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Abstract. Using the weakly non-linear geometrical acoustics theory, we obtain the
small amplitude high frequency asymptotic solution to the basic equations governing
one dimensional unsteady planar, spherically and cylindrically symmetric flow in a
vibrationally relaxing gas with Van der Waals equation of state. The transport equa-
tions for the amplitudes of resonantly interacting waves are derived. The evolutionary
behavior of non-resonant wave modes culminating into shock waves is also studied.
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1 Introduction

When non-equilibrium effects are considered in fluid-dynamic equations, the
analysis becomes considerably more complex than the corresponding classical
gas dynamic flow because of nonlinear coupling between the relaxing mode
and the fluid flow. The occurrence of shock waves in a relaxing gas has been
well studied in the past. The propagation of shock waves in a relaxing gas
constitutes a problem of great interest for researchers and scientists.

It is well known that at high temperatures, the internal energy of the
gas molecules consists of translational, rotational and vibrational components.
When the gas is in equilibrium, each internal mode is characterized by the
same temperature. A rate of transfer of energy from one mode to another
mode can be observed by inducing small changes in any of these temperatures
and observing the rate of return to equilibrium. For instance, when gas is
compressed by the mechanical action of a piston or by the passage of a shock
front, the whole energy goes initially to increase the translational energy, and
it is followed by a relaxation from translational mode to rotational mode and
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also from translational mode to vibrational mode until the equilibrium between
these modes is re-established. This is called a relaxation process.

A number of problems relating to the effects of nonlinearity in gases with in-
ternal relaxation have been studied previously, in particular, by Clarke and Mc-
Chesney [7], Scott and Johannesen [22], Blythe [4], Ockenden and Spence [19],
Parker [20], Radha and Sharma [21] among others. There has been widespread
interest in the nonlinear wave phenomena. The work of Whitham [28], Moodie
et al. [18], He and Moodie ([9, 10]), Shtaras [27], Kalyakin [13], Krylovas and
Čiegis ([14, 15]), Sharma and Radha [24], Sharma and Srinivasan [25], Sharma
and Arora [23], Arora and Sharma [3], and Arora ([1, 2]) is worth mentioning
in the context of nonlinear wave propagation in gas dynamic media.

We use asymptotic method for the analysis of weakly nonlinear hyperbolic
waves. Choquet-Bruhat [6] proposed a method to discuss shockless solutions
of hyperbolic systems which depend upon a single phase function. Germain [8]
has given the general discussion of single phase progressive waves. Hunter and
Keller [11] established a general non resonant multi-wave mode theory which
has led to several interesting generalizations by Majda and Rosales [16] and
Hunter et al [12] to include resonantly interacting multi-wave mode features.
Krylovas and Čiegis [14] developed a method of averaging for constructing a
uniformly valid asymptotic solution for weakly nonlinear one dimensional gas
dynamics systems.

We use the method of weakly non-linear geometrical acoustics to obtain
the small amplitude high frequency asymptotic solution to the basic equations
governing one dimensional unsteady planar, cylindrically and spherically sym-
metric flow in vibrationally relaxing gas with Van der Waals equation of state.
We derive the transport equations for the amplitudes of resonantly interacting
waves.

2 Basic Equations

We consider an unsteady one-dimensional motion in a vibrationally relaxing
gas with Van der Waals equation of state. The gas molecules have only one
lagging internal mode (i.e., vibrational relaxation) and the various transport
effects are negligible. The basic equations can be written as (see [7])

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
+

mρu

x
= 0,

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0, (2.1)

∂p

∂t
+ u

∂p

∂x
+

γp

1 − bρ

(

∂u

∂x
+

mu

x

)

+ (γ − 1)ρQ = 0,

∂σ

∂t
+ u

∂σ

∂x
− Q = 0,

where ρ is the density, u the particle velocity, p the pressure, σ the vibrational
energy, t the time, x the spatial coordinate, b the Van der Waals excluded vol-
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ume, m=0, 1 and 2 correspond, respectively, to planar, cylindrical and spheri-
cal symmetry. The quantity Q is the rate of change of vibrational energy that
depends on the states ρ, p and σ, and is given by

