
i

i

“MMA14v31” — 2009/7/20 — 10:24 — page 399 — #1
i

i

i

i

i

i

Mathematical Modelling and Analysis ISSN 1392-6292 print

Volume 14 Number 3, 2009, pages 399–406 ISSN 1648-3510 online

Doi:10.3846/1392-6292.2009.14.399-406 www.vgtu.lt/mma/

c©Vilnius Gediminas Technical University, 2009

Existence and Iteration of a Positive Solution to

a Second-Order Quasilinear Problem

Q. Yao

Department of Applied Mathematics,
Nanjing University of Finance and Economics

Nanjing 210003, China
E-mail: yaoqingliu2002@hotmail.com

Received December 5, 2008; revised April 22, 2009; published online July 15, 2009

Abstract. A successive iteration sequence of positive solution is structured for a
singular second-order quasilinear problem. The sequence can converge uniformly
to the positive solution of the problem. Main tools are the Hammerstein integral
equation and the monotone iteration technique on cone. The iteration sequence starts
with known constant function and, therefore, is useful in computation analysis.

Key words: Singular quasilinear problem, positive solution, successive iteration,

existence theorem.

1 Introduction

Let n ≥ 3 be a positive integer and E ⊂ [0, 1] be a closed subset with zero
measure. The purpose of this paper is to consider the existence and iteration
of positive solution for the following second-order quasilinear problem

(P )







u′′(t) +
n − 1

t
u′(t) + f(t, u(t)) = 0, t ∈ [0, 1]\E,

u′(0) = 0, u(1) = 0.

Here, u∗ is called a positive solution of the problem (P ) if u∗ is a solution of
(P ) and u∗(t) > 0, 0 ≤ t < 1.

Because there exist important applications to the non-Newton flow and the
combustion theory (see [1, 2]), the problem (P ) has been studied by many
authors (see [3, 4, 5, 6, 8, 9, 10, 11, 17]). Among others, some authors con-
sidered the computational methods of its solution (see [6, 10, 17]). However
these papers mainly discussed the continuous problem (P ). Most of the re-
sults concentrated on some special kinds of the problem (P ), for example when
the source term is given as f(t, u) = h(t)uλe−µu, 0 ≤ λ < 1, 0 ≤ µ < +∞
(particularly, the Emden-Fowler equation).

In this paper we will use the following assumptions:

http://dx.doi.org/10.3846/1392-6292.2009.14.399-406
http://www.vgtu.lt/mma/
mailto:yaoqingliu2002@hotmail.com


i

i

“MMA14v31” — 2009/7/20 — 10:24 — page 400 — #2
i

i

i

i

i

i

400 Q. Yao

(H1) f : ([0, 1]\E) × [0, +∞) → [0, +∞) is continuous.

(H2) There exist constants 0 < k1 ≤ k2, 0 < λ < 1 and nonnegative functions
ji ∈ L1[0, 1] ∩ C([0, 1]\E), i = 1, 2 such that

(k1 − j1(t))u
λ ≤ f(t, u) ≤ (k2 + j2(t))u

λ, (t, u) ∈ ([0, 1]\E) × [0, +∞),

where sup
0≤t≤1

j1(t) ≤ k1 and
∫ ν

µ
(k1 − j1(t))dt > 0 for any 0 ≤ µ < ν ≤ 1.

(H3) f(t, ·) : [0, +∞) → [0, +∞) is nondecreasing for any t ∈ [0, 1]\E.

Therefore, we allow that f(t, u) can be singular on the set E × [0, +∞). Par-
ticularly, if E = {0, 1}, then f : (0, 1) × [0, +∞) → [0, +∞) is continuous and
may be singular at t = 0, 1.

Under the assumptions (H1)–(H3), problem (P ) may be nonautonomous
and the decomposition f(t, u) = h(t)uλ may not exist. To our best knowledge,
the existence and iteration of positive solution of the problem (P ) under the
assumptions (H1)–(H3) are not considered by any author.

By making use of the Hammerstien integral equation (see [7]) and the mono-
tone iterative technique on cone (see [9]), we will construct a successive iteration
sequence. In order to prove the convergence of the sequence, we will construct
an effective cone. Applying the sequence and the cone, we will obtain not only
the existence of a positive solution, but also construct the iteration method
for finding this positive solution. The motivation of this work comes from our
papers [12, 13, 14, 15, 16].

