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Abstract. In the paper non-local boundary value problems for a one class of com-
posite type equation with Laplace operator in the main part has been investigated.
Using the methods of energy integrals and integral equations, theorems of the unique-
ness and existence of a classical solution were proved.
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1 Introduction

The first investigation of the boundary–value problems for the simple com-
posite type equation of the third order goes back to G. Hadamard [16] and
O. Sjöstrand [25], the operator of that equation represents the composition
of Laplace operator with an operator of the partial derivative with respect to
one of the independent variables. Later many works have appeared such as R.
Davis [6], V.V. Daynyak and V.I. Korzyuk [7], T.D. Dzhuraev [9], V.I. Korzyuk
and N.I. Yurchuk [18], L. Wolfersdorf [26]. They were devoted to the study of
this equation and more general composite type equations. It should be noted
that A. Bouziani [2, 3], V.I. Korzyuk and N.I. Yurchuk [18], L. Wolfersdorf [26],
give information on the applied aspects of the composite type equations of the
third order.

Note that the third order partial differential equations make a base of many
mathematical models for various physical and mechanical situations. Many
problems associated with the dynamics of the soil moisture and subsoil waters
[22], spreading of acoustic waves in a weakly heterogeneous environment [24]
are reduced to local and non–local problems for a third order equations. For

http://dx.doi.org/10.3846/1392-6292.2009.14.407-421
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408 O.S. Zikirov

example, equation

∂

∂t

(

∂2

∂x2
+

∂2

∂y2

)

ψ(x, y, t) + β
∂

∂x
ψ(x, y, t) = f(x, y, t)

describes the motion of planetary waves in the β–plane [5], where ψ(x, y, t) is a
stream function, defined for the velocity vector v = (v1, v2), where v1 = −ψy,
v2 = ψx, β = 2|Ω0|cos(θ/R0), θ is the angle of width place, R0 is a radius of
Earth, Ω0 is frequency rotation of the fluid, f(x, y, t) is the influence of the
forced strength.

The work of T.D. Dzhuraev and Y. Popelek [10] was devoted to the questions
of classification and problems of reduction to a canonical form of the third order
partial differential equation

Auxxx +Buxxy + Cuxyy +Duyyy = F (x, y, u, ux, uy, uxx, uxy, uyy), (1.1)

where A,B,C and D are given functions with respects to x and y. If in the
every point of the domain the characteristic equation

Aλ3 −Bλ2 + Cλ−D = 0, λ =
dy

dx

of the equation (1.1) has one real and two complex conjugate roots, then it can
be reduced to the following form

(

α
∂

∂x
+ β

∂

∂y

)

(uxx + uyy) = F1(x, y, u, ux, uy, uxx, uxy, uyy). (1.2)

In this paper, we will investigate boundary value problems with non–local
conditions for the equation (1.2), when F1 is linear function of u, ux, uy, uxx,
uxy, uyy. Investigation of non–local problems is interesting on theoretical side,
because they consist of many local problems. Non–local boundary conditions
for evolution problems have various applications in chemical engineering, ther-
moelasticity, underground water flow and population dynamics and etc., see
for example [2, 3, 8, 22, 23].

We remark that equation (1.2) often is called the composite type equation.
Boundary–value problems for equations of third order with non–local boundary
conditions are investigated by A. Bouziani [2, 3], A. Bouziani and M.S. Temi
[4], M. Denche and A.L. Marhoune [8], T.D. Dzhuraev and O.S. Zikirov [11, 12],
O.S. Zikirov [27] and many references therein.

The present paper is devoted to the study of a non–local problem with the
Bitsadze–Samarskiy type conditions for a third order equation of composite
type.

2 Statement of the Problem and Uniqueness of the Solu-

tion

In the rectangular domain D = {(x, y) : 0 < x < p, 0 < y < q}, we consider
the third order composite type equation

(

α
∂

∂x
+ β

∂

∂y

)

(uxx + uyy) + Lu = f(x, y) (2.1)
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related to one of canonical forms quoted in [10]. Here α and β are some
constants, moreover α2 + β2 6= 0, and L be linear differential operator of the
second order

Lu ≡ a(x, y)uxx +2b(x, y)uxy + c(x, y)uyy + a1(x, y)ux + b1(x, y)uy + c1(x, y)u.

Coefficients and the right side of equation (2.1) are given real–valued functions
in the domain D. Without loss of generality, we assume α ≥ 0, β ≥ 0, but
α2 + β2 6= 0.

