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Abstract. A model for age-structured human communities is studied taking into
account a religion factor. The model describes dynamics of interacting religions which
tolerate pairs with different confessions, parents can choose a religion not necessarily
their own for their offsprings, but it is forbidden to change a confession for any
individual. In the case of stationary vital rates, the existence of separable solutions
is studied.
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1 Introduction

Two-sex population models are of great importance for genetics (see e.g. Svire-
zhev and Passekov [12]| and references therein), demography and epidemiology,
in particular for modelling sexually transmitted diseases (see e.g. references in
Hadeler [2], Priiss and Schappacher [4]). Both random mating (without forma-
tion of permanent male-female couples) and monogamous marriage models (see
Frederickson [1], Hoppensteadt [3], Staroverov [11], Hadeler [2], Skakauskas [9]
and references therein) are usually used. The most general sex-age-structured
population deterministic model taking into account marriages has been pro-
posed by Hoppensteadt [3] and Staroverov [11], and consists of a system of
three integro-differential equations for the densities of single (unmarried) fe-
males, single males, and pairs. Hadeler [2] simplified this model by introducing
a maturation period into the mating law.

The Staroverov-Hadeler model has been generalized by Skakauskas |7, 8, 10]
taking into account a religion factor and child care. In ecology an individual
can be characterized by age and sex. In genetics it can be done by age, sex and
a genotype parameter, and in epidemiology age, sex and disease parameters
are used. In [7], we extended the list of essential parameters characterizing an
individual by adding a religion factor which is very important for pair formation
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of some human communities. Two different population dynamics models were
presented in [7]. The first model tolerates the religion change for the sake of
marriage. The second one forbids any confession change of individuals but lets
parents to choose a religion not necessarily their own for their newborns.

In the present paper, we consider the second model and study its separable
solutions. The plan for this paper is as follows. In Section 2, the model for
interacting religion communities is described. In Section 3, conditions for the
existence or nonexistence of separable solutions are given. In Section 4, we
examine separable solutions in the case of constant vital rates. In Section 5,
two lemmas are proved. The concluding remarks are given in Section 6.

2 The Mathematical Model

In this section we describe the model of human communities taking into ac-
count interacting religions which forbid any change of the confession for their
individuals, but let parents to choose the religion not necessary their own for
their newborns [7]. The model consists of the following equations

oul + 0 uf = —vFul —LF 4 SF >0, 7 eQF, k=1,2, (2.1)

atufj Z@Tku” = V” +v? +0”) ug;, t>0, (71,72,73) € Q% (2.2)

0, <7, 0, m<T,
Lr={ 7 =0T 2.3
' Z/fisdTQ, > T, ' Z/fsidTla T2 > T, 23
s=17 s=17
0, n<r,
gl=4 "7 T ) (2.4)
i / drs / Z(l/?s + iUl do, T > T,
0 Tar =1
0, m<T,
=47 T (2.5)
i / drs / Z(Vslz +og)ud, dry, ™ > T
0 Tapr =1
subject to the conditions
o0 o0
uk ():/df3 /yd7‘1 / Z ulbF Qgjidre, >0, k=1,2, (2.6)
=
! 0 T3+T T3+T s,J=1
2 n
fij == u?j o Qm”uzlu?/zz:/uf dé, t>0, 7,72 € (1,00), (2.7)

k=1s=17
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’U/]f 0: ’U/,Ifo, T € (0700), k= 1,2, u?j O: uf’jo, (7-1’7-2’7-3) c Q3, (28)
t= t=
n
il ] =0, t>0, k=12, } Qs =1, t>0, (r,7,7) € Q"
s=1
Herei,j = 1,...,n, where n is the number of interacting religions, Q* = (0, 7)U