2 Preliminaries

Consider the Banach space C[0, 1] equipped with the norm ‖u‖ = max
0≤t≤1

|u(t)|.
Let G(t, s) be the Green function of the problem (P ) when f(t, u) ≡ 0:

G(t, s) =











1

n − 2
sn−1(s2−n − 1), 0 < t ≤ s ≤ 1,

1

n − 2
sn−1(t2−n − 1), 0 < s ≤ t ≤ 1,

Computing the partial derivative of G(t, s) with respect to t, we obtain

∂

∂t
G(t, s) =

{

0, 0 ≤ t < s ≤ 1,

−sn−1t1−n, 0 < s ≤ t ≤ 1.

In this paper, we will use the following constants and symbols:

γ =

(

1

2

)1/(n−2)

, β1 =

∫ γ

0

sn−1j1(s) ds, β2 =

∫ γ

0

(s − sn−1)j2(s) ds,

σ =

[

k1 − n2n/(n−2)β1

k2(n − 1) + n2n/(n−2)β2

]1/(1−λ)

, A = max
0≤t≤1

∫ 1

0

G(t, s)ds =
1

2n
,
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B = max
0≤t≤1

∫ γ

0

G(t, s) ds =
n − 1

2n(n − 2) n−2
√

4
,

C+[0, 1]={u ∈ C[0, 1] : u(t)≥0, 0 ≤ t ≤ 1},

K = {u ∈ C+[0, 1] : min
0≤t≤γ

u(t) ≥ σ‖u‖}, K[r1, r2] = {u ∈ K : r1 ≤ ‖u‖ ≤ r2}.

Obviously, 0 < σ < 1, 0 < B < A and K is a cone of nonnegative functions in
C[0, 1]. In addition, we denote

M1 = max
0≤t≤1

∫ γ

0

G(t, s)j1(s) ds, M2 = max
0≤t≤1

∫ 1

0

G(t, s)j2(s) ds.

Define the operator T as follows

(Tu)(t) =

1
∫

0

G(t, s)f(s, u(s)) ds, 0 ≤ t ≤ 1, u ∈ C+[0, 1].

It is easy to see that T : C+[0, 1] → C+[0, 1] is well defined under the assump-
tions (H1) and (H2).

Lemma 1. Assume that (H1) and (H2) hold. Then for any u ∈ K,

(Tu)′(t) =

1
∫

0

∂

∂t
G(t, s)f(s, u(s)) ds, 0 ≤ t ≤ 1.

Proof. It is easy to see that |G(t + ∆t, s) − G(t, s)| ≤ |∆t|. Let u ∈ K. Then
∣

∣

∣

∣

1

∆t
[G(t + ∆t, s) − G(t, s)] f(s, u(s))

∣

∣

∣

∣

≤ f(s, u(s)).

By the assumption (H2),
∫ 1

0

f(s, u(s)) ds ≤
(

k2 +

∫ 1

0

j2(s) ds
)

‖u‖λ < ∞.

Applying the Lebesgue dominated convergence theorem, we obtain

(Tu)′(t) = lim
∆t→0

1

∆t
[(Tu)(t + ∆t) − (Tu)(t)]

= lim
∆t→0

1
∫

0

G(t + ∆t, s) − G(t, s)

∆t
f(s, u(s)) ds =

1
∫

0

∂

∂t
G(t, s)f(s, u(s)) ds.

⊓⊔

Lemma 2. Assume that (H1) and (H2) hold. Then the operator T has follow-
ing properties:
(1) If u ∈ C+[0, 1] and ‖u‖ > 0, then (Tu)(t) > 0, 0 ≤ t < 1.

(2) If u ∈ C+[0, 1], then (Tu)(t) is a non-increasing function on [0, 1] and
‖Tu‖ = (Tu)(0).

(3) T : C+[0, 1] → C+[0, 1] is completely continuous.