Q =
(

σ̄(p, ρ) − σ
)

/τ,

where σ̄ is the equilibrium value of σ defined as σ̄ = σ0 + cR(T − T0), T is
the translational temperature, R is the specific gas constant, suffix 0 refers to
the initial rest condition, and the quantities τ and c, which are respectively
the relaxation time and the ratio of vibrational specific heat to the specific gas
constant, are assumed to be constant. The Van der Waals equation of state is
taken to be of the form

p(1 − bρ) = ρRT,

where b is the Van der Waals excluded gas volume.
We denote a = (γp/(ρ(1 − bρ)))1/2 as the speed of sound, and γ as the

specific heat ratio of the gas.

The equations (2.1) may be written in the matrix form as

∂U

∂t
+ A(U)

∂U

∂x
+ B(U) = 0, (2.2)

where U and B(U) are the column vectors defined by

U=(ρ, u, p, σ)T , B(U)=

(

mρu

x
, 0,

mγpu

(1−bρ)x
+(γ−1)ρ

(̄σ−σ)

τ
, −

(̄σ−σ)

τ

)T

,

where

σ̄ = σ0 + c

(

p(1 − bρ)

ρ
−

p0(1 − bρ0)

ρ0

)

.

A(U) is the 4 x 4 matrix having the components Aij , and the nonzero ones are:

A11 = A22 = A33 = A44 = u,

A12 = ρ, A23 = 1/ρ, A32 = γp/(1 − bρ).

System (2.2) being strictly hyperbolic admits four families of characteristics,
among them two represent waves propagating in ± x directions with the speed
u ± a. The remaining two families form a set of double characteristics repre-
senting entropy waves or particle paths propagating with velocity u.

We consider waves propagating into an initial background state U0 = (ρ0, 0,
p0, σ0)

T . The characteristic speeds at U = U0 are given by λ1 = 0, λ2 = 0,
λ3 = a0 and λ4 = −a0. The subscript 0 refers to evaluation at U = U0, and is
synonymous with the state of equilibrium.

Math. Model. Anal., 14(4):423–434, 2009.
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3 Interaction of High Frequency Waves

We denote the left and right eigenvectors of A0 associated with the eigenvalue
λi by L(i) and R(i). These eigenvectors satisfy the normalization condition
L(i)R(j) = δij , 1 ≤ i, j ≤ 4, where δij represents the Kronecker delta. These
eigenvectors are obtained as

L(1) =
(

1, 0,−
1

a2
0

, 0
)

, R(1) = (1, 0, 0, 0)T ,

L(2) =
(

0, 0, 0, 1
)

, R(2) = (0, 0, 0, 1)T ,

L(3) =
(

0,
ρ0

2a0
,

1

2a2
0

, 0
)

, R(3) = (1,
a0

ρ0
, a2

0, 0)T , (3.1)

L(4) =
(

0,−
ρ0

2a0
,

1

2a2
0

, 0
)

, R(4) = (1,−
a0

ρ0
, a2

0, 0)T .

We look for asymptotic solution for (2.2) as ǫ → 0 of the form

U ∼ U0 + ǫ U1(x, t, θ̃) + ǫ2 U2(x, t, θ̃) + O(ǫ3), (3.2)

where U1 = (U11, U12, U13, U14)
T is a smooth bounded vector, and vector U2 is

bounded in (x, t) in a certain bounded region of interest having at most sub-
linear growth in θ as θ → ±∞. Here θ̃ = (θ1, θ2, θ3, θ4) represents the “fast
variables” characterized by the functions φi as θi = φi/ǫ, where φi, 1 ≤ i ≤
4, is the phase of the i-th wave associated with the characteristic speed λi.
Now we use (3.2) in (2.2), expand A and B in Taylor’s series in powers of ǫ

about U = U0, replace the partial derivatives
∂

∂X
(X being either x or t) by

∂

∂X
+ ǫ−1

4
∑

i=1

∂φi

∂X

∂

∂θi
, and equate to zero the coefficients of ǫ0 and ǫ1 in the

resulting expansions, to obtain

O(ǫ0) :