(’T,OO), k = 1727 Q3 = {(7—1;7—277_3) 1T € (7_3 +’T,OO), T2 € (7—3 + T, OO), T3 €
(0,00)}, ul(t,m1) is the density at time ¢ of single (unmarried) males of age 7
and of the ith religion, u?(¢, 72) is the density at time ¢ of single (unmarried)
females of age o and of the ith religion, ufj(t, T1,T2,T3) is the density at time ¢
of a pair which is formed of a male of age 7, and of the ith religion and a female
of age 7 and of the jth religion, and which have existed for 73 units of time,
v}(t,71) denotes the death rate at time ¢ of single males of age 71 and of the ith
religion, v2(t,72) is the death rate at time ¢ of single females of age T and of
the ith religion; l/ilj (t, 71,72, 73) denotes the death rate at time ¢ of males from a
pair formed of a male of age 7 and of the ith religion and a female of age 7 and
of the jth religion, and which have existed for 73 units of time, ij (t,71,72,73)
is the death rate at time ¢ of females from a pair formed of a male of age 71 and
of the ith religion and a female of age 75 and of the jth religion, and which have
existed for 73 units of time, 0;(t, 71, T2, 73) is the divorce rate at time ¢ of pairs
formed of a male of age 71 and of the ith religion and a female of age 7 and
of the jth religion, and which have existed for 73 units of time, bgj(t, T1,T2,T3)
denotes the birth rate at time ¢ of males produced by a pair formed of a male
of age 71 and of the ith religion and a female of age 75 and of the jth religion,
and which have existed for 73 units of time, bfj (t, 11,72, 73) is the birth rate at
time ¢ of females produced by a pair formed of a male of age 71 and of the ith
religion and a female of age 7 and of the jth religion, and which have existed
for 73 units of time, L¥(t,74), k = 1,2 are the single individuals of age 7, and
of the ith religion loss rate caused by the marriage, S¥(t,7x), k = 1,2 are the
single individuals of age 7 and of the ith religion gain rate caused by the death
of the pair partner and divorce of pairs, f;;(t, 71, 72) denotes the formation rate
of pairs consisting of a male of age 71 and of the ith religion and a female of
7o age and of the jth religion, (2, (¢, 71,72, 73) is the probability that a pair,
formed of a male of age 71 and of the ith religion and a female of age 7 and
of the jth religion and which have existed for 75 units of time, will choose the
ith religion for its newborn produced at time ¢, u%(7;.), k = 1,2; ufjo (11,72,73)
are the initial distributions, [u*(t,7)] denotes the jump discontinuity of u¥ at
the line 7, = 7, k =1, 2.

3 Separable Solutions

In this section, we examine system (2.1)—(2.8) with vital rates v, ij, o, b,
m;;, and {2,;; independent of ¢ and look for solutions of the form

ub(t, 1) = UF(m1.) exp{\t}, ul® = U}, (5.1)
u?j(t,ﬁ,rg,Tg) = U3(11, 72, 73) exp{At}, uf’jo = Ui3j,

Math. Model. Anal., 14(3):369-390, 2009.
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where UF, Uf’, and the constant A are to be determined. We substitute Eq.

(3.1) into (2. ) (2.7) to obtain

dUF
Ui =—(A+ Vf)Uik, 71 € (0, 7],
di
U{f(o):/dr3 / dry / Z UL Qidra, k=1,2,
0 T3+T T3+T s,J=1
dUl 1 T1—T oo
p— ()\—i— —|—fZ/mzsU dTQ)U /dTg/ Z VlS—I—O'Zs)U dro,
0 T34+T s=1
™ >, [UHT)] =0, (3.3)

M:

2
‘f;é - (M +fZ/mszU dry U2+ /dTg/

0 341 S

Ty > T, [UZQ(T)] =0, (3.4)

(1/82 + sz)U dTs,

Il
.