In the present paper for the equation (2.1) the following non-local conditions
are considered.

Problem 1. Sαβ . Find a function u(x, y) in the domain D, which is defined
for (x, y) ∈ D, continuous with its first derivative in the closed domain D and
satisfies equation (2.1) in D and also boundary conditions

a) if αβ 6= 0, then the following conditions are posed:

u(0, y) = ϕ1(y), u(p, y) = ϕ2(y), 0 ≤ y ≤ q; (2.2)

u(x, 0) = ψ1(x), u(x, q) = ψ2(x), 0 ≤ x ≤ p; (2.3)

λ1(y)ux(0, y) + λ2(y)ux(p, y) = ϕ3(y), 0 ≤ y ≤ q; (2.4)

µ1(x)uy(x, 0) + µ2(x)uy(x, q) = ψ3(x), 0 ≤ x ≤ p; (2.5)

b) if β = 0, then conditions (2.2)–(2.4) are fulfilled;

c) if α = 0, then conditions (2.2), (2.3) and (2.5) are realized, where λj(y),
µj(x), (j = 1, 2), ϕi(y), ψi(x), (i = 1, 2, 3) are known functions, moreover

λ2
1(y) + λ2

2(y) 6= 0, µ2
1(x) + µ2

2(x) 6= 0.

The data satisfies the following compatibility conditions:

ϕ1(0) = ψ1(0), ϕ1(q) = ψ2(0), ψ1(p) = ϕ2(0), ϕ2(q) = ψ2(p),

λ1(0)ψ
′

1(0) + λ2(0)ψ
′

1(p) = ϕ3(0), µ1(0)ϕ
′

1(0) + µ2(0)ϕ
′

1(q) = ψ3(0),

λ1(q)ψ
′

2(0) + λ2(q)ψ
′

1(p) = ϕ3(q), µ1(p)ϕ
′

2(0) + µ2(p)ϕ
′

2(q) = ψ3(p).

Remark 1. Depending on disposition of the characteristics βx − αy = const of

the operator α
∂

∂x
+β

∂

∂y
the problem Sαβ includes different local and non–local

problems for the equation (2.1).

We state the following designations to further usage. Through C
(0,h)
1/2 [a, b]

we designate a set of functions ϕ(t), given in the segment [a, b] and also [(t −
a)(b−t)]1/2ϕ(t) ∈ C(0,h)[a, b], 0 < h < 1. If in this set of functions we introduce
the norm

‖ϕ(t)‖h,1/2 = ‖
√

(t− a)(b − t)ϕ(t)‖Ch ,

where ‖ · ‖Ch is a norm in the space C(0,h)[a, b], then the obtained normalized
space will be a Banach space [13]. A detailed definition of the spaces C(1,h)[a, b]
and Ck(D) can be found, for example in [1].

Math. Model. Anal., 14(3):407–421, 2009.
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Definition 1. A function u(x, y) from the class C(1,h)(D) ∩ C3(D) is a clas-
sical solution of the problem Sαβ, if it satisfies equation (2.1) and boundary
conditions (2.2)–(2.5).

We can show that for problem Sαβ the case αβ < 0 can be reduced to the
case αβ > 0 by changing the independent variable t = 1 − τ . For definiteness
we set α > 0, β > 0.

Assumption 2.1 For all (x, y) ∈ D, we assume that a(x, y), b(x, y),
c(x, y) ∈ C1(D) ∩ C2(D), a1(x, y), b1(x, y) ∈ C(D) ∩ C1(D), c1(x, y) ∈ C(D)
and

1) a(x, y)ξ2 + 2b(x, y)ξη + c(x, y)η2 ≥ c0(ξ
2 + η2), ∀ξ, η ∈ D,

2) axx + 2bxy + cyy − a1x − b1y + 2c1 ≤ 0, ∀(x, y) ∈ D,

3) | λ1(y) |>| λ2(y) |, | µ1(x) |>| µ2(x) | .

Assumption 2.2. For all (x, y) ∈ D, we assume f(x, y) ∈ C(1,h)(D),

ψi(x) ∈ C
(1,h)
1/2 [0, p], ϕi(y) ∈ C

(1,h)
1/2 [0, q],

ψ3(x), µi(x) ∈ C
(0,h)
1/2 [0, p], ϕ3(y), λi(y) ∈ C

(0,h)
1/2 [0, q], i = 1, 2, 0 < h < 1.

