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Abstract. We study the nonlinear boundary value problem consisting of the second
order differential equation on [a, b] and a boundary condition involving a Riemann-
Stieltjes integral. By relating it to the eigenvalues of a linear Sturm-Liouville problem
with a two-point separated boundary condition, we obtain results on the existence
and nonexistence of nodal solutions of this problem. We also discuss the changes of
the existence of different types of nodal solutions as the problem changes.
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1 Introduction

We are concerned with the nonlocal boundary value problem (BVP) consisting
of the equation

−(p(t)y′)′ + q(t)y = w(t)f(y), t ∈ (a, b), (1.1)

and the boundary condition (BC)

cosα y(a) − sinα (py′)(a) = 0, α ∈ [0, π),

(py′)(b) −

b
∫

a

(py′)(s) dξ(s) = 0,
(1.2)

where a, b ∈ R with a < b and the integral in BC (1.2) is the Riemann-Stieltjes
integral with respect to ξ(s) with ξ(s) a function of bounded variation. In the
case that ξ(s) = s, the Riemann-Stieltjes integral in the second condition of
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(1.2) reduces to the Riemann integral. In the case that ξ(s) =
∑m

i=1 kiχ(s−xi),
where m ≥ 1, ki ∈ R, i = 1, . . . , m, {xi}

m
i=1 is a sequence of distinct points in

[a, b], and χ(s) is the characteristic function on [0,∞), i.e.,

χ(s) =

{

1, s ≥ 0,

0, s < 0,

the second equation in (1.2) reduces to the multi-point BC

(py′)(b) −

m
∑

i=1

ki(py′)(xi) = 0. (1.3)

We assume throughout, and without further mention, that the following
conditions hold:

(H1) p, q, w ∈ C1[a, b] such that p(t) > 0, w(t) > 0, and q′(t)+q∗ ≤ l(q∗−q(t))
on [a, b] with

q∗ := max
t∈[a,b]

{q(t), 0} and l := max
t∈[a,b]

{(p′(t) + q∗

p(t)

)

+
,
w′

−(t)

w(t)

}

,

where h′
−(t) := max{0,−h′(t)} and h+(t) := max{0, h(t)};

(H2) f ∈ C(R) such that yf(y) > 0 for y 6= 0, and f is locally Lipschitz on
(−∞, 0) ∪ (0,∞);

(H3) there exist extended real numbers f0, f∞ ∈ [0,∞] such that

f0 = lim
y→0

f(y)/y and f∞ = lim
|y|→∞

f(y)/y.

Remark 1. For p, w ∈ C1[a, b], the following are examples of the function classes
for q satisfying (H1):

(i) q ∈ C1[a, b] such that q′(t) ≤ −q∗ on [a, b]. It is easy to see that any non-
positive, non-increasing function q belongs to this class. In particular,
any non-positive constant belongs to this class.

(ii) q ∈ C1[a, b] such that q′(t) ≤ −lq(t) on [a, b] with l ≥ 1. For c ≥ 0,
it is easy to see that

q1(t) = ce−kt for t ∈ [0, 1] with k ≥ l ≥ 1 and

q2(t) = −ce−kt for t ∈ [0, 1] with 0 ≤ k ≤ l and l ≥ 1

belong to this class.

The existence of positive solutions of BVPs with nonlocal BCs, including
three-point, multi-point, and integral BCs, have been studied extensively, see,
for example, [1, 4, 5, 6, 7, 8, 9, 15, 16, 24, 26, 28, 29, 31] and the references
therein. In recent years, progress has also been made to the study of nodal
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solutions, i.e., solutions with a specific zero-counting property in (a, b), for
nonlinear BVPs consisting of Eq. (1.1) and two-point separated BCs, see [10,
11, 19, 21, 22, 23]. As regard to nonlocal BVPs, results on the existence of
nodal solutions have been obtained only for the special BVP consisting of the
equation

y′′ + f(y) = 0, t ∈ (0, 1), (1.4)

and the multi-point BC

y(0) = 0, y(1) −

m
∑

i=1

kiy(ηi) = 0 (1.5)

or the integral BC

y(0) = 0, y(1) − g

(
∫ 1

0

u(s)ds

)

= 0,

see Li and Li [17], Ma [18], Ma and O’Regan [20], Rynne [25], Sun, Xu,
and O’Regan [27], and Xu [30]. Among them, [20] and [25] used a standard
global bifurcation method to establish the existence of nodal solutions of BVP
(1.4), (1.5) by relating it to the eigenvalues of the corresponding linear Sturm-
Liouville problem (SLP) with BC (1.5). However, the establishment of these
results relies heavily on the direct computation of the eigenvalues and eigen-
functions of the associated multi-point SLP and hence can not be extended to
a general BVP with a variable coefficient function w. Moreover, to the best of
the authors’ knowledge, there is nothing done so far on the existence of nodal
solutions of BVPs with the nonlocal BC (1.2).