4
∑

i=1

(

I
∂φi

∂t
+ A0

∂φi

∂x

)∂U1

∂θi
= 0, (3.3)

O(ǫ1) :

4
∑

i=1

(

I
∂φi

∂t
+ A0

∂φi

∂x

)

∂U2

∂θi
= −

∂U1

∂t
− A0

∂U1

∂x
− (U1.∇UB)0

−

4
∑

i=1

∂φi

∂x
(U1.∇UA)0

∂U1

∂θi
, (3.4)

where I is the 4 x 4 unit matrix and ∇U is the gradient operator with respect
to the dependent variable U . The expressions of (U1.∇UB)0 and (U1.∇UA)0
are given as

(U1.∇UB)0 =
(U12mρ0

x
, 0,−U11(γ − 1)

p0c

τρ0
+ U12

mγp0

(1 − bρ0)x

+ U13
(γ − 1)c(1 − bρ0)

τ
− U14

(γ − 1)ρ0

τ
, U11

p0c

τρ2
0

− U13
c(1 − bρ0)

τρ0
+ U14

1

τ

)T

,
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(U1.∇UA)0 =















U12 U11 0 0

0 U12 −U11

ρ2

0

0

0
(

γ b U11 p0

(1−bρ0)2 + γ U13

(1−bρ0)

)

U12 0

0 0 0 U12















.

Now since the phase functions φi, 1 ≤ i ≤ 4, satisfy the eikonal equation

Det
(

I
∂φi

∂t
+ A0

∂φi

∂x

)

= 0,

we choose the simplest phase function of this equation, namely

φi(x, t) = x − λit, 1 ≤ i ≤ 4.

It follows from (3.1) that for each phase φi,
∂U1

∂θi
is parallel to the right eigen-

vector R(i) of A0 and thus

U1 =

4
∑

i=1

σi(x, t, θi)R
(i), (3.5)

where σi = (L(i) · U1) is a scalar function called the wave amplitude, that
depends only on the i-th fast variable θi. We assume that σi(x, t, θi) has zero
mean value with respect to the fast variable θi, that is,

lim
T→∞

1

2T

T
∫

−T

σi(x, t, θi) dθi = 0

We then use (3.5) in (3.4) and solve for U2. To begin with we write

U2 =

4
∑

j=1

mjR
(j),

substitute this value in (3.4), and premultiply the resulting equation by L(i) to
obtain the system of decoupled inhomogeneous first order partial differential
equations:

4
∑

j=1

(λi − λj)
∂mi

∂θj
= −

∂σi

∂t
− λi

∂σi

∂x
− L(i)(U1 · ∇B)0

−

4
∑

j=1

L(i)(U1 · ∇A)0
∂U1

∂θj
, 1 ≤ i ≤ 4. (3.6)

The characteristic ODEs for the i-th equation in (3.6) are given by

θ̇j = λi − λj for j 6= i, θ̇i = 0, ṁi = Hi,

Math. Model. Anal., 14(4):423–434, 2009.
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where

Hi(x, t, θ1, θ2, θ3, θ4) = −
∂σi

∂t
− λi

∂σi

∂x
− L(i)(U1 · ∇B)0

−
4

∑

j=1

L(i)(U1 · ∇A)0
∂U1

∂θj
.

We asymptotically average (3.6) along the characteristics and appeal to
the sub-linearity of U2 in θ, which ensures that the expression (3.2) does not
contain secular terms. The constancy of θi along the characteristics and the
vanishing asymptotic mean value of ṁi along the characteristics implies that
the wave amplitudes σi, 1 ≤ i ≤ 4, satisfy the following system of coupled
integro-differential equations

∂σi

∂t
+ λi

∂σi

∂x
+ aiσi + Γ i

iiσi
∂σi

∂θi
(3.7)