In Assumptions 2.1, 2.2 and in the rest of the paper, we assume that cj ,
j = 0, 1, 2, . . . , 11, are positive constants.

In this paper, the existence and uniqueness of a classical solution of the
problem Sαβ are demonstrated. We use the methods of energy integrals and
integral equations in order to prove the unique solvability of the considered
problem.

Theorem 1. Let Assumption 2.1 be fulfilled. Then a classical solution of the

problem Sαβ is unique.

Proof. We show that homogeneous problem Sαβ , i.e.

f(x, y) = 0, ϕi(y) = ψi(x) ≡ 0, i = 1, 2, 3

has only a trivial solution. We prove this fact by using the integral identities.
We multiply equation (2.1) by function u(x, y), and integrate the obtained
result along the domain D

∫∫

D

u
(

α
∂

∂x
+ β

∂

∂y

)

(uxx + uyy) dxdy +

∫

D

∫

uLu dxdy = 0.

Obvious identities exist:

u
(

α
∂

∂x
+ β

∂

∂y

)

(uxx + uyy) =
(

α
∂

∂x
+ β

∂

∂y

)

(uuxx + uyy)

− 1

2

[(

α
∂

∂x
− β

∂

∂y

)

(u2
x − u2

y) +
(

α
∂

∂y
− β

∂

∂y

)

(2uxuy)
]

,
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u (a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy) =
∂

∂x

[

auux + buuy − 1

2
(ax + by)u2

]

+
∂

∂y

[

buux + cuuy − 1

2
(bx + cy)u2

]

− (au2
x + 2buxuy + cu2

y)

+
1

2
(axx + 2bxy + cyy)u2,

u(a1(x, y)ux + b1(x, y)uy + c1(x, y)u) =
1

2

[

∂

∂x
(a1u)2 +

∂

∂y
(b1u)2

]

− 1

2
(a1x + b1y − 2c1)u

2.

Applying integration by parts to the left part of the last equality and using
boundary conditions (2.2)–(2.3), we get

1

2
β

p
∫

0

[

u2
y(x, q) − u2

y(x, 0)
]

dx +
1

2
α

q
∫

0

[

u2
x(p, y) − u2

x(0, y)
]

dy

+

∫∫

D

(au2
x + 2buxuy + cu2

y)dxdy

− 1

2

∫∫

D

(axx + 2bxy + cyy − a1x − b1y + 2c1)u
2dxdy = 0. (2.6)

If λ1(y) 6= 0, µ1(x) 6= 0, then from the conditions (2.4) and (2.5) we find

ux(0, y) = −λ2(y)

λ1(y)
ux(p, y), uy(x, 0) = −µ2(x)

µ1(x)
uy(x, q).

Then (2.6) has a form

1

2
β

p
∫

0

[

(1 − λ2(y)

λ1(y)

]

u2
y(x, q) dx+

1

2
α

q
∫

0

[

1 − µ2(x)

µ1(x)

]

u2
x(p, y) dy

+

∫

D

∫

(au2
x + 2buxuy + cu2

y) dxdy

− 1

2

∫

D

∫

(axx + 2bxy + cyy − a1x − b1y + 2c1)u
2 dxdy = 0.

It follows from Theorem 1 that in the last expression every item is non–negative.
Hence we can conclude u(x, y) ≡ 0 in the domain D. Thus homogeneous equa-
tion (2.1) with homogeneous conditions (2.2)–(2.5) has no non–trivial solutions
and therefore a solution of the non–local problem Sαβ is unique. ⊓⊔

Remark 2. In the cases λj(y) 6= 0, λ3−j(y) = 0, µj(x) = 0, µ3−j(x) 6= 0, j = 1, 2
the problem Sαβ is not solvable, because characteristics βx − αy = 0 of the
equation (2.1) divide the domain D into two parts, in one of which the given
conditions are not sufficient for determining a solution of the problem Sαβ and
in the other they are unnecessary.