In view of the fact that eigenvalues are easy to calculate for all two-point
linear self-adjoint SLPs using standard software packages such as those in [2],
in this paper, we obtain results on the existence and nonexistence of nodal
solutions of BVP (1.1), (1.2) by relating it to the eigenvalues of an associated
linear SLP with a two-point separated BC rather than a nonlocal BC. The
shooting method and a generalized energy function play key roles in the proofs.
We also discuss the changes of the existence of different types of nodal solutions
when some parameters in the problem change, more precisely, when the interval
[a, b] shrinks, when the functions w, p, and q increase in certain directions, and
when the boundary condition angle α changes. Note that our results are for the
general BVP (1.1), (1.2) with variable w, p, and q, a separated BC at the left
endpoint prescribed by an arbitrary α, and a BC given by a Riemann-Stieltjes
integral with respect to ξ(s).

2 Existence and Nonexistence of Nodal Solutions

We study the nodal solutions of BVP (1.1), (1.2) in the following classes.

Definition 1. A solution y of BVP (1.1), (1.2) is said to belong to class Sγ
n

for n ∈ N0 := {0, 1, 2, . . .} and γ ∈ {+,−} if

(i) y has exactly n zeros in (a, b),

Math. Model. Anal., 14(4):435–450, 2009.
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(ii) γy(t) > 0 in a right-neighborhood of a.

Our results on the existence and nonexistence of nodal solutions of BVP
(1.1), (1.2) are established utilizing the eigenvalues of the linear SLP consisting
of the equation

−(p(t)y′)′ + q(t)y = λw(t)y, t ∈ (a, b), (2.1)

and the two-point BC

cosα y(a) − sin α (py′)(a) = 0, α ∈ [0, π),

y(b) = 0.
(2.2)

It is well known that SLP (2.1), (2.2) has an infinite number of eigenvalues
{λn}

∞
n=0 satisfying

−∞ < λ0 < λ1 < · · · < λn < · · · , and λn → ∞ as n → ∞,

and any eigenfunction associated with λn has n simple zeros in (a, b), see [32,
Theorem 4.3.2].

Note that the function ξ(s) given in BC (1.2) is of bounded variation on
[a, b]. Thus, there are two nondecreasing functions ξ1(s) and ξ2(s) such that

ξ(s) = ξ1(s) − ξ2(s), s ∈ [a, b]. (2.3)

In the following we assume (2.3) holds. We now present our main results
with the proofs given later in this section after several technical lemmas are
derived. The first theorem is about the existence of certain types of nodal
solutions.

Theorem 1. Assume either (i) f0 < λn and λn+1 < f∞, or (ii) f∞ < λn and
λn+1 < f0, for some n ∈ N0. Suppose

1 −

b
∫

a

√

p(s)

p(b)
el(b−a)/2 d

(

ξ1(s) + ξ2(s)
)

> 0. (2.4)

Then BVP (1.1), (1.2) has two solutions yn,γ ∈ Sγ
n+1 for γ ∈ {+,−}.

Remark 2. (a) Note that for the multi-point case, i.e., BVP (1.1), (1.2) with the
second condition in (1.2) replaced by (1.3), we have that ξ(s) =

∑m
i=1 kiχ(s −

xi). Thus ξ(s) = ξ1(s) − ξ2(s) with

ξ1(s) =

m
∑

i=1

(ki)+χ(s − xi) and ξ2(s) =

m
∑

i=1

(ki)−χ(s − xi),

where (ki)± = max{±ki, 0}. Hence ξ1(s) + ξ2(s) =
∑m

i=1 |ki|χ(s − xi). It is
easy to see that condition (2.4) then becomes

1 −

m
∑

i=1

∣

∣ki

∣

∣

√

p(xi)

p(b)
el(b−a)/2 > 0.
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(b) When ξi ∈ C1[a, b] for i = 1, 2, condition (2.4) becomes

1 −

b
∫

a

√

p(s)

p(b)
el(b−a)/2

(

ξ′1(s) + ξ′2(s)
)

ds > 0.

In particular, if p(t) ≡ 1, q(t) ≡ 0, w(t) > 0 is increasing, and ξ(t) = t, then it
is reduced to b − a < 1.

As a consequence of Theorem 1, we have the following corollary on the
existence of an infinite number of different types of nodal solutions for a special
case of BVP (1.1), (1.2).

Corollary 1. Consider the special case that p(t) ≡ 1 and q(t) ≡ 0 on [a, b].
Assume (2.4) holds and

either f0 = 0 and f∞ = ∞, or f∞ = 0 and f0 = ∞.

Then there exists α∗ ∈ (π/2, π) such that

(i) if α ∈ [0, α∗), then BVP (1.1), (1.2) has a solution yγ
n ∈ Sγ

n+1 for each
n ≥ 0 and γ ∈ {+,−};

(ii) if α ∈ [α∗, π), then BVP (1.1), (1.2) has a solution yγ
n ∈ Sγ

n+1 for each
n ≥ 1 and γ ∈ {+,−}.