+
∑

i6=j 6=k

Γ i
jk lim

T→∞

1

2T

T
∫

−T

σj(θi + (λi − λj)s)σ́k(θi + (λi − λk)s)ds = 0,

where σ́k =
∂σk

∂θk
and the coefficients ai and Γ i

jk are given by

ai = L(i)(R(i) · ∇B)0, Γ i
jk = L(i)(R(j) · ∇A)0R

(k). (3.8)

The interaction coefficients Γ i
jk denote the strength of coupling between the

j-th and k-th wave modes (j 6= k) that can generate an i-th wave (i 6= j 6= k).
The coefficients Γ i

ii which refer to the non-linear self-interaction, are non-zero
for genuinely non-linear waves and zero for linearly degenerate waves. It is also
interesting to note that if all the coupling coefficients Γ i

jk(i 6= j 6= k) are zero
or the integral in (3.7) vanishes, the waves do not resonate and (3.7) reduces
to a system of uncoupled Burgers’ equations. The coefficients ai, Γ

i
ii and Γ i

jk,
given by (3.7), provide a picture of the non-linear interaction process present in
the system under consideration, and can be easily determined in the following
form, the non-zero coefficients are given as

a1 =
(γ − 1)

a2
0

p0 c

τρ0
, a2 =

1

τ
,

a3 =
ma0

2x
+

(γ − 1)

2a2
0

(ca2
0(1 − bρ0)

τ
−

cp0

τρ0

)

,

a4 = −
ma0

2x
+

(γ − 1)

2a2
0

(ca2
0(1 − bρ0)

τ
−

cp0

τρ0

)

,

Γ 1
13 = −Γ 1

14 =
a0(1 − 2bρ0)

ρ0(1 − bρ0)
, Γ 1

34 = −Γ 1
43 = −

a0

ρ0
{(1 − γ) − 2bρ0},

Γ 3
14 = −Γ 4

13 = −
a0

2ρ0(1 − bρ0)
, Γ 3

33 = −Γ 4
44 =

(γ + 1)

2

a0

ρ0(1 − bρ0)
. (3.9)
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The resonance equations (3.7) can now be written as

∂σ1

∂t
+ a1σ1 = 0,

∂σ2

∂t
+ a2σ2 = 0 (3.10)

∂σ3

∂t
+a0

∂σ3

∂x
+a3σ3+Γσ3

∂σ3

∂θ3
− lim

P→∞

1

2P

P
∫

−P

K
(

x, t,
θ3+φ

2

)

σ4(x, t, φ)dφ=0,

∂σ4

∂t
−a0

∂σ4

∂x
+a4σ4−Γσ4

∂σ4

∂θ4
+ lim

P→∞

1

2P

P
∫

−P

K
(

x, t,
θ4+φ

2

)

σ3(x, t, φ)dφ=0,

where Γ = Γ 3
33 = −Γ 4

44 = (γ +1)a0/(2ρ0(1− bρ0)), and the kernel K is defined
as

K
(

x, t,
θ + φ

2

)

=
Γ 3

14

2

∂σ1

∂θ1

(

x, t,
θ + φ

2

)

.

Let the initial value of σj be σj |t=0 = σ0
j (x, θj). Hence (3.10)1,2 gives

σ1(x, t, θ1) = σ0
1(x, θ1)e

−a1t, σ2(x, t, θ2) = σ0
2(x, θ2)e

−a2t,

and subsequently the system (3.10) reduces to a pair of equations for the wave
fields σ3 and σ4 coupled through the linear integral operator involving the
kernel

K(x, t, θ) =
Γ 3

14

2
e−a1t ∂σ0

1

∂θ1
(x, θ). (3.11)

If the initial data σ0
j (x, θ) are 2π periodic functions of the phase variable θ,

then the pair of resonant asymptotic equations in system (3.10) becomes

∂σ3

∂t
+a0

∂σ3

∂x
+a3σ3+Γσ3

∂σ3

∂θ3
−

1

2π

π
∫

−π

K
(

x, t,
θ3+φ

2

)

σ4(x, t, φ) dφ=0, (3.12)

∂σ4

∂t
−a0

∂σ4

∂x
+a4σ4−Γσ4

∂σ4

∂θ4
+

1

2π

π
∫

−π

K
(

x, t,
θ4 + φ

2

)

σ3(x, t, φ) dφ=0,

where K is given by (3.11).