Z GT,CUSJ =—(\+ Vilj + ij +O‘ij)U?j, (11,72,73) € Q3,

a=1

71=0 f ’

2 n oo
where f= Y > [Uk(r,)dry. Set

fwz, ” fw” (3.6)

Then

ZZ/ () d7ie = 1. (3.7)

k=1a=17

Formal integration of Eq. (3.5) gives
wii (11, 72,73) = wi (1 — T3)w (12 — 73) Ky (11 — 73,72 — 73,733 A),  (3.8)
where

Kij(m1 — 73,72 — T3, T3; A)

= 2myj(m1 — 73,72 — T3) eXp / Ui §+T1*T3,§+T2*Ts,§)+>\)df}
0

:Kij(71*7—377_2 7—3;7—3, eXp( >\7—3)7 V’L]*V +V +Uz]
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Inserting (3.6) and (3.8) into (3.3), (3.4), and ((3.2))2 we get

d 1 n oo T1—T
%:—(A—FV}#—ZZ/miswngg)wil—i— / drs / Z%"‘Uza
s=1 T 0 T3+T S=t
x (11 — 7‘3)1[)?(7’2 —13)Ks(m1 — T3, 720 — T3, T3; A) dT2, T1 > T, [wzl (r)] =0,
(3.9)
T2—T o0 n
dw2 1 1
e ()\ + 1/ +2 Z Mgi W, dﬁ)w + drs Z(l/si + 04 )wy
0 T3+T s=1
x (11 — 13)wi (9 — Tg)KSi(Tl — T3, T2 — T3, T3; N dr1, T2 > T, [wi(7)] =0,
(3.10)
kroy = ko 1 2
wh(0) = / drs / dn / > 25| (11 gy s (11 = T3)3 (72 = 73)
0 T3+T T3+T s,j=1
x Kgj(mi — 13,70 — T3, 73;\)dm1, k=1,2, (3.11)
Set w! = (wi,...,w}), w? = (w},..., w2),

oo
n
i, w?) = QZ/mis(n,Tz)wg(Tz)dTg,
s=17
n o0
72 (1, w0") = QZ/msi(Tl,Tg)w;(Tl)dTl,
s=1

R(Tl,:nw A) /Zw Kis(z,y,m1 — a3 \)

X (st + Uis)}( dy = (7'1 z; w2 ,0)exp{=\(11 — )},

T1,Y+T1—T,T1—)

R(l‘ 7'2,’U.) )\ /Z'w Ky y;l' T2 — )\)

X (Vslz + 04i) )dy = R (z, TQ,w ,0) exp{—\(12 — )},

}(y+72—$,7'2,7'2 -

[ee]
k
sjz ZC y7 /KSJ x,Y,T3; )(b‘szSj,’i)|(m+7.37y+7.377.3)d7-3
0
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This allows us to rewrite Egs. (3.9)—(3.11) in the form

T1

1
cfiwi :-(A-i—yil—i—r (11; @ ))w +/ L(2)RY (1, w2, ) da,
T1
wi|, _ =wi(r), (3.12)
dw? 7
dw —(A+ v+ (72;U_Jl))w?Jr/w?(x)Rf(m,Tg;u‘;l,A)dgc,
T1
wi| | =wi(r), (3.13)
/dl‘/ Z I;j z(x yaA)dya k= 172~ (314)
s,7=1

From Egs. (3.2) and (3.6), it follows that

Tk

wf(Tk) = wf(O)fik(Tk;A), fik(’l'k; A) = exp{ — /()\ + Vf(x))dx}
0

Hence,
wy (1) = wi (0) £ (5 \). (3.15)

It remains to solve Eqgs. (3.12)—(3.15) and (3.7). Therefore, separable solutions
(3.1) of Egs. (2.1)-(2.7) correspond to solutions (w®, w?, \) of problem (3.12)—
(3.15) and (3.7). To treat the existence or nonexistence of separable solutions
we follow the papers [10, 9] in which we used the Priiss and Schappacher [4]
method applied for the investigation of separable solutions to the Staroverov
[11] model with the Keyfitz-Hadeler pair formation function [5]. According
to this method, we have to reformulate system (3.12)—(3.15) and then apply
Schauder’s fixed-point principle [6]. For this reformulation we choose the space