Remark 3. The number α∗ in the above theorem can be explicitly computed
using the fundamental solutions of (2.1) see [3, Theorem 2.2] for details.

The next theorem is about the nonexistence of certain types of nodal solu-
tions.

Theorem 2. (i) Assume f(y)/y ≤ λn for some n ∈ N0 and all y 6= 0. Then
BVP (1.1), (1.2) has no solution in Sγ

i for all i ≥ n + 1 and γ ∈ {+,−}.
(ii) Assume f(y)/y ≥ λn for some n ∈ N0 and all y 6= 0. Then BVP (1.1),

(1.2) has no solution in Sγ
i for all i ≤ n and γ ∈ {+,−}.

To prove Theorem 1, we need some preliminaries. The lemmas below are
on the initial value problems (IVPs) associated with Eq. (1.1) and are simple
generalizations of [11, Corollary 3.1, Lemmas 4.1, 4.2, 4.4, and 4.5] originally
for the case where p(t) ≡ 1 with essentially the same proofs. The first one is
on the global existence of solutions of IVPs associated with Eq. (1.1).

Lemma 1. Any initial value problem associated with Eq. (1.1) has a unique
solution which exists on the whole interval [a, b]. Consequently, the solution
depends continuously on the initial condition.

For γ ∈ {+,−}, let y(t, ρ) be the solution of Eq. (1.1) satisfying

y(a) = γρ sinα and (py′)(a) = γρ cosα, (2.5)

Math. Model. Anal., 14(4):435–450, 2009.
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where ρ > 0 is a parameter. Let θ(t, ρ) be the Prüfer angle of y(t, ρ), i.e., θ(·, ρ)
is a continuous function on [a, b] such that

tan θ(t, ρ) = y(t, ρ)/(py′)(t, ρ) and θ(a, ρ) = α.

By Lemma 1, θ(t, ρ) is continuous in ρ on (0,∞) for any t ∈ [a, b].

The next two lemmas provide some estimates for the Prüfer angle.

Lemma 2. (i) Assume f0 < λn for some n ∈ N0. Then there exists ρ∗ > 0
such that θ(b, ρ) < (n + 1)π for all ρ ∈ (0, ρ∗).

(ii) Assume λn < f∞ for some n ∈ N0. Then there exists ρ∗ > 0 such that
θ(b, ρ) > (n + 1)π for all ρ ∈ (ρ∗,∞).

Lemma 3. (i) Assume f∞ < λn for some n ∈ N0. Then there exists ρ∗ > 0
such that θ(b, ρ) < (n + 1)π for all ρ ∈ (ρ∗,∞).

(ii) Assume λn < f0 for some n ∈ N0. Then there exists ρ∗ > 0 such that
θ(b, ρ) > (n + 1)π for all ρ ∈ (0, ρ∗).

Proof of Theorem 1. We first prove it for the case where f0 < λn and λn+1 <
f∞. Without loss of generality we assume γ = +. The case with γ = − can be
proved in the same way. Let y(t, ρ) be the solution of Eq. (1.1) satisfying (2.5)
with γ = + and θ(t, ρ) its Prüfer angle. By Lemma 2, there exist 0 < ρ∗ < ρ∗ <
∞ such that θ(b, ρ) < (n + 1)π for all ρ ∈ (0, ρ∗) and θ(b, ρ) > (n + 2)π for all
ρ ∈ (ρ∗,∞). By the continuity of θ(t, ρ) in ρ, there exist ρ∗ ≤ ρn+1 < ρn+2 ≤ ρ∗

such that

θ(b, ρn+1) = (n + 1)π, θ(b, ρn+2) = (n + 2)π,

(n + 1)π < θ(b, ρ) < (n + 2)π for ρn+1 < ρ < ρn+2. (2.6)

Then, for all t ∈ [a, b] and all ρ > 0, we define an energy function E(t, ρ) for
y(t, ρ) by

E(t, ρ) =
1

2p(t)

(

p(t)y′(t, ρ)
)2

+
1

2

(

q∗ − q(t)
)

y2(t, ρ) + w(t)F
(

y(t, ρ)
)

.

where F (y) =
∫ y

0 f(s)ds. By (H1) and (H2), F (y) ≥ 0 on R yielding E(t, ρ) ≥ 0
on [a, b]. For ease of notation, in the following, we use p = p(t), q = q(t),
w = w(t), y = y(t, ρ), E = E(t, ρ). Then, by (1.1) and (H1), we find that

E′=−
p′

2p2
(py′)2−

1

2
q′y2+q∗yy′+w′F (y)

≥ −
p′

2p2
(py′)2−

1

2
q′y2−

q∗

2
(y2+y′2)+w′F (y)

= −
(p′ + q∗)