Math. Model. Anal., 14(3):407–421, 2009.
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3 Reducing the Problem Sαβ to the Integral Equation

Existence of the solution of the problem Sαβ for the simplified equation, where
Lu ≡ 0 and f(x, y) = 0, has been studied in [11]. Consider the equation

(

α
∂

∂x
+ β

∂

∂y

)

(uxx + uyy) = g(x, y) (3.1)

with homogeneous conditions (2.2)–(2.5). Through ψ(x) we denote an unknown
mean of derivative uy(x, 0) if y = q, and through ϕ(y) we denote a mean of
ux(0, y) if x = p. Let the domain is such that q ≤ β/α. Then if we suppose

αux + βuy = v(x, y), (3.2)

then we get from the equation (3.1) that

vxx + vyy = g(x, y). (3.3)

According to (3.2) and using the boundary conditions (2.2)–(2.5) we get

v(0, y) = −αλ2(y)

λ1(y)
ϕ(y), v(p, y) = αϕ(y), (3.4)

v(x, 0) = −βµ2(x)

µ1(x)
ψ(x), v(x, q) = βψ(x). (3.5)

We shall solve problem (3.3)–(3.5) using the suggestion that ϕ(y) and ψ(x) are
continuous and integrable. Moreover,

α
λ2(0)

λ1(0)
ϕ(0) = β

µ2(0)

µ1(0)
ψ(0), −αλ2(q)

λ1(q)
ϕ(q) = βψ(0),

− β
µ2(p)

µ1(p)
ψ(p) = αϕ(0), αϕ(q) = βψ(p).

On the basis of (3.2), problem (3.1), (2.2)–(2.5) is reduced to the definition
of the solution of equation (3.3) with boundary conditions (3.4)–(3.5) in the
domain D. The regular solution of the last problem is represented by formula

v(x, y) = − β

2π

p
∫

0

[∂G(x, y; ξ, q)

∂η
− µ2(ξ)

µ1(ξ)

∂G(x, y; ξ, 0)

∂η

]

ψ(ξ) dξ

+
α

2π
α

q
∫

0

[∂G(x, y; p, η)

∂ξ
− λ2(η)

λ1(η)

∂G(x, y; 0, η)

∂ξ

]

ϕ(η) dη

− 1

2π

∫∫

D

G(x, y; ξ, η)g(ξ, η) dξdη, (3.6)

where G(x, y; ξ, η) is the Green’s function of the Dirichlet problem for the
Laplace equation in rectangular [19].
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In the domain D we solve the problem

αux + βuy = v(x, y),

u(0, y) = 0, u(x, 0) = 0.

Its solution can be represented as

u(x, y) =











lu1(x, y), if 0 ≤ x ≤ α

β
y,

u2(x, y), if
α

β
y ≤ x ≤ p,

(3.7)

where

u1(x, y) =
1

β

y
∫

y−βx/α

v
(

x− α

β
y +

α

β
t, t; ξ, q

)

dt, 0 ≤ x ≤ α

β
y; (3.8)

u2(x, y) =
1

β

y
∫

0

v
(

x− α

β
y +

α

β
t, t; ξ, q

)

dt,
α

β
y ≤ x ≤ p; (3.9)

Substituting expression (3.7) into (3.8) and (3.9) and changing the order of
integration we get

ui(x, y) = − β

2π

p
∫

0

K1i(x, y; ξ)ψ(ξ) dξ +
α

2π

q
∫

0

K2i(x, y; η)ϕ(η) dη

− 1

2π

∫∫

D

Ki(x, y; ξ, η)g(ξ, η) dξdη, i = 1, 2, (3.10)

where

K1i(x, y; ξ)=

y
∫

z(x,y)

[

∂G

∂η

(

x−α
β
y+

α

β
t, t; ξ, q

)

−µ2(ξ)

µ1(ξ)

∂G

∂η

(

x−α
β
y +

α

β
t, t; ξ, 0

)

]

dt,

(3.11a)

K2i(x, y; η)=

y
∫

z(x,y)

[

∂G

∂ξ

(

x−α
β
y+

α

β
t, t; p, η

)

−λ2(η)

λ1(η)

∂G

∂ξ

(

x−α
β
y+

α

β
t, t; 0, η

)

]

dt,

(3.11b)

Ki(x, y; ξ, η)=

y
∫

z(x,y)

G
(

x−α
β
y +

α

β
t, t; ξ, η

)

dt, z(x, y) = (2−i)
(

y−β
α
x
)

, i = 1, 2.

(3.11c)

Relatively to the function (3.10) the following statement is true.

Math. Model. Anal., 14(3):407–421, 2009.
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Lemma 1. If g(x, y) ∈ C(1,h)(D), ψ(x) ∈ C
(0,h)
1/2 [0, p], ϕ(y) ∈ C

(0,h)
1/2 [0, q], 0 <

h < 1, then the function (3.10) and its first order derivatives are continuous in

the domain D, satisfies the equation (3.1) and boundary conditions u(0, y) = 0,
u(x, 0) = 0.

