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Abstract. In this paper we deal with regularization approaches for discretized linear
ill-posed problems in Hilbert spaces. As opposite to other contributions concerning
this topic the smoothness of the unknown solution is measured with so-called approx-
imative source conditions. This idea allows us to generalize known convergence rates
results to arbitrary classes of smoothness conditions including logarithmic and gen-
eral source conditions. The considerations include an a-posteriori parameter choice
strategy for the regularization parameter and the discretization level. Results of one
numerical example are presented.
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1 Introduction

Let X and Y denote Hilbert spaces and let A : X −→ Y describe a linear and
compact operator with non-closed range, i.e. R(A) 6= R(A). We introduce
the notation a := ‖A‖. We consider convergence rates for solving the linear
ill-posed operator equation

Ax = yδ, x ∈ X , yδ ∈ Y, (1.1)

approximately for given noisy data yδ ∈ Y. Let y = y0 be the exact data and
δ ≥ 0 denotes the noise level, i.e. ‖y − yδ‖ ≤ δ. Moreover, we assume the
existence of x† := A†y, which is referred to as the exact solution of (1.1) for
given exact data y. Here A† is the Moore-Penrose inverse of A. In order to
solve (1.1) numerically we replace equation (1.1) by

QhAPh x = Qhy
δ, x ∈ X , yδ ∈ Y, (1.2)

where Ph : X −→ X and Qh : Y −→ Y are orthogonal projections satisfying

‖A(I − Ph)‖ ≤ ξh and ‖(I −Qh)A‖ ≤ ηh
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for given bounds ξh and ηh. This kind of definition for the bounds of the
discretization errors has been well-established in inverse problems, see e.g. [18]
and [20]. We set Ah := QhAPh. As usual, h describes the discretization level
and we assume ξh → 0 and ηh → 0 for h→ 0.

Of course, if R(Ph) and R(Qh) are finite-dimensional, equation (1.2) is
not ill-posed anymore. On the other hand, (1.2) becomes more and more ill-
conditioned the smaller we choose h. Finite dimensional approximation in
combination with a choice of the discretization level h depending on the noise
level δ is well-known as regularization by projection, see [18] and [2, Chapter
7]. We also refer to [12] to some new results and further references therein.
However, numerous numerical studies indicate that we can often apply only
a coarse discretization which is insufficient for problems arising in practical
applications. Hence, it makes sense to introduce an additional regularization
strategy {gα}, 0 < α ≤ a2, i.e. we replace (1.2) by calculating

xδ
α,h := gα(A∗

hAh)A∗
hQhy

δ = gα(A∗
hAh)A∗

hy
δ. (1.3)

In order to derive convergence rates xδ
α,h → x† for δ → 0 (respectively α =

α(δ) → 0 and h = h(δ) → 0) we need additional (smoothness) conditions to
the exact solution x†. They are usually given by a general source condition

x† = ϕ(A∗A)ω, ω ∈ X , (1.4)

for an index function ϕ(t), t ≥ 0. In this context, a continuous and strictly
increasing function ϕ(t), t ≥ 0, is called an index function if ϕ(0) = 0. The
original idea of power-type functions ϕ(t) = tν , t ≥ 0, for some ν > 0 is well-
studied in the undiscretized situation, see e.g. [4] and the references therein.
Later on, in [17] and [22] the idea was generalized to more general index func-
tions ϕ(t), t ≥ 0, see also [16] for some further results. Moreover, for each
x† ∈ R(A†) we can find an index function ϕ(t), t ≥ 0, such that (1.4) holds,
see [10].

If we additionally consider the discretization aspect further difficulties occur
in deriving convergence rates. In particular, we have to find an estimate for
the term ‖ϕ(A∗

hAh) − ϕ(A∗A)‖ which is not trivial job for arbitrary index
functions, see [15]. However, such an estimate can be found for power-type
index functions. This situation was treated in [20] in detail. In [15] more general
index functions were considered. But unfortunately, the achieved results therein
are still restricted to some limited classes of index functions.

Therefore we follow an alternative strategy. We refer to (1.4) as reference
or benchmark source condition which we allow to be violated. Then we replace
the source condition (1.4) by a so-called approximate source condition

x† = ϕ(A∗A)ω + υ, ω, υ ∈ X , (1.5)

introduced in [7] and [8]. Here we assume, that the function ϕ(t), t ≥ 0, is
chosen such that x† 6∈ R(ϕ(A∗A)). On the other hand, we have

x† ∈ R(A†) ⊂ R(A†) = N (A)⊥ = R((A∗A)
1
2 ) = R(ϕ(A∗A))
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by definition of the Moore-Penrose inverse A†. However, this indicates, that
for arbitrary d > 0 we can find elements ω, υ ∈ X with ‖υ‖ ≤ d satisfying
(1.5). Introducing distance functions, this observation allows us to present
convergence rates in the undiscretized situation. This is a topic of Section 2.
Then, the idea is quite simple: we choose a power-type index ϕ(t) = tν , t ≥ 0,
with sufficiently large exponent ν > 0 and apply the results of [20] for finding
estimates for the critical terms. The additional terms which are caused by the
violation of the power-type source conditions can be treated separately. We will
show this in Section 3. So we can extend and improve the known convergence
rates results of [15, 20] to arbitrary classes of smoothness conditions on the
exact solution x†. In particular, these considerations also includes logarithmic
source conditions introduced in [11].