2p2
(py′)2−

1

2
(q′+q∗)y2+w′F (y)≥ −(

p′+q∗

p
)+(

1

2p
(py′)2)−l

(1

2
(q∗−q)y2)

−
w′

−

w
wF (y) ≥ −l

(py′)2

2p
− l

(1

2
(q∗ − q)y2

)

− lwF (y) = −lE(t, ρ).
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Thus, E′(t, ρ) + lE(t, ρ) ≥ 0 for all t ∈ [a, b] and ρ > 0. By solving this
inequality, we obtain that

E(s, ρ) ≤ E(b, ρ)el(b−s), s ∈ [a, b]. (2.7)

We observe that for ρ = ρn+1 and ρ = ρn+2

E(s, ρ) ≥
1

2p(s)

[

p(s)y′(s, ρ)
]2

, s ∈ [a, b], E(b, ρ) =
1

2p(b)

[

p(b)y′(b, ρ)
]2

.

Thus, for ρ = ρn+1, ρ = ρn+2, and s ∈ [a, b],

|(py′)(s, ρ)| ≤
√

2p(s)E(s, ρ) and |(py′)(b, ρ)| =
√

2p(s)E(b, ρ). (2.8)

Define

Γ (ρ) = (py′)(b, ρ) −

∫ b

a

(py′)(s, ρ)dξ(s).

Assume n = 2k−1 with k ∈ N0. Since (py′)(b, ρ2k) > 0 and (py′)(b, ρ2k+1) < 0,
by (2.3), (2.7), (2.8), and (2.4) we have

Γ (ρ2k)=(py′)(b, ρ2k)−

∫ b

a

(py′)(s, ρ2k)dξ(s)≥
∣

∣

∣
(py′)(b, ρ)

∣

∣

∣

−

∫ b

a

|(py′)(s, ρ2k)|d
(

ξ1(s)+ξ2(s)
)

≥
√

2p(b)E(b, ρ2k)−

∫ b

a

√

2p(s)E(s, ρ2k)d(ξ1(s) + ξ2(s))

≥
√

2p(b)E(b, ρ2k) −

∫ b

a

√

2p(s)E(b, ρ2k)el(b−a)d
(

ξ1(s) + ξ2(s)
)

=
√

2p(b)E(b, ρ2k)
(

1 −

∫ b

a

√

p(s)/p(b)el(b−a)/2d
(

ξ1(s) + ξ2(s)
)

)

> 0,

Γ (ρ2k+1) = (py′)(b, ρ2k+1) −

∫ b

a

(py′)(s, ρ2k+1)dξ(s)

≤ −
∣

∣

∣
(py′)(b, ρ2k+1)

∣

∣

∣
+

∫ b

a

(|(py′)(s, ρ2k+1)|d
(

ξ1(s) + ξ2(s)
)

≤ −
√

2p(b)E(b, ρ2k+1) +

∫ b

a

√

2p(s)E(s, ρ2k+1) d
(

ξ1(s) + ξ2(s)
)

≤ −
√

2p(b)E(b, ρ2k+1) +

∫ b

a

√

2p(s)E(b, ρ2k+1)el(b−a) d
(

ξ1(s) + ξ2(s)
)

= −
√

2p(b)E(b, ρ2k+1)
(

1−

∫ b

a

√

p(s)/p(b) el(b−a)/2 d
(

ξ1(s)+ξ2(s)
)

)

< 0.

By the continuity of Γ (ρ), there exists ρ̄ ∈ (ρ2k, ρ2k+1) such that Γ (ρ̄) = 0.
Similarly, for n = 2k with k ∈ N0, there exists ρ̄ ∈ (ρ2k+1, ρ2k+2) such that

Math. Model. Anal., 14(4):435–450, 2009.
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Γ (ρ̄) = 0. In both cases, it follows from (2.6) that (n+1)π < θ(b, ρ̄) < (n+2)π.
Since

θ′(t, ρ) =
1

p(t)
cos2 θ(t, ρ) + w(t)

f(y(t, ρ))y(t, ρ)

r2(t, ρ)
− q(t) sin2 θ(t, ρ) (2.9)

for t ∈ [a, b], where r = (y2 + py′)1/2, we have that θ(·, ρ) is strictly increasing
at the points t where θ(t, ρ) = 0 (mod π). We note that y(t) = 0 if and
only if θ(t, ρ) = 0 (mod π). Thus, y has exactly n + 1 zeros in (a, b). Initial
condition (2.5) implies that y(t, ρ̄) > 0 in a right-neighborhood of a. Therefore,
y(t, ρ̄) ∈ S+

n+1.
The proof for the case where f∞ < λn and λn+1 < f0 is essentially the same

as above except that the discussion is based on Lemma 3 instead of Lemma 2.
⊓⊔

Proof of Corollary 1. Consider the SLP consisting of Eq. (2.1) with p(t) ≡ 1,
q(t) ≡ 0, and the BC

cosα y(a) − sin α y′(a) = 0, α ∈ [0, π),

cosβ y(b) − sin β y′(b) = 0, β ∈ (0, π].