Proof. We consider the function K1i(x, y; ξ). We see that

∂G(x, y; ξ, η)

∂η
=

y − η

(x− ξ)2 + (y − η)2
.

Then it follows that

K1i(x, y; ξ)=

y
∫

z(x,y)

[

t−q
(x−α

β
y+α

β
t−ξ)2+(t−q)2 +

µ2(ξ)

µ1(ξ)

(

t

(x−α
β
y+α

β
t−ξ)2+t2

)]

dt.

(3.11)
Calculating the last integral for i = 1 we get

K11(x, y; ξ)=
β2

4(α2+β2)

[

ln |(x−ξ)2+(y−q)2|+µ2(ξ)

µ1(ξ)
ln |(x−ξ)2+y2|

]

+k11(x, y; ξ),

where

k11(x, y; ξ) =

− αβ

2(α2 + β2)

[

arctan

α
β
(x − ξ) + (y − q)

(x − ξ) − α
β
(y − q)

+
µ2(ξ)

µ1(ξ)
arctan

α
β
(x− ξ) + y

(x− ξ) − α
β
y

]

+
αβ

2(α2 + β2)

[

arctan
(y − q) − β

α
x− α

β
ξ

(x − ξ) − α
β
(y − q)

+
µ2(ξ)

µ1(ξ)
arctan

y − β
α
x− α

β
ξ

(x− ξ) − α
β
y

]

− β2

4(α2 + β2)

[

ln |ξ2 + (y − β

α
x− q)2| + µ2(ξ)

µ1(ξ)
ln |ξ2 + (y − β

α
x)2|

]

.

Calculating (3.11) for i = 2 we get

K12(x, y; ξ) =
β2

4(α2 + β2)

[

ln |(x− ξ)2 + (y − q)2| + µ2(ξ)

µ1(ξ)
ln |(x− ξ)2 + y2|

]

+ k12(x, y; ξ),

where

k12(x, y; ξ) =

− αβ

2(α2 + β2)

[

arctan

α
β
(x− ξ) + (y − q)

(x− ξ) − α
β
(y − q)

+
µ2(ξ)

µ1(ξ)
arctan

α
β
(x− ξ) + y

(x− ξ) − α
β
y

]

+
αβ

2(α2 + β2)

[

arctan

α
β
(x− ξ) − (α2

β2 y + q)

(x− ξ) − α
β
(y − q)

+
µ2(ξ)

µ1(ξ)
arctan

α
β
(x − α

β
y − ξ)

(x− ξ) − α
β
y

]

− β2

4(α2 + β2)

[

ln |(x − α

β
y − ξ)2 + q2| + µ2(ξ)

µ1(ξ)
ln |(x− α

β
y − ξ)2|

]

.
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Function k1i(x, y; ξ), when x = ξ, y = q and y = 0 is continuous and bounded,

and
∂k1i(x, y; ξ)

∂x
,
∂k1i(x, y; ξ)

∂y
are continuous and bounded for all x 6= ξ, y 6= q

and y 6= 0, and for x→ ξ, y → q and y → 0 the estimate takes place
∣

∣

∣

∣

∂k1i(x, y; ξ)

∂x

∣

∣

∣

∣

≤ c1
r
,

∣

∣

∣

∣

∂k1i(x, y; ξ)

∂y

∣

∣

∣

∣

≤ c2
r
,

where r2 = (x− ξ)2 + (y − η)2. Using the equality

∂G(x, y; ξ, η)

∂ξ
=

x− ξ

(x− ξ)2 + (y − η)2
,

functions K2i(x, y; η) are integrated similarly

K2i(x, y; η) =
α2

4(α2 + β2)

[

ln |(x− p)2 + (y − η)2|+ λ2(η)

λ1(η)
ln |x2 + (y − η)2|

]

+ k2i(x, y; η), (3.12)

k21(x, y; η) =

− αβ

2(α2 + β2)

[

arctan

α
β
(x − p) + (y − η)

(x − p) − α
β
(y − q)

+
λ2(η)

λ1(η)
arctan

α
β
x+ (y − q)

x− α
β
(y − η)

]

− αβ

2(α2 + β2)

[

arctan
(y − η) − β

α
x− α

β
p

(x− p) − α
β
(y − η)

+
λ2(η)

λ1(η)
arctan

(y − η) − β
α
x

x− α
β
(y − η)

]

− α2

4(α2 + β2)

[

ln |p2 + (y − β

α
x− η)2| + λ2(η)