Math. Model. Anal., 14(3):399–406, 2009.
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Proof. (1) By the expression of G(t, s), we have G(t, s) > 0, 0 < t, s < 1. Let
u ∈ C+[0, 1] and ‖u‖ > 0, then there exist 0 ≤ µ < ν ≤ 1 such that u(t) > 0,
µ < t < ν. By the assumption (H2),

f(t, u(t)) ≥ (k1 − j1(t))u
λ(t), k1 − j1(t) ≥ 0, 0 ≤ t ≤ 1

and
∫ ν

µ (k1 − j1(t)) dt > 0. Applying these facts, we get, for 0 ≤ t < 1,

(Tu)(t) ≥
∫ 1

0

G(t, s)(k1 − j1(s))u
λ(s) ds ≥

∫ ν

µ

G(t, s)(k1 − j1(s))u
λ(s) ds > 0.

(2) Direct computations give that

(Tu)(1) =
1

n − 2

∫ 1

0

sn−1(1 − 1)f(s, u(s)) ds = 0.

By Lemma 1 and the expression of ∂
∂tG(t, s), we have

(Tu)′(t) = − 1

tn−1

∫ t

0

sn−1f(s, u(s)) ds ≤ 0, 0 ≤ t ≤ 1.

Thus, (Tu)(t) is a non-increasing function on [0, 1] and ‖Tu‖ = (Tu)(0).

(3) Let us assume that r > 0 and V (r) = {u ∈ C+[0, 1] : ‖u‖ ≤ r}. Let

denote ζm(t) = min{j2(t), m}, then lim
m→∞

∫ 1

0 [j2(t) − ζm(t)] dt = 0. Define

fm(t, u) =

{

f(t, u), f(t, u) ≤ (k2 + ζm(t))uλ,

(k2 + ζm(t))uλ, f(t, u) ≥ (k2 + ζm(t))uλ;

(Tmu)(t) =

∫ 1

0

G(t, s)fm(s, u(s)) ds, 0 ≤ t ≤ 1, u ∈ C+[0, 1].

Then fm : ([0, 1]\E)× [0, r] → [0, +∞) is continuous and bounded. Let

M(r, m) = sup{fm(t, u) : (t, u) ∈ ([0, 1]\E) × [0, r]}.

If u ∈ V (r), then 0 ≤ u(t) ≤ r, 0 ≤ t ≤ 1. Thus, fm(t, u(t)) ≤ M(r, m), t ∈
[0, 1]\E. So, for 0 ≤ t ≤ 1, we obtain

|(Tmu)′(t)| =
1

tn−1

∫ t

0

sn−1fm(s, u(s)) ds ≤ M(r, m)

tn−1

∫ t

0

sn−1 ds

≤ M(r, m)t

n
≤ M(r, m)

n
.

By the differential mean value theorem, we have

|(Tmu)(t2) − (Tmu)(t1)| ≤
M(r, m)

n
|t2 − t1|, 0 ≤ t1, t2 ≤ 1.
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It implies that Tm(V (r)) is an equicontinuous set in C[0, 1]. On the other hand,

sup{‖Tmu‖ : u ∈ V (r)} = sup
u∈V (r)

max
0≤t≤1

∫ 1

0

G(t, s)fm(s, u(s)) ds

≤ M(r, m) max
0≤t≤1

∫ 1

0

G(t, s)ds ≤ M(r, m)/(2n).

It follows that Tm(V (r)) is a bounded set in C[0, 1]. By the Arzela-Ascoli
theorem, the set Tm(V (r)) is compact and Tm : V (r) → C+[0, 1] is completely
continuous. Since

sup
u∈V (r)

‖Tu− Tmu‖ = sup
u∈V (r)

max
0≤t≤1

∫ 1

0

G(t, s)[f(s, u(s) − fm(s, u(s))] ds

≤ sup
u∈V (r)

max
0≤t≤1

∫ 1

0

G(t, s)(j2(s) − ζm(s))uλ(s) ds

≤ rλ max
0≤t,s≤1

G(t, s)

∫ 1

0

(j2(s) − ζm(s)) ds → 0 (m → ∞).

It implies that the completely continuous operators {Tm}∞m=1 uniformly con-
verges to T on the bounded set V (r). Thus, T : V (r) → C+[0, 1] is completely
continuous. By the arbitrariness of r > 0, T : C+[0, 1] → C+[0, 1] is completely
continuous. ⊓⊔

Lemma 3. Assume that (H1) and (H2) hold. Then T : K → K.