The system of equations obtained in equation (3.10) is (mathematically)
the same system obtained in [16], for the compressible Euler equations of Gas
Dynamics. The thing that changes is the physical meaning of the various pa-
rameters (coupling kernel K in the integral term, wave velocities, etc.) because
of the effect of vibrational relaxation. The behavior of this system (including
shocks even in the resonant case) was studied extensively in [17].

More details (for the special case when the wave interactions occur within a
closed pipe) can be found in [26]. Shocks in the resonant case within a bounded
environment seem to be very important, as they lead the solutions to asymptote
to very non-trivial nonlinear standing wave like states.

Math. Model. Anal., 14(4):423–434, 2009.
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4 Non-Linear Geometrical Acoustics Solution

The asymptotic solution (3.2) of hyperbolic system (2.2) satisfying small am-
plitude oscillating initial data

U(x, 0) = U0 + ǫ U0
1 (x, x/ǫ) + O(ǫ2), (4.1)

is non-resonant if U0
1 (x, x/ǫ) are smooth functions with a compact support

[16]. The issue of how to deal with shocks when resonances occur is studied in
Cehelsky and Rosales [5]. The characteristic equations are

dθj

dx
=

Γσj

a0
,

dt

dx
=

ej

a0
, (4.2)

where

ej =

{

+1, if j = 3,
−1, if j = 4.

In terms of the characteristic equations, the decoupled equations (3.10)3 and
(3.10)4 can be written as

dσj

dt
= −aj σj , j = 3, 4.

Integration along the rays sj = x − ej a0 t = constant yields:

σj = σ0
j (sj , ξj) e−ajt, (4.3)

where the function σ0
j is obtained from the initial condition (4.1), and the fast

variable ξj parameterizes the set of characteristic curves (4.2)1.
Thus, we obtain from (4.2)

ξj = θj +
Γ j

jj

aj

(

σj − σ0
j

)

. (4.4)

The solution of (2.2), satisfying (4.1), where U0
1 (x, x/t) has compact sup-

port, is obtained as

ρ(x, t) = ρ0+ǫσ0
1(x, x/ǫ)e−a1t + ǫ

(

σ0
3(x−a0t, ξ3)e

−a3t

+ σ0
4(x+a0t, ξ4)e

−a4t
)

+ O(ǫ2),

u(x, t) = ǫ
a0

ρ0

(

σ0
3(x − a0t, ξ3)e

−a3t − σ0
4(x + a0t, ξ4)e

−a4t
)

+ O(ǫ2),

p(x, t) = p0 + ǫa2
0

(

σ0
3(x − a0t, ξ3)e

−a3t + σ0
4(x + a0t, ξ4)e

−a4t
)

+ O(ǫ2),

σ(x, t) = σ0 + ǫσ0
2(x, x/ǫ)e−a2t + O(ǫ2), (4.5)

where a1, a2, a3, a4 are given in (3.9) with a2
0 =

γp0

ρ0(1 − bρ0)
, the fast variables

ξj(1 ≤ j ≤ 4) are given in (4.4), and the initial values for σi, (1 ≤ i ≤ 4) are
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obtained from the solution (4.5) specified at t = 0 as

σ0
1(x, x/ǫ) = ρ0

1(x, x/ǫ) −
1

a2
0

p0
1(x, x/ǫ), σ0

2(x, x/ǫ) = σ0
1(x, x/ǫ),

σ0
3(x, ξ3) =

( ρ0

2a0

)

u0
1(x, ξ3) +

( 1

2a2
0

)

p0
1(x, ξ3),

σ0
4(x, ξ4) = −

( ρ0

2a0

)

u0
1(x, ξ4) +

( 1

2a2
0

)

p0
1(x, ξ4).