Denote by λn(α, β) the nth eigenvalue of this problem for n ∈ N0. It is easy
to see that λ0(π/2, π/2) = 0. In fact, y0(t) ≡ 1 is an associated eigenfunction.
From [14, Theorem 4.2] and [12, Lemma 3.32], we see that λ0(α, β) is a con-
tinuous function of (α, β) on [0, π) × (0, π], and is strictly decreasing in α and
strictly increasing in β. Furthermore, for any β ∈ (0, π],

lim
α→π−

λ0(α, β) = −∞ and lim
α→π−

λn+1(α, β) = λn(0, β) for n ∈ N0.

This shows that λ0(π/2, π) > 0, and hence there exists α∗ ∈ (π/2, π) such that
λ0(α, π) > 0 for α ∈ [0, α∗), and λ0(α, π) ≤ 0 and λ1(α, π) > 0 for α ∈ [α∗, π).
Note that β = π if and only if y(b) = 0. Then the conclusion follows from
Theorem 1. ⊓⊔

Proof of Theorem 2. (i) Assume to the contrary that BVP (1.1), (1.2) has a
solution y ∈ Sγ

i for some i ≥ n+1 and γ ∈ {+,−}. Let w̃(t) = w(t)f(y(t))/y(t).
Then w̃(t) is continuous on [a, b] by the continuous extension since f0 < ∞.
Let θ(t) be the Prüfer angle of y(t) with θ(a) = α. Then θ(t) satisfies Eq. (2.9)
and θ(b) > iπ. Note, from the assumption that w̃(t) ≤ λnw(t) ≤ λi−1w(t) on
[a, b], we have that for t ∈ [a, b]

θ′(t) =
1

p(t)
cos2 θ(t) + [w̃(t) − q(t)] sin2 θ(t, ρ)

≤
1

p(t)
cos2 θ(t, ρ) + [λi−1w(t) − q(t)] sin2 θ(t, ρ).

Let u(t) be an eigenfunction of SLP (2.1), (2.2) associated with the eigenvalue
λi−1 and φ(t) its Prüfer angle with φ(a) = α. Then

φ′(t) =
1

p(t)
cos2 φ(t) + [λi−1w(t) − q(t)] sin2 φ(t)
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and φ(b) = iπ. By the theory of differential inequalities, we find that θ(b) ≤
φ(b) = iπ. We have reached a contradiction.

(ii) It is similar to (i) and hence omitted. ⊓⊔

3 Dependence of Nodal Solutions on the problem

In this section, we investigate the changes of the existence of different types of
nodal solutions of BVP (1.1), (1.2) as the problem changes. Our work is based
on the following lemma for the dependence of the nth eigenvalue of SLP (2.1),
(2.2) on the problem which can be excerpted from [13, Theorems 2.2 and 2.3],
[14, Theorem 4.2], and [12, Lemma 3.32].

Lemma 4. For any n ∈ N0, we have the following conclusions.

(a) Consider the nth eigenvalue of SLP (2.1), (2.2) as a function of b for
b ∈ (a,∞), denoted by λn(b). Then λn(b) → ∞ as b → a+.

(b) Consider the nth eigenvalue of SLP (2.1), (2.2) as a function of w for
w ∈ C1[a, b], denoted by λn(w). Then λn(w) is decreasing as long as it is
positive, i.e., for w1, w2 ∈ C1[a, b] such that w1(t) ≤ w2(t) for t ∈ [a, b],
we have λn(w1) ≥ λn(w2) as long as min{λn(w1), λn(w2)} ≥ 0.

(c) Consider the nth eigenvalue of SLP (2.1), (2.2) as a function of q for
q ∈ C1[a, b], denoted by λn(q). Then λn(q) is increasing, i.e. for q1, q2 ∈
C1[a, b] such that q1(t) ≤ q2(t) for t ∈ [a, b], we have λn(q1) ≤ λn(q2).

(d) Consider the nth eigenvalue of SLP (2.1), (2.2) as a function of 1/p for
1/p ∈ C1[a, b], denoted by λn(1/p). Then λn(1/p) is decreasing, i.e. for
1/p1, 1/p2 ∈ C1[a, b] such that 1/p1(t) ≤ 1/p2(t) for t ∈ [a, b], we have
λn(1/p1) ≥ λn(1/p2).

(e) Consider the nth eigenvalue of SLP (2.1), (2.2) as a function of the
boundary condition angle α, denoted by λn(α). Then λn(α) is a con-
tinuous and decreasing function on [0, π). Furthermore,

lim
α→π−

λ0(α) = −∞ and lim
α→π−

λn+1(α) = λn(0) for n ≥ 1.

The first result is about the changes as the interval [a, b] shrinks, more
precisely, as b → a+. We discuss both the cases when one of f0 and f∞ is
infinite and when both of them are finite.