Proof. Let u ∈ K. Then Tu ∈ C+[0, 1] by Lemma 2(3). We need to prove
that min

0≤t≤γ
(Tu)(t) ≥ σ ‖Tu‖. We will use the useful fact: if β ≥ α > 0, τ ≥ 0,

then α+τ
β+τ ≥ α

β . From Lemma 2 (2) and the definition of constant σ, we have

min
0≤t≤γ

(Tu)(t)

‖Tu‖ =
(Tu)(γ)

(Tu)(0)

=

∫ γ

0 sn−1(γ2−n − 1)f(s, u(s)) ds +
∫ 1

γ sn−1(s2−n − 1)f(s, u(s)) ds
∫ γ

0
sn−1(s2−n − 1)f(s, u(s)) ds +

∫ 1

γ
sn−1(s2−n − 1)f(s, u(s)) ds

≥
∫ γ

0
sn−1(γ2−n − 1)f(s, u(s)) ds

∫ γ

0 sn−1(s2−n − 1)f(s, u(s)) ds
≥

∫ γ

0
sn−1(k1 − j1(s))u

λ(s) ds
∫ γ

0 (s − sn−1)(k2 + j2(s))uλ(s) ds

≥

[

min
0≤t≤γ

u(t)
]λ[

k1

∫ γ

0
sn−1 ds −

∫ γ

0
sn−1j1(s) ds

]

[

max
0≤t≤1

u(t)
]λ[

k2

∫ γ

0
(s − sn−1) ds +

∫ γ

0
(s − sn−1)j2(s) ds

]

=
σλ‖u‖λ(k1

1
n (1

2 )n/(n−2)−β1)

‖u‖λ
(

k2

[

1
2 (1

2 )n/(n−2)− 1
n (1

2 )n/(n−2)
]

+ β2

) =
(k1−n2n/(n−2)β1)σ

λ

k2(n−1)+n2n/(n−2)β2
= σ.

The proof is complete. ⊓⊔

Math. Model. Anal., 14(3):399–406, 2009.
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3 The Main Result

Let a ≥ [k2A + M2]
1/(1−λ) be a positive constant. In this paper, we construct

the following successive iteration sequence

u0(t) ≡ a, um(t) =

1
∫

0

G(t, s)f(s, um−1(s))ds, 0 ≤ t ≤ 1, m = 1, 2, . . . .

The main result is given in Theorem 1. It shows that the problem (P ) has a
positive solution u∗ ∈ C[0, 1] and the sequence {um(t)}∞m=1 converges uniformly
to u∗(t) on [0, 1] under the assumptions (H1)–(H3).

Theorem 1. Assume that (H1)–(H3) hold. Then problem (P ) has one positive
solution u∗ ∈ K ∩ C1[0, 1] ∩ C2([0, 1]\E) such that

‖u∗‖ ≤ a, lim
m→∞

‖ũm − u∗‖ = 0.

Proof. Let 0 < b ≤ [σλ(k1B − M1)]
1/(1−λ). Obviously, b < a. By Lemma 2

and 3, the operator T : K[a, b] → K is completely continuous. If u ∈ K[a, b],
then σb ≤ σ ‖u‖ ≤ min

0≤t≤γ
u(t) ≤ max

0≤t≤1
u(t) = ‖u‖ ≤ a. It follows that

‖Tu‖ ≤ max
0≤t≤1

∫ 1

0

G(t, s)(k2 + j2(s))u
λ(s) ds

≤ ‖u‖λ
[

k2 max
0≤t≤1

∫ 1

0

G(t, s)ds + max
0≤t≤1

∫ 1

0

G(t, s)j2(s) ds
]

≤ aλ(k2A + M2) ≤ a,

‖Tu‖≥ max
0≤t≤1

∫ γ

0

G(t, s)[k1 − j1(t)]u
λ(s) ds

≥σλ‖u‖λ
[

k1 max
0≤t≤1

∫ γ

0

G(t, s)ds −max
0≤t≤1

∫ γ

0

G(t, s)j1(s)ds
]

≥ σλbλ(k1B−M1)≥b.

Thus, T : K[a, b] → K[a, b]. By the definition of um, um = Tum−1, m =
1, 2, . . .. Since u0 ∈ K[a, b], we have u1 = Tu0 ∈ K[a, b]. It follows that

u1(t) ≤ ‖u1‖ ≤ a = u0(t), 0 ≤ t ≤ 1.