λ1(η)
ln |(y − β

α
x− η)2|

]

,

k22(x, y; η) =

− αβ

2(α2 + β2)

[

arctan

α
β
(x − p) + (y − η)

(x − p) − α
β
(y − q)

+
λ2(η)

λ1(η)
arctan

α
β
x+ (y − q)

x− α
β
(y − η)

]

− αβ

2(α2 + β2)

[

arctan

α
β
(x − p) − α2

β2 y − η

(x− p) − α
β
(y − η)

+
λ2(η)

λ1(η)
arctan

α
β
x− α2

β2 y − η

x− α
β
(y − η)

]

− α2

4(α2 + β2)

[

ln |(x− α

β
y − p)2 + η2| + λ2(η)

λ1(η)
ln |(x − α

β
y)2 + η)2|

]

.

The function k2i(x, y; η), when x = 0, x = p and y = η, is continuous and

bounded, and
∂k1i(x, y; ξ)

∂x
,
∂k1i(x, y; ξ)

∂y
are continuous and bounded for all

x 6= 0, x 6= p and y 6= η, and for x → 0, x → p and y → η the following
estimate takes place

∣

∣

∣

∂k2i(x, y; η)

∂x

∣

∣

∣
≤ c3

r
,
∣

∣

∣

∂k2i(x, y; η)

∂y

∣

∣

∣
≤ c4

r
.

Similarly we prove that functions Ki(x, y; ξ, η), i = 1, 2 can be estimated as

|Ki(x, y; ξ, η)| ≤ c5

[α

β
(x− ξ) + (y − η)

]

ln |(x− ξ)2 + (y − η)2| + c6, (3.13)

Math. Model. Anal., 14(3):407–421, 2009.
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and derivativesKix(x, y; ξ, η), Kiy(x, y; ξ, η) are continuous for all x 6= ξ, y 6= η,
and if x → ξ, y → η they have the logarithmic singularity. These facts follow
from the expressions (3.11c) and (3.13).

Consequently, the inclusion ui(x, y) ∈ C(1,h)(D)
⋂

C3(D), i = 1, 2 follows
from the theory of harmonic potentials [21] and from the conditions of Lemma 1.
If we differentiate (3.10) with respect to x and y we get that ui(x, y) satisfies
equation (3.1). ⊓⊔

We search for a solution of problem Sαβ given in the form of (3.10). As-
suming that functions g(x, y), ψ(x), ϕ(y) satisfy the conditions of Lemma 1 we
get the function given in (3.10) satisfies all conditions of the problem. To prove
this result, we pass to the limit y → q at i = 1 and x → p at i = 2. Taking
into account the continuity of (3.10) we get the following integral equations to
determine the functions ψ(x) and ϕ(y):

− β

2π

p
∫

0

K11(x, q; ξ)ψ(ξ) dξ +
α

2π

q
∫

0

K21(x, q; η)ϕ(η) dη = Φ1(x), 0 ≤ x ≤ p,

(3.14)

− β

2π

p
∫

0

K21(p, y; ξ)ψ(ξ) dξ +
α

2π

q
∫

0

K22(p, y; η)ϕ(η) dη = Φ2(y), 0 ≤ y ≤ q,

(3.15)

here

Φ1(x) =
1

2π

∫∫

D

K1(x, q; ξ, η)g(ξ, η) dξdη,

Φ2(y) =
1

2π

∫∫

D

K2(p, y; ξ, η)g(ξ, η) dξdη.

It is easy to note that the kernels K11(x, q; ξ) and K22(p, y; η) of the integral
equations (3.14) and (3.15) have a logarithmic singularity at x = ξ and y = η
respectively, and for them estimates given below are valid. Also, K21(x, q; η),
K12(p, y; ξ), Φ1(x), Φ2(y) are continuously differentiable functions. This fact
follows from Lemma 1 and inequality (3.13).

In the class C1,h(D)
⋂

C3(D) the homogeneous problem (3.1), (2.2)–(2.5)
with respect to ψ(x) and ϕ(y) is equivalent to the system of integral equations
(3.14)–(3.15).