Theorem 3. Let Eq. (1.1) and BC (1.2) be fixed and let (2.4) hold.

(i) Assume either f0 < ∞ and f∞ = ∞, or f∞ < ∞ and f0 = ∞. Then for
any n ∈ N0, there exists bn > a such that for any b ∈ (a, bn) and for any
i ≥ n, BVP (1.1), (1.2) has a solution yγ

i ∈ Sγ
i+1 for γ ∈ {+,−}.

(ii) Assume f0 < ∞ and f∞ < ∞. Then for any n ∈ N0, there exists bn > a
such that for any b ∈ (a, bn) and for any i ≥ n + 1, BVP (1.1), (1.2) has
no solutions in Sγ

i for γ ∈ {+,−}.
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Proof. (i) Without loss of generality assume f0 < ∞ and f∞ = ∞. Let λn(b)
be defined as in Lemma 4 (a). By Lemma 4 (a), for any n ∈ N0, there exists
bn > a such that for any b ∈ (a, bn), we have f0 < λn(b) < f∞ and hence
f0 < λi(b) < f∞ for all i ≥ n. Then the conclusion follows from Theorem 1.

(ii) By Lemma 4 (a), for any n ∈ N, there exists bn > a such that for any
b ∈ (a, bn), we have that λn(b) > f∗ := sup{f(y)/y : y ∈ (0,∞)}. Then the
conclusion follows from Theorem 2 (i). ⊓⊔

We then present a result on the nonexistence of certain types of nodal
solutions of BVP (1.1), (1.2) as the function w increases in a given direction.
More precisely, let s ≥ 0 and h ∈ C1[a, b] such that h(t) > 0 on [a, b], and
consider the equation

−(p(t)y′)′ + q(t)y =
[

w(t) + sh(t)
]

f(y). (3.1)

Theorem 4. Let the interval [a, b] and BC (1.2) be fixed and let (2.4) hold.
Assume f(y)/y ≥ f∗ > 0 for all y 6= 0. Then for any n ∈ N0, there exists
sn ≥ 0 such that for any s > sn and for any i ≤ n, BVP (3.1), (1.2) has no
solution in Sγ

i for γ ∈ {+,−}.

Proof. For s ≥ 0 and i ∈ N0, we denote by λi(s) the ith eigenvalue of the
SLP consisting of the equation

−(p(t)y′)′ + q(t)y = λ
[

w(t) + sh(t)
]

y

and BC (2.2). Let h∗ = min{h(t)/w(t) : t ∈ [a, b]}, and denote by µi(s) the ith
eigenvalue of the SLP consisting of the equation

−(p(t)y′)′ + q(t)y = µ(1 + sh∗)w(t)y

and BC (2.2). Since

w(t) + sh(t) ≥ (1 + sh∗)w(t) for s ≥ 0,

by Lemma 4 (b),

λi(s) ≤ µi(s) for all s ≥ 0 and i ≥ 0, whenever λi(s) ≥ 0. (3.2)

Note that for i ≥ 0, µi(s)(1 + sh∗) = µi(0), we have

µi(s) =
µi(0)

1 + sh∗
→ 0 as s → ∞.

This together with (3.2) implies that λi(s) < f∗ as s → ∞. Then, for any
n ∈ N0, there exists sn ≥ 0 such that λn(s) < f∗ for s > sn. Therefore, the
conclusion follows from Theorem 2 (ii). ⊓⊔

The next result is on the nonexistence and existence of certain types of nodal
solutions of BVP (1.1), (1.2) as the function q changes in a given direction.
More precisely, let s ∈ R and h ∈ C1[a, b] such that h(t) > 0 on [a, b], and
consider the equation

−(p(t)y′)′ +
[

q(t) + sh(t)
]

y = w(t)f(y). (3.3)
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Theorem 5. Let the interval [a, b] and BC (1.2) be fixed and let (2.4) hold.

(i) For any n ∈ N0, there exists sn ≤ 0 such that for any s < sn and for any
i ≤ n, BVP (3.3), (1.2) has no solutions in Sγ

i for γ ∈ {+,−}.

(ii) Assume either f0 < ∞ and f∞ = ∞, or f∞ < ∞ and f0 = ∞. Then
for any n ∈ N0, there exists sn ≥ 0 such that for any s > sn and for any
i ≥ n, BVP (3.3), (1.2) has two solutions yi,γ ∈ Sγ

i+1 for γ ∈ {+,−}.

(iii) Assume f0 < ∞ and f∞ < ∞. Then for any n ∈ N0, there exists s∗ ≥ 0
such that for any s > s∗, BVP (3.3), (1.2) has no solution in Sγ

i for all
i ≥ n + 1 and γ ∈ {+,−}.