X:{(wl,w2);w§ €Ll (r,00), k=12 s:1,...,n}

and set
D= {(@" v : (@, 0?) ZZ | wh =1},

where || - || := || - ||£1(r,00). Obviously, D is closed, bounded, and convex. We
shall construct the operator F* : D — D with at least one fixed point in D.
To do this, we linearize system (3 12) and (3. 13) by prescrlblng (w w?) €
D involved in r}(r1;w?), 72 (ro;w'), R} (m1,2;w%, \), and R? (7o, z;w! )\) i =

1,...,n. Then, for given (w',w?) and a real A\, we define

11-1(7'1; A=A+ l/il(Tl) + rl-l(ﬁ;u’}Q), l?(Tg;)\) =+ Vf(rg) + r?(rg;wl),
91‘1(7_1;1'; >‘) = Ril(’]'l,ﬂf;'LDQ,)\), 91‘2(1'77—2;>‘) = Rf(vaQ;wla >‘)
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with ¢ = 1,...,n and rewrite Egs. (3.12) and (3.13) as follows:

T1

dw?l

d:l—)z :—lil('rl; >\)?JJ11+/ 'LUzl (IL’)Q,} (7'1, T )\)dl‘, wil (T):’Ll}il (O)le (7_; )\)’ (316)
1

dw/? 2 2 7 2 2 9 9 5

PR = (s Nwi+ | wy (x)g; (z, 723 N)de, w; (T)=w;(0)f(r;A) (3.17)

with w?(0) defined by Eq. (3.14). Letting
wi (1) = w (7)2] () (3.18)

with k = 1,2, = 1,...,n, and wf(7) defined by (3.15) from Egs. (3.16) and
(3.17) we get

T1

dzt

diz = —11-1(7'1; )\)zzl —|—/ z}(m)g} (11,23 \) de, 211(7') =1, (3.19)
1

dzf 2 2 i 2 2 2

T =—(m; Nzl + | z2(x)g; (x, 125 \) dy, 22 (1) = 1. (3.20)

T

Note that these equations can be examined separately and that

= 2} (w2, ) = 2]

2! ;
212 = 12(7'2 w', ) 2212(72;117170)6Xp{ — A2 _T)}'

By formal integration of Egs. (3.19) and (3.20) we derive

2} (1) :exp —/Tll-l E;A)d«f}

/exp /l (&N d£ ]Z 2)gt(n, z; )\)dx)dn, (3.21)

Z(m)=exp | —/13 & 2)dc

T2 T2 n
+/exp{ /12 & N)dE /z )92 (z,m; )d:c)dn, (3.22)
which can be written in the form
T1 T1
A =ew{ - [Henieh+ [H@CHnand, (329

Math. Model. Anal., 14(3):369-390, 2009.
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T2 T2

2(m) = exp{ — /zf(g;A)dg} +/23(x)G§(z,TQ;A) da (3.24)
with
Gl(rm,aiX) = [ ghn.ainexo { /l (& N},
x n
G?@s,n;A):/g?(z,wexp{f/li@;A)ds} .
x n
Set zF = (2F,...,2F),

m* =max sup mgs, v, = min (mininf ¥, mininf %),
7,8 [r,00)2 ki QF k,i,s Q3

Tk
zf* (Tke, \)=exp {f/()\+1/f(:£)+2m*)d:c}, S (T, \)=exp {—()\er*)(kaT)},
with A > —v,,

di

- 4m
_ L5 52y Lk 1 <
D {(Z,z) ZZGC([T,OO))Z _z < +—)\+1/*’

) “ix

k:Lﬂ.

Lemma 1. Let v, and o;s be positive, mlS be positive and bounded, and let
vk € C%[r,00)), mis € C°[r,00)2), v v and o € CO(Q%), (w' 1?)2) € D.
Then, for a real A > —v., the following assertions are true:

(i) Egs. (3.23) and (3.24) have a unique positive solution z}!(Ti;w? \) and
22(ma;wl, \) such that

*

4m
+V*’

e (ro)nCl(noc)). 2h<sbeal |2

d’l‘k
that is (2',2%) € D.
(ii) The operator FA . (wh, w?) — (21(-,11’)2,)\),’

(,w*, N) from D to X is
completely continuous (compact), moreover F)‘( ycDcCX.