Moreover, the presented analysis does not depend on any type of source
condition. So discretization and regularization strategy under consideration
can be applied to arbitrary x† ∈ R(A†). This is the main purpose of the
present paper.

Therefore, the paper is organized as follows: in Section 2 approximative
source conditions are opposed to general source conditions in the undiscretized
situation. In both cases results on error bounds for the regularized solutions
of (1.1) were summarized and a first statement about the correlation of both
approaches was presented. In Section 3 we consider error bounds for the term
‖xδ

α,h−x†‖ depending on δ, α and the approximative source condition. There, a
choice of the discretization levels h depending on the regularization parameter
α is suggested. Section 4 is devoted to a convergence rates result based on an
a-priori parameter choice strategy α = α(δ) whereas following an a-posteriori
choice according the balancing principle of Lepskij is proposed. Finally we
illustrate these theoretical results by a numerical example.

2 General vs. Approximate Source Conditions

In order to verify convergence rates for linear (and nonlinear) regularization
approaches two concepts have been established in the recent years. We briefly
recall both ideas. Introducing further notations we recall the definition of a
regularization {gα}, 0 < α ≤ a2, see [16] and [9].

Definition 1. A family {gα}, 0 < α ≤ a2 = ‖A∗A‖, of piecewise continuous
functions is called regularization if there exist constants C1 > 0 and C2 > 0
such that for 0 < α ≤ a2

sup
0<t≤a2

√
t |gα(t)| ≤ C1√

α
and sup

0<t≤a2

|1 − t gα(t)| ≤ C2. (2.1)

For obtaining estimates of the regularization error we need the concept of
(general) qualifications, see also [16, Definition 1].

Definition 2. The regularization {gα} is said to have qualification ϕ(t), t ≥ 0,
for an index function ϕ(t), if there exists a constant Cϕ > 0 such that

sup
0<t≤a2

|1 − t gα(t)|ϕ(t) ≤ Cϕϕ(α), 0 < α ≤ a2.

Math. Model. Anal., 14(4):451–466, 2009.



454 T. Hein

First we deal with general source conditions. For given index function ϕ(t),
t ≥ 0, we assume that x† satisfies the source condition (1.4) with ‖ω‖ ≤ R
for some R > 0. Then, if this function ϕ(t), t ≥ 0 is a qualification of the
regularization {gα}, we obtain the error estimate

‖xδ
α − x†‖ ≤ C1√

α
δ + Cϕϕ(α)R, 0 < α ≤ a2, (2.2)

where xδ
α := gα(A∗A)A∗yδ denotes the regularized solution of equation (1.1),

see [16]. In the following we always suppose that the index function ϕ(t), t ≥ 0
is a qualification of the regularization {gα}.

Alternatively we can assume, that a source condition (1.4) with given index
function ϕ(t), t ≥ 0, is violated. Therefore we introduce the sets

Mϕ(R, d) := {x ∈ X : x = ϕ(A∗A)ω + υ, ‖ω‖ ≤ R, ‖υ‖ ≤ d} , R, d ≥ 0.

Then, for x† ∈ Mϕ(R, d), i.e. x† = ϕ(A∗A)ω + υ with ω, υ ∈ X satisfying
‖ω‖ ≤ R and υ ≤ d, we conclude from the classical linear regularization theory

‖xδ
α − x†‖ = ‖gα(A∗A)A∗(yδ − y + y) − x†‖

≤ ‖(I − gα(A∗A)A∗A)x†‖ + ‖gα(A∗A)A∗(yδ − y)‖
= ‖(I − gα(A∗A)A∗A) [ϕ(A∗A)ω + υ] ‖ + ‖gα(A∗A)A∗(y − yδ)‖

≤ Cϕϕ(α)R + C2d+
C1√
α
δ.

In order to prove convergence rates based on approximate source conditions we
additionally need the concept of distance functions. The idea of approximate
source conditions was originally introduced in [2, Theorem 6.8] for measuring
the approximation term ‖x−A∗ω̃‖ for given x 6∈ R(A∗) with ω̃ ∈ Y, ‖ω̃‖ ≤ R
for each R > 0. Generalizing the idea, we recall the definition of distance
functions, see e.g. [3].

Definition 3. For given x ∈ X and index function ϕ(t), t ≥ 0, the distance
function dϕ(·;x) : [0,∞) −→ R is defined as

dϕ(R;x) := min {‖x− ϕ(A∗A)ω‖ : ω ∈ X , ‖ω‖ ≤ R} , R ≥ 0.

Note, that the nonnegative function dϕ(R;x) is well-defined for each x ∈ X ,
i.e., for each R ≥ 0 there exists an element ω = ω(R) with dϕ(R;x) = ‖x −
ϕ(A∗A)ω‖ and ‖ω‖ ≤ R, see [23, Theorem 38.A]. The distance functions are
non-increasing with dϕ(R;x) → 0 for R → ∞ if x ∈ R(ϕ(A∗A)) = R(A†) since

R(ϕ(A∗A)) = R((A∗A)
1
2 ) = R(A∗) = N (A)⊥ = R(A†).