Proof. For s ∈ R and i ∈ N0, we denote by λi(s) the ith eigenvalue of the
SLP consisting of the equation

−(p(t)y′)′ +
[

q(t) + sh(t)
]

y = λw(t)y

and BC (2.2). Let h∗ = min{h(t)/w(t) : t ∈ [a, b]}, and denote by µi(s) the ith
eigenvalue of the SLP consisting of the equation

−(p(t)y′)′ +
[

q(t) + sh∗(t)w(t)
]

y = µw(t)y (3.4)

and BC (2.2).
(i) Since for s ≤ 0,

q(t) + sh(t) ≤ q(t) + sh∗w(t),

by Lemma 4 (c), λi(s) ≤ µi(s) for all s ≤ 0 and i ≥ 0. Note that Eq. (3.4)
yields

−(p(t)y′)′ + q(t)y = (µ − sh∗)w(t)y.

Thus, for s ≤ 0 and i ≥ 0, µi(0) = µi(s) − sh∗, which implies that

µi(s) = µi(0) + sh∗ → −∞ as s → −∞,

and hence λi(s) → −∞ as s → −∞ for all i ≥ 0. Then, for any n ∈ N0 there
exists sn ≤ 0 such that λn < 0 for all s < sn. Therefore, the conclusion follows
from Theorem 2 (ii).

(ii) Without loss of generality, assume f0 < ∞ and f∞ = ∞. Similar to
the argument in (i), we have λi(s) → ∞ as s → ∞ for all i ≥ 0. Then for any
n ∈ N0 there exists sn ≥ 0 such that for any s > sn we have f0 < λn(s) < f∞
and hence f0 < λi(s) < f∞ for i ≥ n. Therefore, the conclusion follows from
Theorem 1.

(iii) As we can see from (ii), for any n ∈ N0, there exists s∗ ≥ 0 such that
for all s > s∗ we have λn(s) > f∗ := sup{f(y)/y : y ∈ (0,∞)}. Thus, the
conclusion follows from Theorem 2 (i). ⊓⊔

Similar to Theorem 4, we show a result on the nonexistence of certain types
of nodal solutions of BVP (1.1), (1.2) as the function 1/p(t) increases in a
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certain direction. More precisely, let s ≥ 0 and h ∈ C[a, b] such that h(t) > 0
on [a, b], and consider the equation

−
( 1

1/p(t) + sh(t)
y′

)′

+ q(t)y = w(t)f(y). (3.5)

Theorem 6. Let the interval [a, b] and BC (1.2) be fixed and let (2.4) hold.
Define q̂ := max{q(t)/w(t) : t ∈ [a, b]} and assume f(y)/y ≥ f∗ > q̂ for all
y 6= 0. Then for any n ∈ N0, there exists sn ≥ 0 such that for any s > sn,
BVP (3.5), (1.2) has no solution in Sγ

i for all i ≤ n and γ ∈ {+,−}.

Proof. For s ≥ 0 and i ∈ N0, we denote by λi(s) the ith eigenvalue of the SLP
consisting of the equation

−
( 1

1/p(t) + sh(t)
y′

)′

+ q(t)y = λw(t)y

and BC (2.2) with an eigenfunction ui(t, s). Let θi(t, s) be the Prüfer angle of
ui(t, s) satisfying θi(a, s) = α. Then

θ′i(t, s) =
[ 1

p(t)
+ sh(t)

]

cos2 θi(t, s) +
[

λiw(t) − q(t)
]

sin2 θi(t, s). (3.6)

By Lemma 4 (d), λi(s) is decreasing and hence

lim
s→∞

λi(s) = λ∗
i ∈ [−∞,∞).

We show that λ∗
i < f∗ and then the conclusion follows from Theorem 2.2 (ii).

Assume the contrary, i.e., λ∗
i ≥ f∗. Let w∗ = min{w(t) : t ∈ [a, b]}. By (3.6),

θ′i(t, s) ≥
[ 1

p(t)
+ sh(t)

]

cos2 θi(t, s) + [λ∗
i w(t) − q(t)] sin2 θi(t, s)

=
[ 1

p(t)
+ sh(t)

]

cos2 θi(t, s) +
[

λ∗
i − q(t)/w(t)

]

w(t) sin2 θi(t, s)

≥
[ 1

p(t)
+ sh(t)

]

cos2 θi(t, s) +
[

f∗ − q̂
]

w∗ sin2 θi(t, s).