4 Existence of the Solution of Integral Equations

In this section we study question on existence of a solution of the system of
the integral equations (3.14)–(3.15) There are various methods for proving the
existence of a solution of the first kind Fredholm integral equations. Here we
use the proof, which is based on a particular inversion of integral operators
[14].
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Consider the equation (3.14). By splitting the kernel of the equation into
regular and singular parts, we write integral equation (3.14) as

− 1

2π

p
∫

0

[

ln |x− ξ| + k11(x, ξ)

]

ψ(ξ) dξ = F (x), (4.1)

where

k1(x, ξ) =
µ2(ξ)

µ1(ξ)
ln
∣

∣(x− ξ)2 + q2
∣

∣+
2α

β
k11(x, q; ξ),

F (x) =
α2 + β2

β2
Φ1(x) −

α2

2πβ2

q
∫

0

K21(x, q; η)ϕ(η) dη.

From the conditions of Lemma 1 it follows that function k1(x, ξ) and its first
derivatives are continuous and function F (x) ∈ C(1,h)[0, p].

Lemma 2. If F (x) ∈ C(1,h)[0, p], then the unique solution ψ(x) of the integral

equation (4.1) exists in the class C
(0,h)
1/2 [0, p].

Proof. Let us assume that solution ψ(x) of the equation (4.1) exists in the
class of functions, which satisfy Hölder’s condition in closed interval without
endpoints, and around the endpoints this solution can be represented as

ψ(x) =
ψ∗(x)

√

x(p− x)
,

where ψ∗(x) satisfies Hölder’s condition. So we represent the equation (4.1) as

− 1

2π

p
∫

0

ln |x− ξ|ψ(ξ)dξ = F1(x), (4.2)

F1(x) = F (x) +
1

2π

p
∫

0

k1(x, ξ)ψ(ξ) dξ.

The explicit solution of equation (4.2) is well–known [14, 21] and it can be
written by means of the resolvent of the kernel ln |x− ξ| for p 6= 4:

ψ(x) = − 1

4π
√

x(p− x)





p
∫

0

√

t(p− t)F
′

1(t) dt

t− x
+

1

ln(p/4)

p
∫

0

F1(t) dt
√

t(p− t)



 .

According to [17] function F (x) ∈ C(1,h)[0, p], for ψ(x) ∈ C(0,h)[0, p]. Let us set
an unknown function ψ∗(x) = ψ(x)

√

x(p− x). We get the following integral
equation relative to the function ψ∗(x) which is equivalent to the equation (4.1)
[15, 17].

ψ∗(x) +

p
∫

0

M1(x, ξ)
√

ξ(p− ξ)
ψ∗(ξ) dξ +

q
∫

0

N1(x, η)ϕ(η) dη = Φ3(x), (4.3)

Math. Model. Anal., 14(3):407–421, 2009.
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where

M1(x, ξ) =
1

4π2

[ 1

ln(p/4)

p
∫

0

k1(t, ξ)dt
√

t(p− t)
−

p
∫

0

√

t(p− t)k
′

1x(t, ξ)dt

t− x

]

,

N1(x, η) =
( α

2πβ

)3[ 1

ln(p/4)

p
∫

0

K12(t, q; η)dt
√

t(p− t)
−

p
∫

0

√

t(p− t)K
′

12x(t, q; η)dt

t− x

]

,

Φ3(x) = − 1

π2

α2 + β2

β2

[ 1

ln(p/4)

p
∫

0

Φ1(t)dt
√

t(p− t)
−

p
∫

0

√

t(p− t)Φ
′

1(t)dt

t− x

]

.

Analogously we inverse the main part of the integral equation (3.15) for q 6= 4.
We get the equivalent integral equation of the second kind:

ϕ∗(x) +

q
∫

0

M2(y, η)
√

η(q − η)
ϕ∗(η) dη +

p
∫

0

N2(y, ξ)ϕ(ξ) dξ = Φ4(y), (4.4)

where ϕ∗(y) =
√

y(q − y)ϕ(y),

M2(y, η) =
1

4π2

[ 1

ln(q/4)

q
∫

0

k2(τ, η)dτ
√

τ(q − τ)
−

q
∫

0

√

τ(q − τ)k
′

2y(τ, η)dτ

τ − y

]

,

N2(y, ξ) =
( β

2πα

)3[ 1

ln(q/4)

q
∫

0

K21(p, τ, η)dτ
√

τ(q − τ)
−

q
∫

0

√

τ(q − τ)K
′

21y(p, τ, η)dτ

τ − y

]

,

Φ4(y) = − 1

π2

α2 + β2

α2

[ 1

ln(q/4)

q
∫

0

Φ2(τ)dτ
√

τ(q − τ)
−

q
∫

0

√

τ(q − τ)Φ
′

2(τ)dτ

τ − y

]

.