We have dϕ(R;x) > 0 for all R ≥ 0 if x 6∈ R(ϕ(A∗A)) and dϕ(R;x) = 0 for
all R ≥ ‖ω‖ if x = ϕ(A∗A)ω and ‖ω‖ = R. Altogether, the distance function
dϕ(R;x) gives us a quantity for measuring the violation of the general source
condition x ∈ R(ϕ(A∗A)), see also [7].
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With the aid of the distance function, the error bound for approximative
source conditions has the same structure as in the case of general source con-
ditions. A similar result is presented in [3, Theorem 2.5] for Tikhonov regular-
ization with a different notation, see also [9, Theorem 5.5] for the case δ = 0.

Theorem 1. Let the index function ϕ(t), t ≥ 0, be a qualification of the reg-
ularization {gα}. We assume x† 6∈ R(ϕ(A∗A)) has distance function d(R) :=
dϕ(R;x†). Let Θ(R) := ϕ−1(d(R)R−1). Then the estimate

‖xδ
α − x†‖ ≤ C1√

α
δ + (C2 + Cϕ) d

(

Θ−1(α)
)

(2.3)

holds. Moreover, we define the functions

Ψ(α) :=
√
αd(Θ−1(α)), Φ(R) :=

√

Θ−1(d(R)R−1)d(R).

Then, an a-priori parameter choice α := Ψ−1(δ) leads to a convergence rate

‖xδ
α − x†‖ ≤ (C1 + C2 + Cϕ) d

(

Φ−1(δ)
)

. (2.4)

Proof. We observe that x† ∈ R(ϕ(A∗A)). By definition, x† ∈ Mϕ(R, d(R))
for all R ≥ 0. In particular, x† = ϕ(A∗A)ωR + υR with ‖ωR‖ ≤ R and
‖υR‖ = d(R) holds for all R > 0. Hence, the estimate

‖xδ
α − x†‖ ≤ C1√

α
δ + Cϕϕ(α)R + C2d(R)

holds for all R ≥ 0. We choose R = R(α) > 0 such that

Rϕ(α) = d(R) ⇔ ϕ(α) =
d(R)

R
⇔ α = ϕ−1

(

d(R)R−1
)

= Θ(R).

This proves (2.3). The choice α = Ψ−1(δ) implies

δ√
α

= d
(

Θ−1(α)
)

⇔ δ =
√
αd

(

Θ−1(α)
)

.

On the other hand, we have

δ√
α

= d(R) ⇔ δ = d(R)
√
α =

√

Θ−1(d(R)R−1)d(R) = Φ(R).

The choice R = Φ−1(δ) leads to (2.4). ⊓⊔

Since d(R) is non-increasing the function R 7→ d(R)/R is strictly decreasing
on (0,∞) with d(R)/R → ∞ for R → 0 and d(R)/R → 0 for R → ∞. This
implies, that Θ(R) is strictly decreasing. Hence, Θ−1(α) is well-defined and
strictly decreasing. Moreover, we observe that d(Θ−1(α)) is an index function,
i.e. it is increasing with d(Θ−1(α)) → 0 for α → 0. Analogous calculations
show that the functions Ψ−1(δ) and Φ−1(δ) are well-defined.

Math. Model. Anal., 14(4):451–466, 2009.
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Comparing both error bounds (2.2) and (2.3) we notice similar structure. In
both cases the term C1 δ/

√
α is based on the error in the given data. The second

term is the regularization error which depends on the regularization parameter
α and the (approximative) source condition, which is usually unknown. We use
this structure later for proposing an a-posteriori parameter choice rule based
on the balancing principle [13].

Studying the connection between general and approximate source conditions
is topic of recent research. In [3, Theorem 3.1 and Corollary 3.3] we find the
following result for power-type reference source conditions. We also refer to [9,
Theorem 5.9] for a more general result.

Proposition 1. Let X and Y be Hilbert spaces and A ∈ L(X ,Y) be injective
and compact. Suppose ϕ(t) = tµ, t ≥ 0, for some exponent µ > 0. Assume
x† 6∈ R(ϕ(A∗A)) has distance function dϕ(R;x†), R ≥ 0.

(i) If x† ∈ R ((A∗A)ν) for some exponent 0 < ν < µ then the estimate

dϕ(R;x†) ≤ KR
ν

ν−µ , R > 0, (2.5)

holds for some constant K > 0.

(ii) If the distance function dϕ(R, x†) satisfies (2.5) for all R > 0 then x† ∈
R

(

(A∗A)ν̃
)

holds for all 0 < ν̃ < ν.

Remark 1. Let ϕ(t) =
√
t, t ≥ 0, be a qualification of {gα}. Then, for x† ∈

R((A∗A)ν) for some 0 < ν < 1

2
and xα = Rαy we have a regularization

error ‖xα − x†‖ ≤ C αν . On the other hand, the supposed source condition

implies that d(R) = K R
2ν

2ν−1 is an upper bound for the distance function. We

therefore assume dϕ(R;x†) = KR
2ν

2ν−1 . Then from Theorem 1 we deduce with

some generic constant C > 0 that Θ(R) = C R 2
2ν−1 and dϕ(Θ−1(α);x†) = C αν .

Hence, the error estimates (2.2) and (2.3) are of the same order. This example
shows close connection of both approaches of (general) source condition and
approximative source condition in this specific situation.