By the assumption (H3), for 0 ≤ t ≤ 1,

u2(t) = (Tu1)(t) =

∫ 1

0

G(t, s)f(s, u1(s)) ds ≤
∫ 1

0

G(t, s)f(s, u0(s)) ds = u1(t)

and u2 = Tu1 ∈ K[a, b]. By induction, we assert that

um+1(t) ≤ um(t), 0 ≤ t ≤ 1, um ∈ K[a, b], m = 1, 2, . . . .

Since T : K[a, b] → K[a, b] is completely continuous, there exist a subsequence
{umk

} ∞
k=1 ⊂ {um} ∞

m=1 and a function u∗ ∈ K[a, b] such that umk
→ u∗ in

C[0, 1]. Since um+1(t) ≤ um(t), 0 ≤ t ≤ 1, m = 0, 1, 2, . . ., we see that
um → u∗ in C[0, 1].
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Putting m → ∞ in the equality um+1 = Tum, we get Tu∗ = u∗. Since
u∗ ∈ K[a, b], we have 0 < b ≤ ‖u∗‖ ≤ a. By Lemma 2 (1), u∗(t) = (Tu∗)(t) > 0,
t ∈ [0, 1). Since Tu∗ = u∗, we have

u∗(t) =

∫ 1

0

G(t, s)f(s, u∗(s)) ds, 0 ≤ t ≤ 1.

By the definition G(1, s) = 0, 0 < s ≤ 1. So u∗(1) = 0. By Lemma 1, for
0 ≤ t ≤ 1.

(u∗)′(t) =

∫ 1

0

∂

∂t
G(t, s)f(s, u∗(s)) ds = − 1

tn−1

∫ t

0

sn−1f(s, u∗(s)) ds.

By the definition ∂
∂tG(0, s) = 0, 0 < s ≤ 1. So (u∗)′(0) = 0. Noticing that

[0, 1]\E is an open subset in [0, 1], we get

(u∗)′′(t) = −n − 1

t
(u∗)′(t) − f(t, u∗(t)), t ∈ [0, 1]\E.

In other words, u∗(t) is a positive solution of the problem (P ) and u∗ ∈ K ∩
C1[0, 1] ∩ C2([0, 1]\E). The proof is completed. ⊓⊔

Remark 1. By the proof of Theorem 1, the iterative sequence {um} ∞
m=0 is non-

increasing, that is a = u0(t) ≥ u1(t) ≥ . . . ≥ um(t) ≥ . . . ≥ u∗(t), 0 ≤ t ≤ 1.

Remark 2. By the assumption (H2), f(t, 0) ≡ 0, t ∈ [0, 1]\E. So the problem
(P ) has a trivial solution. The purpose of Theorem 1 is to find a positive
solution other than this trivial solution of (P ).

4 An Example

The following example illustrates that our result is useful for the computational
analysis.

Example 1. Let ρ > 0. Consider the quasilinear boundary value problem






u′′(t) +
n − 1

t
u′(t) + ρ

[1 + u

4 + u
+

1
√

t(1 − t)

]

√

u(t) = 0, 0 < t < 1,

u′(0) = 0, u(1) = 0.

Here, f(t, u) = ρ

[

1+u
4+u + 1√

t(1−t)

]√
u. Obviously, f(t, u) is an increasing func-

tion in u. Moreover,

ρ

4

√
u ≤ f(t, u) ≤ ρ

[

1 +
1

√

t(1 − t)

]√
u, (t, u) ∈ [0, 1] × [0, +∞).

In this example, E = {0, 1}, λ = 0.5, k1 = ρ/4, k2 = ρ, j1(t) ≡ 0, j2(t) =
ρ/

√

t(1 − t). Noticing that G(t, s) ≤ 1/(n − 2), we can choose

a ≥
[ ρ

2n
+

ρ

n − 2

∫ 1

0

1
√

t(1 − t)
dt

]2

= ρ2
[ 1

2n
+

π

n − 2

]2

.

Math. Model. Anal., 14(3):399–406, 2009.
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By Theorem 1, the problem has a positive solution u∗ ∈ C1[0, 1] ∩ C2(0, 1)
and u∗(t) can be approximated uniformly by the sequence {um(t)} ∞

m=1 on [0, 1].
In this example, f(t, u) is singular at t = 0, t = 1 and can not be decomposed
to the form f(t, u) = h(t)uλ.
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