Let φ(t, s) be the solution of the equation

φ′(t, s) =
[ 1

p(t)
+ sh(t)

]

cos2 φ(t, s) +
[

f∗ − q̂
]

w∗ sin2 φ(t, s) (3.7)

satisfying φ(a, s) = α. By the theory of differential inequalities, we have
φ(t, s) ≤ θi(t, s). In particular,

φ(b, s) ≤ θi(b, s) = (i + 1)π. (3.8)

We observe from (3.7) that φ(t, s) is strictly increasing in t and s, and 0 <
φ(t, s) ≤ (i + 1)π for t ∈ [a, b] and s ≥ 0. Let φ∗(t) = lim

s→∞
φ(t, s). Then

0 < φ∗(t) ≤ (i + 1)π for t ∈ [a, b]. We claim that

φ∗(t) 6≡ kπ + π/2 on (a, b] for any 0 ≤ k ≤ i. (3.9)
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If not, for any a1 ∈ (a, b] and ǫ > 0, there exists s∗ > 0 such that for s ≥ s∗,

φ(a1, s) ∈ (kπ + π/2 − ǫ, kπ + π/2),

which yields that

φ(t, s) ∈ (kπ + π/2 − ǫ, kπ + π/2) for t ∈ [a1, b].

This implies that
0 < φ(b, s) − φ(a1, s) < ǫ. (3.10)

However, from (3.7), we see that for s sufficiently large,

φ′(t, s) ≥
1

2
(f∗ − q̂)w∗ for t ∈ [a1, b].

This contradicts (3.10) and hence verifies (3.9).
It is easy to see that φ(t, s) → φ∗(t) uniformly on [a1, b] as s → ∞. Thus,

φ∗(t) is continuous on [a1, b]. From (3.9), we can find a nontrivial closed interval
[c, d] ⊂ [a, b] such that cos2 φ∗(t) ≥ ν > 0 for t ∈ [c, d]. Then from (3.7),

φ′(t, s) ≥

[

1

p(t)
+ sh(t)

]

ν → ∞ uniformly for t ∈ [c, d] as s → ∞.

Therefore,

φ(b, s)≥φ(d, s)≥φ(c, s)+

d
∫

c

[ 1

p(t)
+sh(t)

]

νds≥

d
∫

c

[ 1

p(t)
+sh(t)

]

νds→∞

as s → ∞.

This contradicts (3.8) and hence completes the proof. ⊓⊔

The last result is on the existence of certain types of nodal solutions of BVP
(1.1), (1.2) as the boundary condition angle α changes.

Theorem 7. Let Eq. (1.1) and the interval [a, b] be fixed and let (2.4) hold.
Assume either f0 = 0 and f∞ = ∞, or f∞ = 0 and f0 = ∞. For n ∈ N0

denote λn(α) the nth eigenvalue of the SLP (2.1), (2.2). Suppose k is the first
nonnegative integer such that λk(α∗) > 0 for some α∗ ∈ (0, π). Then

(i) for α ∈ [0, α∗), BVP (1.1), (1.2) has a solution yγ
n ∈ Sγ

n+1 for all n ≥ k
and γ ∈ {+,−};

(ii) for α ∈ [α∗, π), BVP (1.1), (1.2) has a solution yγ
n ∈ Sγ

n+1 for all n ≥ k+1
and γ ∈ {+,−}.

Proof. By assumption, λk(α∗) > 0. Then Lemma 4 (e) shows that λk(α) > 0
for α ∈ [0, α∗]; and for α ∈ (α∗, π), λk(α) < 0 and λk+1(α) > 0. Therefore, the
conclusion follows from Theorem 2.1. ⊓⊔
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Remark 4. Theorems 3–7 show that we can “create” or “eliminate” certain types
of nodal solutions by changing the interval [a, b], the coefficient functions q, p,
w, and the boundary condition angle α. Since the eigenvalues of SLP (2.1),
(2.2) can be easily computed using computer software such as that in [2], we
are able to construct specific BVPs (1.1), (1.2) which have or do not have nodal
solutions in Sγ

n for a prescribed n ∈ N0.

4 Conclusions

Second order nonlocal BVPs arise not only from theoretical interests, but also
from a wide range of applications in physics and applied mathematics. Different
from two-point BVPs, the theory for BVPs with nonlocal BCs has not been
well established. In particular, only a few papers can be found so far on the
existence of nodal solutions for nonlocal BVPs.

In this paper, by relating BVP (1.1), (1.2) to the eigenvalues of an associated
linear SLP with a two-point separated BC, we provide sufficient conditions for
the existence and nonexistence of nodal solutions of BVP (1.1), (1.2). One
of the advantages of our results lies in the fact that eigenvalues are easy to
compute for two-point linear SLPs using standard software packages, while the
existence of eigenvalues of general linear SLPs with nonlocal BCs still remain
unsolved, not to mention their computations. The main approach in our work
is by utilizing the shooting method and a general energy function. This is in
contrast with most existing works where the bifurcation method serves as a
major tool. We also study how the existence of nodal solutions depends on
the problem including the interval [a, b], the coefficient functions p, q, and w,
and the α in the BC. Here it is worthwhile to notice that little progress has
been made in the current literature on the dependence of nodal solutions on
the problem, even for BVPs with two-point BCs, except those recently done
by the authors.

It will be a subject of future efforts to extend and generalize the results in
this paper to higher order BVPs, BVPs with p-Laplacian, and system BVPs
which involve nonlocal BCs.
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