We also remark that we cannot conclude from (2.5) that x† ∈ R ((A∗A)ν).
This is a consequence of the well-known converse result [19, Corollary 2.6].
Moreover, this gap coincides with an observation in [6, Corollary 1]: we cannot
formulate a maximal source condition (1.4) for the element x† ∈ X . We present
an example which shows that this gap really occurs.

Example 1. We set X = Y = L2(0, 1) and consider the linear operator A :
L2(0, 1) −→ L2(0, 1) given by

(Ax)(t) :=

t
∫

0

x(τ) dτ, t ∈ [0, 1], x ∈ L2(0, 1).

Moreover we assume x† ≡ 1. From [8, Example 4] we know that x† ∈
R ((A∗A)ν) for all ν < 1

4
but x† 6∈ R

(

(A∗A)
1
4

)

. We set ϕ(t) :=
√
t, t ≥ 0.
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Since R
(

(A∗A)
1
2

)

= R(A∗) we can find in [6, Example 4.5] an estimate for

the distance function dϕ(R;x†). It is given by dϕ(R;x†) ≤ K̃ R−1 = K̃ R
ν̃

ν̃−1/2 ,
R ≥ 1 with ν̃ = 1

4
. Moreover, the construction of the distance function shows

that we can generalize this result to arbitrary function x satisfying x′ ∈ L2(0, 1)
and x(1) 6= 0. Comparing both results shows the following: the estimate of the
distance function is of correct order, i.e. the exponent cannot be decreased.
Moreover, based on distance functions we can prove for x† the optimal con-

vergence rates ‖xδ
α − x†‖ = O

(

δ
1
3

)

as δ → 0 by choosing α := δ
4
3 . This rate

cannot be proved with the concept of general source conditions.

3 Error Bounds Based on Approximate Source Condi-

tions

According to (1.3) we introduce the operator Rα,h := gα(A∗
hAh)A∗

h and set

xδ
α,h := Rα,hQhy

δ = gα(A∗
hAh)A∗

hQhy
δ = gα(A∗

hAh)A∗
hy

δ.

Then we derive

x† −Rα,hy
δ = (I − gα(A∗

hAh)A∗
hAh)x† + gα(A∗

hAh)A∗
h(Ahx

† −Qhy
δ)

= (I − gα(A∗
hAh)A∗

hAh)x† + gα(A∗
hAh)A∗

hQh(y − yδ)

+ gα(A∗
hAh)A∗

hQhA(Ph − I)x†.

The second term we estimate by

∥

∥gα(A∗
hAh)A∗

hQh(y − yδ)
∥

∥ ≤ C1

δ√
α
.

An error bound for ‖xδ
α,h − x†‖ now depends on the specific (approximative)

source condition. Therefore we assume that the regularization {gα} has quali-
fication ̺(t), t ≥ 0, which covers the index function ϕ(t), t ≥ 0. We recall, that
the function ̺(t), t ≥ 0, covers ϕ(t), t ≥ 0, if ̺(α)/ϕ(α) remains bounded as
α → 0. Moreover, let x† ∈ Mϕ(R, d) hold for some R ≥ 0 and d ≥ 0. Hence,
there exist ω, υ ∈ X with ‖ω‖ ≤ R and ‖υ‖ ≤ d such that x† = ϕ(A∗A)ω + υ.
Starting with the first part we conclude

∥

∥(I − gα(A∗
hAh)A∗

hAh)x†
∥

∥ = ‖(I − gα(A∗
hAh)A∗

hAh) [ϕ(A∗A)ω + υ]‖
≤ ‖(I − gα(A∗

hAh)A∗
hAh)ϕ(A∗A)‖ R+ C2 d.

Moreover, for the term E := ‖(I − gα(A∗
hAh)A∗

hAh)ϕ(A∗A)‖ we can find the
estimate

E ≤ ‖
(

I − gα(A∗
hAh)A∗

hAh

)

ϕ(A∗
hAh)‖ +

∥

∥

(

I − gα(A∗
hAh)A∗

hAh

)(

ϕ(A∗A)

− ϕ(A∗
hAh)

)∥

∥ =
∥

∥

(

I−gα(A∗
hAh)A∗

hAh

)

ϕ(A∗
hAh)

∥

∥ +
∥

∥ϕ(A∗A) − Phϕ(A∗A)

+ Ph

(

ϕ(A∗A) − ϕ(A∗
hAh)

)

−gα(A∗
hAh)A∗

hAhPh

(

ϕ(A∗A) − ϕ(A∗
hAh)

)
∥

∥

≤ ‖(I − gα(A∗
hAh)A∗

hAh)ϕ(A∗
hAh)‖ + ‖(I − Ph)ϕ(A∗A)‖

+ ‖(I − gα(A∗
hAh)A∗

hAh) (Phϕ(A∗A) − ϕ(A∗
hAh))‖

≤ Cϕϕ(α) + C2 ‖Phϕ(A∗A) − ϕ(A∗
hAh)‖ + ‖(I − Ph)ϕ(A∗A)‖

Math. Model. Anal., 14(4):451–466, 2009.
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by using Phϕ(A∗
hAh) = ϕ(A∗

hAh). The latter is evident since N (Ph) ⊆ N (Ah)
and

R(ϕ(A∗
hAh)) = R((A∗

hAh)
1
2 ) = R(A∗

h) = N (Ah)⊥ ⊆ N (Ph)⊥.