This is the complete solution of (2.2) and (4.1); any multivalued overlap in
this solution is resolved by introducing shocks into the solution. In (4.5) if we
substitute the values of a1, a2, a3 and a4 given in (3.9) with a2

0 =
γp0

ρ0(1 − bρ0)
,

we obtain the dependence of ρ, u, p and σ upon b and m explicitly. For b = 0
these equations yield the results for the ideal gas.

5 Shock Waves

A shock wave may be initiated in the flow region, and once it is formed, it will
propagate by separating the portions of the continuous region. Following [11]
it can be shown that the shock location θs

j satisfies the relation

dθs
j

dt
=

1

2
Γ j

jj

(

σ
(−)
j + σ

(+)
j

)

, j = 3, 4,

which is the shock speed in θj − t plane. Here σ
(−)
j and σ

(+)
j , respectively,

are the values of σj just ahead and behind the shock. We have σ
(−)
j = 0 for

the undisturbed region ahead of the shock. Now we use (4.3) and drop the
superscripts on θs

j and σ+
j to obtain

dθj

dt
=

Γ j
jj

2
σ0

j (sj , ξj)e
−ajt (5.1)

Now using (5.1) and (4.4) we obtain the following equation which determines
the shock path parametrically,

θj = ξj −
2

σ0
j

ξj
∫

0

σ0
j (t̃) dt̃. (5.2)

If σ0
j 6= 0 then the shock forms right at the origin.

6 Conclusion

The method of weakly non-linear geometrical acoustics is used to obtain the
small amplitude high frequency asymptotic solution to the basic equations gov-
erning one dimensional unsteady planar, cylindrically and spherically symmet-
ric flow in a vibrationally relaxing gas with Van der Waals equation of state.

Math. Model. Anal., 14(4):423–434, 2009.
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We used the weakly nonlinear geometrical acoustics theory to analyze the
resonant waves interaction, and derived the transport equations for the wave
amplitudes along the rays of the governing system; these transport equations
constitute a system of inviscid Burger’s’ equations with quadratic nonlinearity
coupled through a linear integral operators with a known kernel. The coef-
ficients appearing in the transport equations provide a measure of coupling
between the various modes and set a qualitative picture of the interaction pro-
cess involved therein.

The system of equations obtained in equation (3.10) is (mathematically)
the same system obtained in [24] and [16], for the compressible Euler equations
of gas dynamics. The thing that changes is the physical meaning of the vari-
ous parameters (coupling kernel K in the integral term, wave velocities, etc.)
because of the presence of vibrational relaxation. The behavior of this system
(including shocks even in the resonant case) was studied extensively in [17].

It is observed that the wave fields associated with the particle paths do not
interact with each other; however they do interact with an acoustic wave field
to produce resonant contribution towards the other acoustic field. The acoustic
wave fields may or may not interact, but in either case their net contribution,
which is directed towards the entropy field, is always zero.

In our analysis the governing system of Euler equations reduces to a pair of
resonant asymptotic equations for the acoustic wave fields. For a non-resonant
multi wave mode case, proposed by Hunter and Keller [11], the reduced system
of transport equations gets decoupled with vanishing integral average terms,
and the occurrences of shocks in the acoustic wave fields are analyzed. It is
found that in a contracting piston motion having spherical symmetry, a shock
is always formed before the formation of a focus no matter how small is the
initial wave amplitude; this is in contrast with the corresponding cylindrical
situation where a shock forms before the focus only if the initial amplitude
exceeds a critical value.

The dependence of ρ, u, p and σ on the parameter m and the Van der Waals
excluded volume b is clear from (4.5) upon substitution of the values of a1, a2, a3

and a4 given in (3.9) with a2
0 =

γp0

ρ0(1 − bρ0)
. For b = 0 the equations (4.5)

yield the results for the ideal gas; these results are in agreement with earlier
results (Whitham [28] and Krylovas and Čiegis [14]). Krylovas and Čiegis [14]
developed a method of averaging for constructing a uniformly valid asymptotic
solution for weakly nonlinear one dimensional gas dynamics systems, and they
solved numerically a system similar to (3.12). The shock amplitude depends
very strongly on the internal energy that exists in the relaxing mode, and
depends on the wave geometry through the parameter m.
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