It is shown in [20, 21] that the Fredholm alternative on solvability is appli-

cable to equations (4.3)–(4.4) with kernels
M1(x, ξ)
√

ξ(p− ξ)
,
M2(y, η)
√

η(q − η)
.

Equations (4.3), (4.4) and problem Sαβ are equivalent, thus their solvabil-
ity in the class of functions satisfying the Hölder condition follows from the
uniqueness Theorem 1.

After defining functions ψ(x) and ϕ(y), we get that a solution of the equa-
tion (3.1) satisfying homogeneous boundary conditions (2.2)–(2.5) looks like

u(x, y) =
1

2π

∫∫

D

P(x, y; ξ, η)g(ξ, η) dξdη, (4.5)

P(x, y; ξ, η) =
1

α2 + β2

∫ y

z(x,y)

[

G1

(

x− α

β
y +

α

β
t, t; ξ, η

)

− S
(

x− α

β
y +

α

β
t, t; ξ, η

)]

dt,
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and S(x, y; ξ, η) is almost defined kernel, depending on the Green function
G1(x, y; ξ, η) and its derivatives. This solution is continuous with any order
derivatives at (x, y) ∈ D. It is easy to show that function (4.5) at any g(x, y) ∈
C(1,h)(D) satisfies equation (3.1) and homogeneous conditions (2.2)–(2.5) [9].

Now we select g(x, y) so that function (4.5) satisfies equation (2.1). Since
g(x, y) ∈ C(1,h)(D), then derivatives ux, uy, uxx, uxy, uyy, (∆u)x, and (∆u)y

exist, they are continuous in the domain D and

(

α
∂

∂x
+ β

∂

∂y

)

(uxx + uyy) = 2πg(x, y).

Substituting (4.5) into (2.1) we get the following integral equation

g(x, y) =
1

2π

∫∫

D

K(x, y; ξ, η)g(ξ, η) dξdη + f(x, y), (4.6)

K(x, y; ξ, η) = a(x, y)
∂2P(x, y; ξ, η)

∂x2
+ 2b(x, y)

∂2P(x, y; ξ, η)

∂xy

+ c(x, y)
∂2P(x, y; ξ, η)

∂y2
+ a1(x, y)

∂P(x, y; ξ, η)

∂x

+ b1(x, y)
∂P(x, y; ξ, η)

∂y
+ c1(x, y)P(x, y; ξ, η).

It is easy to show that function P(x, y; ξ, η) satisfies inequalities
∣

∣

∣
Px(x, y; ξ, η)

∣

∣

∣
≤ c7 ln |r|,

∣

∣

∣
Pxx(x, y; ξ, η)

∣

∣

∣
≤ c8

|r| .

We note that the iterated kernel is square integrable. Thus instead of the
equation (4.6) we consider integral equation with iterated kernel

g(x, y) =

∫∫

D

K2(x, y; ξ, η)g(ξ, η) dξdη + f1(x, y), (4.7)

K2(x, y; ξ, η) =

∫∫

D

K(x, y; s, t)K(s, t; ξ, η) dsdt

f1(x, y) = f(x, y) +

∫∫

D

K(x, y; ξ, η)f(ξ, η) dξdη.

Since
∣

∣K(x, y; ξ, η)
∣

∣ ≤ c9/|r|, then we get [20]:

∣

∣

∣
K2(x, y; ξ, η)

∣

∣

∣
≤ c10 ln r + c11.

Consequently the Fredholm theorem is valid for the equation (4.7). Let us note
(see, [9]) that the integral equation (4.7) (and problem Sαβ) has the unique
solution if the following condition takes place

∫∫

D

∫∫

D

K2
2(x, y; ξ, η) dxdydξdη < 1.

Math. Model. Anal., 14(3):407–421, 2009.
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Solving equation (4.7) we find g(x, y) ∈ C(1,h)(D̄) and function u(x, y). It is
easy to check that function u(x, y), that is determined by formula (4.5), belongs
to the class g(x, y) ∈ C(1,h)(D̄) at C(1,h)(D̄)

⋂

C3(D). ⊓⊔

Hence, we get the following theorem.

Theorem 2. Let Assumptions 2.1 and 2.2 be fulfilled. Then the classical solu-
tion of the problem Sαβ exists.

This solution can be represented as (3.10), where ψ(x), ϕ(y) and g(x, y)
are already known functions. So existence of the solution of non–local problem
Sαβ is proved.
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