Finally, we can derive the estimate

∥

∥gα(A∗
hAh)A∗

hQhA(Ph − I)x†
∥

∥ ≤ C1√
α

(
∥

∥QhA(Ph − I)ϕ(A∗A)
∥

∥R+ ξhd
)

=
C1√
α

(∥

∥QhA(Ph−I)(Ph−I)ϕ(A∗A)
∥

∥R+ξhd
)

≤ C1ξh√
α

(‖(Ph−I)ϕ(A∗A)‖R+d) .

It is difficult to find optimal estimates for the terms ‖(I − Ph)ϕ(A∗A)‖ and
‖Phϕ(A∗A)−ϕ(A∗

hAh)‖ for an arbitrary function ϕ(t), t ≥ 0, see e.g. [15] and
the discussion therein. On the other hand, for ϕ(t) := tν , ν > 0, the following
result has been established, see [20, Lemma 4.3. and 4.4.].

Proposition 2. Suppose that A ∈ L(X ,Y). For ν > 0 and orthogonal projec-
tions P ∈ L(X ) and Q ∈ L(Y) we obtain

‖(I − P )(A∗A)ν‖ ≤ Ĉν‖A(I − P )‖min{2ν,1}

where Ĉν = 1 for ν ≤ 1

2
and Ĉν = ‖A‖2ν−1 for ν > 1

2
as well as

‖P (A∗A)ν − (QAP )ν‖ ≤ C̃ν

(

‖A(I − P )‖min{2ν,1} + ‖(I −Q)A‖min{2ν,2}
)

.

The mapping ν 7→ C̃ν is bounded in (0, ν0] for any ν0 > 0.

By applying Proposition 2 we obtain the following result.

Theorem 2. Let {gα} be a regularization with qualification ϕ(t) = tν , t ≥ 0,
for some ν ≥ 1

2
. Suppose x† ∈ Mϕ(R, d) for some R, d ≥ 0. Then

‖xδ
α,h−x†‖≤C1

δ√
α

+R
(

Cϕα
ν+C2(Ĉν+C̃ν)ξh+C̃νη

min{2ν,2}
h

)

+
C1√
α

(

ξhd+Ĉνξ
2
hR

)

+C2d. (3.1)

Estimate (3.1) now provides a balanced choice of the discretization level h with
respect to the bounds ξh and ηh depending on the regularization parameter α.
We present the following first main result.

Theorem 3. Let {gα} be a regularization with qualification ϕ(t) = tν , t ≥ 0,
for some ν ≥ 1

2
. Suppose x† ∈ Mϕ(R, d) for some R, d ≥ 0. If α ≤ 1, then for

the choice ξh ≤ Cαν and ηh ≤ Cα
ν

min{2ν,2} we obtain the error bound

‖xδ
α,h − x†‖ ≤ C1

δ√
α

+ C3Rα
ν + C4d (3.2)

for three constants C1, C3, C4 > 0.
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Proof. Since ν ≥ 1

2
and α ≤ 1 we have ξh√

α
≤ Cαν− 1

2 ≤ C and
ξ2

h√
α

≤
C2α2ν− 1

2 ≤ C2αν . Then, by setting

C3 := Cϕ + C2C(Ĉν + C̃ν) + C̃νC
min{2ν,2} + C1C

2Ĉν , C4 := C2 + C1C,

the estimate (3.2) follows immediately from the bound (3.1). ⊓⊔

The same idea as in Theorem 1 now leads to the following consequence.

Corollary 1. Let {gα} be a regularization with qualification ϕ(t) = tν , t ≥ 0, for
some ν ≥ 1

2
. Assume x† 6∈ R(ϕ(A∗A)) has distance function d(R) := dϕ(R;x†).

We define Θ(R) := (d(R)R−1)
1
ν . If 0 < α ≤ min{1, a2}, then for the choice

ξh ≤ Cαν and ηh ≤ Cα
ν

min{2ν,2} we obtain the error bound

‖xδ
α,h − x†‖ ≤ C1

δ√
α

+ (C3 + C4)d
(

Θ−1(α)
)

. (3.3)

We will also point out the following: all additional errors based on the dis-
cretization are concentrated in the second term of the bound (3.3). This is
quite remarkable and opposite to other approaches, see e.g. [15]. Of course
this might lead to a finer discretization. But as we will see, it has advantages
by applying the balancing principle [13] for choosing the regularization param-
eter α. There, only the first (noise) error term plays a role for the choice of α,
which only depends on δ, α and C1. The latter constant is given by the chosen
regularization method. In particular, the term does not depend on the specific
general or approximative source condition. For the sake of completeness we
present the following result, see also [15, Section 4].

Corollary 2. Assume x† ∈ R((A∗A)ν) for some ν ≥ 1

2
and tν , t ≥ 0, is qualifi-

cation of the regularization {gα}. Then, the choice

ξh ≤ Cmin

{

αν ,
δ√
α

}

and η
min{2ν,2}
h ≤ C

δ√
α

yields an error bound

‖xδ
α,h − x†‖ ≤ C5

δ√
α

+ C6α
ν

for two positive constants C5 and C6.

Note, that in particular the constant C5 now depends on R := ‖ω‖, where
ω ∈ X is the element satisfying the source condition (1.4). Hence, for applying
the balancing principle, an a-priori information about R is needed.