The proof of Lemma 1 is given in Section 4.
Inserting (3.18) with w?(7) defined by (3.15) into (3.14), we get the system

= > pb " % Nl (0)w?(0) (3.25)

s,j=1

with
Pl (0w N)=F (T N £ (15 N)

)

oo oo

X /dx/n’;jd(x,y; \) zH(z, w2, \) zjz(y;u_)l,)\) dy.

T T
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Examination of the solution to system (3.25) and its behaviour as A — oo in
general case of vital rates is a complicated problem. Therefore, we restrict
ourselves to the consideration of the following two cases:

k., vE, and oy satisfy conditions of Lemma 1
and do not depend on the confession number, functions ¥, and ¥ increase
as ages tend to oo, bfj = ﬁfjb(ﬁ,rg,rg) with positive constants ﬁfj and
positive bounded b € C°(Q?), all f2,;; are nonnegative constants;

1. The vital functions m;s, V¥, vF

2. All vital rates are continuous and bounded with positive lower bounds,
n =2, and sex ratio of newborns is a constant, i.e., b; = 7b;;.

Case 1. Definition of fF, 7%, I, RF K;;, and G¥ and Egs. (3.23) and (3.24)
show that zF is also independent of the confession number. Letting v* =
vk ok = vk o =0y, 28 = 2F K = Ky, and fE(7,\) = fF(r,\) we rewrite

Egs. (3.25) as follows

wf(O) = Z w;(o)w?(o)aﬁj,iQ(wlaEQa A)s a];j,i = ﬂfjgsj,i, (3.26)

g(w', w0, \) = fHr () [ 2z, w? Nde [ 22 (2,0t
[t

T
oo

X /exp{—)\rg}K(x + 73,y + 73, 73,0)b(x + T3,y + T3, T3)dT3 (3.27)
0

We examine system (3.26) in two cases: (11) all £25;; > 0 and (12) all £25,; > 0
In the first case the following statement is true.

Lemma 2. Let §2,;; and ” be positive constants and b € C°(Q?) be positive
and bounded. Then under the conditions of Lemma 1 system (3.26) has a
positive solution (w'(0), w?(0)) with

hE
k() — k L
w; (0)7W;fj2’)\)7 (725 /SJZI¢ j b‘], Zf].,...,n, (328)
where ¢ = 1, while (3, ..., oL, ¢3,... ¢2) is at least one positive solution of
the system

Z¢¢] syz/z d) ] 3371, i:2,...,n.

s,j=1 s,j=1
The proof of Lemma 2 is given Section 5.

Next we consider the case (12). More precisely, we examine a usual case for
some confessions, where

st,s =1,
QSj,k =0, s,j 7£ k, (329)
Qsj,s + Qsj,j =1, Qsj,s > 0, -Qsj,j >0, s 7é 7.

Math. Model. Anal., 14(3):369-390, 2009.
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In this case, system (3.26) reduces to

wk(0)

3

m = wzl (0) z ’L’L i + Z z] A + w; (O)w%(O)afw)

J#i
(3.30)

We examine this system only in the case where the sex ratio of newborns is
constant, i.e., 61'23' = fyﬂilj. It is easy to see that

k

_ 1 Wi 2 _ - S
w; (0)—m, h’i —7, hz = W, 271,2,...,71, (331)
where (w1, ...,w,) is a positive solution of the system
1 =dyal,; + Y wjal;; +a};,). (3.32)
i

