2 + αX3; X3 + αX4; X4

}

.

4 Symmetry Reductions and Invariant Solutions

Using the members of the constructed optimal systems we perform some re-
ductions and wherever possible solve the equations completely.

Example 1. Considering X = X1 + αX2 + βX4, we obtain the invariant
ρ = x(t2 + αt) and the functional form of the group invariant solution

u = exp
(c2q2

2
t − 1

2
ln(t + α) +

2

c2x(t + α)
− 2q√

x
+

β

α
ln

( t

t + α

))

f(ρ),

where f satisfies the ordinary differential equation (ODE)

ρ3f ′′ +
(2α

c2
ρ +

3

2
ρ2

)

f ′ +
( 2

c2
β − 2

c2
ρ
)

f = 0. (4.1)

Math. Model. Anal., 14(4):495–502, 2009.
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If we make the appropriate transformation (see e.g. [11]), for example, let

f = ρ−
β

α v, then (4.1) becomes

ρ2v′′ +
[(3

2
− 2β

α

)

ρ +
2α

c2

]

v′ +
[

− β

α

(1

2
− β

α

)

− 2

c2

]

v = 0. (4.2)

A further change of variables, for example, ρ =
1

ξ
, and v = ξkeξw, where k

satisfies the polynomial equation

k2 −
(

1

2
+

2β

α

)

k +

(

− β

2α
+

β2

α2
− 2

c2

)

= 0

reduces equation(4.2) to

ξw′′ +
[(

2 − 2α

c2

)

ξ + 2k +
1

2
− 2β

α

]

w′

+
[(

1 − 2α

c2

)

ξ + 2k + 2 −
(3

2
− 2β

α

)

− 2α

c2
k
]

w = 0. (4.3)

Now for simplicity let

ã =

(

2 − 2α

c2

)

, b̃ = 2k+
1

2
−2β

α
, c̃ =

(

1−2α

c2

)

, d̃ = 2k+2−
(3

2
−2β

α

)

−2α

c2
k,

then (4.3) can be written as

ξw′′ + (ãξ + b̃)w′ + (c̃ξ + d̃)w = 0.

The latter ODE admits the family of solutions

w(ξ) = ξ−b̃/2e−ãξ/2
{

k1 Mγ,̟

(

√

ã2 − 4c̃ ξ
)

+ k2 Wγ,̟

(

√

ã2 − 4c̃ ξ
)}

,

where k1, k2 are arbitrary constants, Mγ,̟(·), Wγ,̟(·) are the Whittaker’s

functions (see e.g., [1]), γ = (2d̃ − ãb̃)/(2
√

ã2 − 4c̃) and ̟ = (b̃ − 1)/2. In
terms of v and ρ we have

v(ρ) = ρ−(k+b̃/2)e(2−ã)/2ρ
{

k1 Mγ,̟

(

√
ã2 − 4c̃

ρ

)

+ k2 Wγ,̟

(

√
ã2 − 4c̃

ρ

)}

.

In terms of the original variables, the general solution for equation (2.3) is given
by

u(x, t)=
{

exp
(c2q2

2
t− ln(t+α)

2
+

2

c2x(t+α)
− 2q√

x
+

β

α
ln

( t

t+α

)

+
2−ã

2x(t2+αt)

)}

× x(t2 + αt)−b̃/2
{

k1 Mγ,̟

(

√
ã2 − 4c̃

x(t2 + αt)

)

+ k2 Wγ,̟

(

√
ã2 − 4c̃

x(t2 + αt)

)}

.
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Example 2. Consider X = X2 + αX3 given by

X =
(c2q2t

√
x − 2q)u

2
√

x

∂

∂u
+ (t + α)

∂

∂t
− x

∂

∂x
. (4.4)

The associated Lagrange’s system

dt

t + α
=

dx

−x
=

2
√

xdu

u(c2q2t
√

x − 2q)
,

arising from (4.4) gives the following functional form

u = (t + α)−0.5c2q2α exp
(−c2q2α

2
t − 2q√

x

)

f(ρ),

where ρ = x(t + α) and f satisfies the ODE

ρ3f ′′ +
(3

2
ρ2 +

2

c2
ρ
)

f ′ −
(

αq2 +
2

c2
ρ
)

f = 0.

Hence

f = ρν
{

k1M
(

m, n,
2

c2ρ

)

+ k2U
(

m, n,
2

c2ρ

)}

,

where

m =
1 +

√
c2 + 32

2c
, n =

2c +
√

c2 + 32

2c
, ν = −c +

√
c2 + 32

4c

and k1, k2 are arbitrary constants. M(a, b, ·) and U(a, b, ·) are Kummer M and
Kummer U special functions (see e.g. [1]). In terms of original variables, we
obtain the group invariant solution

u(x, t) = (t + α)(c
2q2)/2 exp

(

− c2q2α

2
t − 2q√

x

)

x(t + α)ν

×
[

k1 M
(

m, n,
2

c2x(t + α)

)

+ k2 U
(

m, n,
2

c2x(t + α)

)]

.

Example 3. Consider X = X3 + αX4. This leads to the functional form
u = eαtf(x), where f(x) satisfies the ODE

x3f ′′ +
(3

2
x2 − 2qx

3

2

)

f ′ +
2

c2

(

α − x
)

f = 0.

This equation is similar to (4.1). Note that reduction by X4 does not yield any
solution.

5 Concluding Remark

We have considered PDEs describing bond-pricing. Symmetry analysis re-
vealed a rich array of Lie point symmetries being admitted (see also [4]). The
one-dimensional optimal systems of subalgebras are constructed and the group-
invariant solutions are obtained. We have utilized the realistic power law model
for the volatility and the nonlinear drift term. The PDEs associated with fi-
nance are rarely solvable and usually approximations and Monte Carlo methods
are applied. However, with given realistic choices of volatility and risk-free drift
term we have constructed the nontrivial close-form solutions.

Math. Model. Anal., 14(4):495–502, 2009.
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