4 On Convergence Rates

We now present main results concerning convergence rates. First, we suppose
that x† satisfies a source condition (1.4) with a qualification ϕ of power type.
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Proposition 3. Let {gα} be a regularization with qualification ϕ(t) = tν , t ≥ 0,

for some ν ≥ 1

2
and Ψ(α) := ϕ(α)

√
α = α

2ν+1

2 . Moreover, x† ∈ R((A∗A)ν).

Then the choice α = Ψ−1(δ) = δ
2

2ν+1 , ξh ≤ Cαν and ηh ≤ Cα
ν

min{2ν,2} for some
constant C > 0 yields a convergence rate

‖xδ
α,h − x†‖ = O

(

δ
2ν

2ν+1

)

as δ → 0.

Proof. By definition, we have x† ∈ Mϕ(R, 0) for R > 0 chosen sufficiently
large. Hence, we can apply estimate (3.2) d = 0. Choosing α = α(δ) such that

δ√
α

= αν ⇔ α = δ
2

2ν+1 = Ψ(δ) ⇔ ‖xδ
α,h − x†‖ ≤ (C1 + C3R) δ

2ν
2ν+1 ,

we derive the desired convergence rate result. ⊓⊔

Note, that we get the same rate of convergence as in the case without
discretization which is known as the optimal one. Hence, the above suggested
discretization strategy does not spoil the convergence rate. We can now present
a similar convergence rate result in the case of violated source condition.

Theorem 4. Let {gα} be a regularization with qualification ϕ(t) = tν , t ≥ 0,
for some ν ≥ 1

2
. Moreover, x† 6∈ R(ϕ(A∗A)) has distance function d(R) :=

dϕ(R;x†). We define the functions Θ(R) := (d(R)R−1)1/ν ,

Ψ̃(α) := d(Θ−1(α))
√
α and Φ(R) :=

√

Θ−1(d(R)R−1)d(R). Then the choice

α = Ψ̃−1(δ), ξh ≤ Cαν and ηh ≤ Cα
ν

min{2ν,2} for some constant C > 0 yields a
convergence rate

‖xδ
α,h − x†‖ = O

(

d
(

Φ−1(δ)
))

as δ → 0.

The proof is essentially the same as the second balancing step in the proof of
Theorem 1.

The above considerations leave an open question. Assume the regularization
{gα} has no maximal qualification in the classical sense, i.e. ϕ(t) = tν , t ≥ 0,
is qualification for each ν > 0. If x† ∈ R ((A∗A)ν) for each ν > 0, then we
cannot present an optimal convergence rate for the discretized problem. We
only state the following sub-optimal convergence rate result.

Corollary 3. Let {gα} be a regularization such that ϕ(t) = tν , t ≥ 0, is a
qualification for all ν > 0. Let x† ∈ R(ϕ(A∗A)) for an index function ϕ with
ϕ(t)t−ν → 0 for t → 0 and each ν > 0. Then the choice α := Ψ̃−1(α) with
function Ψ̃(α) as in Theorem 4, ξh ≤ Cϕ(α) and ηh ≤ C

√

ϕ(α) for some
constant C > 0 yields a convergence rate

‖xδ
α,h − x†‖ ∼ O

(

δ
2ν

2ν+1

)

for δ → 0

for each ν > 0.

The proof is trivial by noticing, that the estimate (3.3) holds asymptotically
for each ν > 0 with R = R(ν) > 0 and d = 0.
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5 The Lepskij–Principle

We now present an a-posteriori parameter choice strategy for choosing the reg-
ularization parameter α, which is also known as Lepskij or balancing principle,
see [1, 13, 14]. This strategy has been well-established in the recent years since
it is easy to implement and applicable under relatively weak technical assump-
tions. For given (sufficiently small) α0 > 0, q > 1 and maximal index M > 0
we define the (finite) sequence

{αj := qjα0, : 0 ≤ j ≤M}. (5.1)

The maximal index M is chosen such that αM ≤ a2 = ‖A∗A‖2. Then we can
present the following a-posteriori choice of the regularization parameter α.

Definition 4 [Lepskij–Principle]. Let the sequence {αj} be defined by (5.1).

For given ν ≥ 0 and discretization levels ξh,j ≤ Cαν
j and ηh,j ≤ Cα

ν
min{2ν,2}

j for

some constant C > 0 we calculate xδ
αj ,h := Rαj ,hy

δ. We choose the regulariza-
tion parameter αL := αjL such that

jL := max

{

j ≤M : ‖xδ
αi,h − xδ

αj ,h‖ ≤ 4C1

δ√
αi
, ∀ i ≤ j

}

.

Then xδ
α,h := xδ

αL,h is chosen as regularized solution of (1.1).

We summarize the most important facts. The main idea of the balancing
principle is based on the decomposition of the approximation error of regular-
ized solutions into two parts which both depend on the regularization parameter
α. We state the assumption in detail below.

Presumption 1. For each 0 < α ≤ a2 and given data yδ let xδ
α denote any

regularized solution of (1.1) satisfying

‖xδ
α − x†‖ ≤ 1

2
(ψ(α) + φ(α))

for a known non-increasing function ψ(α), which can depend on δ and an
unknown non-decreasing (index) function φ(α).