The solution of this system can be written as

i=1,....n (3.33)

and all w; > 0, if sign A; = sign A. Here A and A; are the determinants

1 1 1 1 1 1 1
a11,1 Q1o taz . Gyq TG e Grp gt Ay
1 1 1 1 1 1
a3y 9 1 Q1p 9 a33 9 T LS Y TR 1 e e
b
1 1 1 1 1 1 1
anl,n + aln,n an2,n + a2n,n a’nj,n + ajn,n ann,n
(3.34)
1 1 1 1 1
aii ) (121 1+ as oo 1. a%n,l + ‘171n,1
1
a3 9 + A1p 9 (33,2 b ag 0t agg (3.35)
1 1 1 1 1
anl,n + aln,n an2,n + a2n,n s 1 s a’nn,n

with the ith column (1,1,...,1)7, respectively. If n = 2, then

1 1 1
A229 — Q121 — G211

wy =
1 1 ‘1%2,1"‘“%1,1 a51,2+a%2,2 ’
apy 02921 — 1 T
) ’ a32.2 a11,1 3.36
al gl (3.36)
- 11,1 12,2 21,2
Wo =

1 1 1 1
Qyo 1051 | G5y 5F0C715 5 )

11 o
a11’1a22’2 (1 a3s.0 ah,l

which are positive provided that
- 1 1 1 o 1 1 1
sign(agy 2 T @121 T A9y, 1) = s1gn(a11 1~ @122 7 A9y 2)~

If adyp = ajp +ady; and afyy = ajyy + ady o, that is if iy = Sla0Q121 +
521!221 1 and 611 = 621921 2 + 512912 5, then from (3.36) we get only one
equation for wy and s,

w1 By + W23y = 1. (3.37)
Hence, either w; < (B1;)7! or @y < (B3,)7! is a free positive constant. Obvi-
ously, By + B3 = Bz + Ba1-



Separable Solutions to an Interacting Human Communities Model 379

Lemma 3. Let hypotheses (3.29) hold, 37, = v3}; with 3; = const > 0. As-
sume that b € C°(Q3) is positive and bounded and sign of determinants (3.34)
and (3.35) is the same. Then under conditions of Lemma 1 system (3.30)
has unique positive solution (3.31) with w; defined by Eq. (3.33) if n > 2, by
Eq. (3.36) if n = 2 and sign Ay = signAq, and by Eq. (3.37) if n = 2 and
Ay = Ay = 0. In the last case either w1 < (Bi1) ! or e < (B3) 7! is a free
positive constant.

Case 2. Let us set
* k k * *x
v = max(sup v, sup l/i]-), 0" = maxsupo;;, m = max sup m;j,
kg gk Q3 i Q3 b (7,00)2
k

i §27 = maxsup 2, ;, bl = mininfb

b* = maxsupb
i k,i,j Q3 ,j Q3

1
k,i,j Q3 7’

my, =min inf m;;, (2, = mininf 2 ;.
4,J (1,00)2 k.i,j Q3
By the transform w?(0) = yw}(0), w}(0) = 1@; /v system (3.25) can be written
in the form
w; = (71’1)217%1,1 + @171’2(17%2,1 JFP%M) + (@2)227%2,1'7 i=1,2.
Then by substitution ws = ¢2w; we reduce this system to

wy = (p%m + ¢2(p:112,1 +p%1,1) + (¢2)2p§271)_1,

B Ph,z + ¢2(P:112,2 + P%m) + (¢2)2P§2,2

G2 = )
ph,l + ¢2(piag +0311) + (62)2P32

Since all p;,w- are continuous in (w!,w?, \) and, for ¢o > 0, function & (¢2) :=
$2(pi11 + ¢2(play + Pi11) +(P2)°pho) grows faster than &(¢2) = piyo +
G2(Pla.2+ P31 2)+ (02)°P3a » and £1(0) < £2(0), this cubic equation has only one
positive continuous in (w?!,w?, \) solution ¢ = ¢(w', w?,\) € [p«/p*,p*/Ds];
where by the definition of p}jyk and because of Lemma 1 we have

2m.bLe, exp{—27(A + v*)} o
«(A) = > < = (),
N O y e S Ve R

. 2m* bt 2% exp{—27(\ + v.)}
PN =

> 1 .
CSV A\ vy SR

Then it follows that

! & = Y@ 0%\

Tq@l a2\ 7 g@h e N) (3.38)
g(w', w?, \) = Piia+ ¢(P%2,1 +phia) + ¢2p%2,1

wy(0) = kY (@', w?, \)/q(@", w*, N), (3.39)

(2

where

hi=1/7, hy = (@', @*,N) /v, hi=1, h3= (@' w* \).