Here we have ψ(α) = 2C1

δ√
α

. Now we can establish main theoretical results

of the balancing principle, see [14].

Proposition 4. Let the regularization parameter αL > 0 be chosen by (5.1).
Assume α0 > 0 and jmax are chosen such that φ(α0) < ψ(α0) and α0 < αL <
αmax. If Presumption 1 is valid for some function φ(α), α > 0, then the
estimate

‖xδ
αL

− x†‖ ≤ 3
√
Dmin {ψ(αj) + φ(αj), 0 ≤ j ≤ jmax}

holds true. Moreover,
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(i) If x† ∈ R ((A∗A)ν), i.e. x† = (A∗A)νω, ω ∈ X with ‖ω‖ ≤ R, then

‖xδ
αL,h − x†‖ ≤ 6

√
qmax{C1, C3R}δ

2ν
2ν+1 ;

(ii) If x† 6∈ R ((A∗A)ν) with distance function d(R) := dtν (R;x†) then

‖xδ
αL,h − x†‖ ≤ 6

√
qmax{C1, C3 + C4}d

(

Φ−1(δ)
)

.

The first estimate is an immediate application of [14, Corollary 1]. The proof
of the convergence rates is similar to the proof of [6, Proposition 6.2].

6 A Numerical Example

For illustration of the above considerations we present a short numerical exam-
ple. For simplicity we choose the linear operator A : L2(0, 1) −→ L2(0, 1) from
Example 1. As well-known, for the adjoint operator A∗ : L2(0, 1) −→ L2(0, 1)

(A∗y)(t) :=

1
∫

t

y(τ) dτ, t ∈ [0, 1], y ∈ L2(0, 1),

holds. The simple structure of the operator allows us to quote specific source
conditions explicitly. In particular,

x ∈ R
(

(A∗A)
1
2

)

⇔ x ∈ R(A∗) ⇔ x′ ∈ L2(0, 1) and x(1) = 0

and
x ∈ R(A∗A) ⇔ x′′ ∈ L2(0, 1), x′(0) = 0 and x(1) = 0

hold. As projections we choose Ph = Qh : L2(0, 1) −→ L2(0, 1) with

x ∈ L2(0, 1), Phx :=

n
∑

j=1

xjχj , xj := n

tj
∫

tj−1

x(τ) dτ, j = 1, 2, . . . , n,

and

χj(t) :=

{

1, t ∈ (tj−1, tj),
0, else,

tj :=
j

n
, j = 0, 1, . . . , n

defines the approximation by piece-wise constant functions. We set h := 1/n.
With y := Ax we have for the approximation error ηh

‖(I − Ph)Ax‖L2 = ‖(I − Ph)y‖L2 ≤ h ‖y′‖L2 = h ‖x‖L2,

see e.g. [21, Theorem 6.1]. Hence we can set ηh := h. Finding a bound
for the second approximation error ξh we set APhx =: ỹh, where ỹh is the
approximation of y = Ax by piece-wise linear functions. Applying known
estimates, see [5, Chapter 8], we can present two bounds for the approximation
error depending on the smoothness of x. Without further assumptions we have

‖A(I − Ph)x‖L2 = ‖y − ỹh‖L2 ≤ C h ‖y′‖L2 = C h ‖x‖L2
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for some constant C > 0. If, in addition, x′ ∈ L2(0, 1) we obtain a better
estimate

‖y − ỹh‖L2 ≤ C h2‖y′′‖L2 = C h2‖x′‖L2 .

In general, ξh is given by the first estimate. However, a careful study of the
above proofs indicates, that we can also make use of the second estimate sup-
posing sufficient smoothness of the underlying elements. This will be done here
in the specific choice of the discretization levels in the numerical example.

As regularization method we apply Tikhonov’s regularization, i.e. gα(t) :=
1

α+ t
, t ≥ 0. Moreover, the estimate (2.1) in Definition 1 holds with C1 = 1

2
.

Since the regularization method has maximal qualification ̺(t) = t, t ≥ 0,
it is natural to choose ν := 1. Hence, the choice n ∼ 1/

√
α satisfies the

required asymptotic behavior of the discretization errors ξh and ηh by taking
into account the additional smoothness of the elements y = Ax.

For examining convergence rates we consider the following three sample
functions:

x†1(t) := (t− 0.5)2, x†2(t) := t(1 − t), x†3(t) :=
1 − t2

4
, t ∈ [0, 1].

They are chosen such that x†3 ∈ R(A∗A), x†2 ∈ R(A∗) but x†2 6∈ R(A∗A) and

x†1 6∈ R(A∗). Moreover, based on example 1 we can state the source conditions

more precisely. Since x†1(t) is differentiable we have x†1 ∈ R((A∗A)µ) for all 0 <

µ < 1

4
and associated distance function dϕ(R;x†1) ≤ KR− 1

3 , R > 0, for some

constant K > 0 and ϕ(t) = t, t ≥ 0. On the other hand, since x†2(t) is twice

differentiable we can conclude d
dtx

†
2 ∈ R((A∗A)µ) and hence x†2 ∈ R((A∗A)µ+ 1

2 )

for all 0 < µ < 1

4
. This implies a distance function dϕ(R;x†2) ≤ K̃ R−3, R > 0,

for another constant K̃ > 0. Furthermore, we choose

M := 31, α31 := 1, q :=
√

2, n0 = 20,

where n0 denotes the number of discretizations steps at the coarsest discretiza-
tion level. The maximal number n of unknowns is given by nmax = 5120. The
noisy data is generated as follows: for n = nmax = 5120 let e be piece-wise
linear function with Gaussian variables e(tj) ∼ N(0, 1), 1 ≤ j ≤ nmax, and
e(0) = 0 on the finest grid. Then we set

yδ := y +
e

‖e‖L2

δ, δ ≥ 0.

In order to access only function values on the finest grid we suggest the follow-
ing simplified coarsening strategy: the grid is coarsened always after 4 steps
by halving n. Since αj+4 = q4αj = 4αj , the asymptotic behavior of the dis-
cretization level remains correct.

The numerical results are presented in Table 1 and 2. For the functions
x†1(t) and x†2(t) Table 1 contains the regularization parameter αL obtained by
the balancing principle as well as the discretization levels n = 1/h and the

approximation error ‖xδ
αL,h − x†l ‖L2 , l = 1, 2, 3, for different noise levels δ.
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Table 1. Approximation errors for the functions x
†
1

and x
†
2

depending on δ.

x
†
1

x
†
2

δ αL n ‖xδ
αL,h

− x
†
1
‖ αL n ‖xδ

αL,h
− x

†
2
‖

10−2 2.50 · 10−1 20 8.89 · 10−2 6.25 · 10−2 80 5.57 · 10−2

10
−3

2.76 · 10−3 160 3.93 · 10−2
5.52 · 10−3 160 1.35 · 10−2

10
−4

1.22 · 10−4 640 1.74 · 10−2
9.77 · 10−2 640 3.87 · 10−3

10−5 5.39 · 10−6 2560 7.88 · 10−3 1.73 · 10−4 1280 1.07 · 10−3

10−6 2.38 · 10−7 5120 3.24 · 10−3 3.05 · 10−5 2560 2.99 · 10−4

Table 2. Approximation errors for the function x
†
3

depending on δ.

x
†
3

δ αL n ‖xδ
αL,h

− x
†
3
‖ αopt n ‖xδ

αopt,h
− x

†
3
‖

10
−2

8.84 · 10−2 40 3.19 · 10−2
1.56 · 10−2 160 1.58 · 10−2

10−3 1.56 · 10−2 160 7.21 · 10−3 3.91 · 10−3 320 2.56 · 10−3

10−4 3.91 · 10−3 320 1.86 · 10−3 6.91 · 10−4 640 5.32 · 10−4

10−5 6.91 · 10−4 640 3.61 · 10−4 1.73 · 10−4 1280 1.39 · 10−4

10
−6

8.63 · 10−5 1280 7.99 · 10−5
3.05 · 10−5 2560 4.31 · 10−5

Here, δ in fact describes the absolute noise level. The lower source condition
on x†1(t) implies a faster decay of the regularization parameter αL as δ → 0 than

in the case of x†2(t). Since the discretization level h is connected to the choice of
the regularization parameter we observe the following: starting with a coarser
discretization for x†1(t) in comparison to x†2(t) for δ = 10−2 we end up at a finer

discretization for x†1(t) when we have δ = 10−6 since the chosen regularization

parameter αL is much smaller than in the case of x†2. The same data can

be found in Table 2 for the function x†3(t). Here, additionally the ’optimal’
regularization is presented, i.e. the regularization parameter α = αopt satisfies

‖xδ
αopt,h − x†l ‖L2 = min

{

‖xδ
αj ,h − x†l ‖L2 : 0 ≤ j ≤M

}

, l = 1, 2, 3.

As we can observe, the approximation error of the best regularization param-
eter αopt is amplified with a factor 2–3 by the balancing principle. This is a
better approximation than the theoretical result of Proposition 4, where the
factor 6 is deduced. We also remark that the regularization parameter αL is
chosen somewhat too large in comparison to the optimal value αopt which is
a known property of the balancing principle. This again leads to the coarser
discretization levels for αL compared to αopt.

The convergence rates of the approximation error depending on the noise
level δ are presented in Figure 1 in log-log-diagrams for all the sample functions.
The solid line shows the approximation of the error by a function of power-
type, i.e. ‖xδ

αL,h −x†l ‖L2 ∼ δµl for some µl > 0, l = 1, 2, 3. Using the described

(approximate) source conditions we expect the rates µ1 = 1

3
, µ2 = 3

5
= 0.6



Regularizing Discretized Ill-Posed Problems 465

ht

10
−6

10
−5

10
−4

10
−3

10
−2

10
−2

10
−1

noise level

 

 

||x
leps

−x
1
exact||

||x
opt

−x
1
exact||

C⋅δ0.36

10
−6

10
−5

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

noise level

 

 

||x
leps

−x
2
exact||

||x
opt

−x
2
exact||

C⋅δ0.59

10
−6

10
−5

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

noise level

 

 

||x
leps

−x
3
exact||

||x
opt

−x
3
exact||

C⋅δ2/3

Figure 1. Approximation errors depending on the noise level δ for x
†
1

(top) x
†
2

(middle)

and x
†
3

(bottom).

and µ3 = 2

3
. Comparing this with the numerical result we observe that the

numerical convergence rates rather well coincide with the theoretical values.
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