Math. Model. Anal., 14(3):369-390, 2009.
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Thus the function

pe(N) _ pe(N) muble, . A+ vy 5 A+ 2u,
— < = ) —
) T pr () mrbr e exp{=27(v" — v ) G o o
mybLe2,

— m eXp{*QT(l/ — l/*)}

grows monotonically as A — oo, where X =€ — v,, € > 0. This shows that, for
A € (), 00), all h¥(w!, w2, \) have positive lower and finite upper bounds

(A
B — P (A

PN
Lemma 4. Under the conditions of Lemma 1 and Case 2 the system (3.25)
has only one positive solution defined by Egs. (3.38) and (3.39).

min(1,1/7), A" =—=max(1,7). (3.40)

=
*

~—
=

Now we construct the operator F* : D — D. From (3.15), (3.18), (3.28),
(3.31), and (3.39) we have

’LU]-C(T) _ fik(Ta A)hf(ll_}lle}Qv)‘)
' q(w', w2, \)

From here and by Eq. (3.18) we conclude that (w!,w?) must be a solution of
the system

kfk(T )\)hk( =1 —2,)\)

w; = q(w1 ) )\) , i=1,....,n, k=1,2. (3.41)
Set
k(-1 -2 o sz("wsﬁ)‘)fik(ﬂ )\)h?(’lﬂl,ﬂ}Q,)\)
ML =2 e )
Mk(wlalDQaA) (Ml( 17 _2a>‘) Mk( 1 _2 A))
with
2 n
> Z |25y, A) || fE(r DR (@h, @2, A)
p(N) = plt, @2, \) = == (3.42)

q(wh, w2, \)
and define the operator
F)\ ( —1 @2)4>(M1( 1 —2 )\) M2( 1 —2 )\))

Here s = 1,2, s # k and A > ) is a free parameter. Obviously, F* : D —
D. Now we prove that F* is continuous in D. By Lemma 1 operator F* :
(', @w?) — (2'(-,w? \),2%(-,w", \)) for fixed A > X is completely continuous
in D and F)‘( ) € D. Then, for A\ > ), the map (w', w?) — q(w',w?,\) is
also continuous and ¢(w?!, w2, ) > 0. Thus, for A > X we have that p(\) > 0
and the map (0!, w?) — p(w',w?, \) is continuous, as well. All h¥ are positive
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and the map (w', w?) — h¥(w!,w?, \) for fixed \, k and i is also continuous.
Therefore, F* is completely continuous and the Schauder fixed point principle
yields the existence of at least one fixed point of F* in D. This means that the
system

v ZECL W N) (T N RE (0t w?) N)

U T @ w2, Np(w, a2, )

i=1,...,n, k,s=1,2, s#k

with A > X has at least one solution (w'(-,A), w?(-,A)) € D. If there exists
A > A such that p(\) = 1, then this system coincides with (3.41) for A = A and

the function (@' (-, A), @(-, X)) represents a solution of (3.41).
Now we get conditions for the existence or nonexistence of A. Set
hy = Iili_nhf >0, h* = rrllca_th in case 1,
K N

o0 o0

p'(\)= sup /Zl*(%)\)df/exp{*)ﬁs}b(fﬂ+T3ay+73773)

€|T,00
y€e| )T 2

x K(x + 73,y + 73,73,0) dr3,

o0 oo

p’(A) = sup /22*(1/,A)dy/eXp{*Mg}b(ﬂf+Ts,y+73,73)

z€[T,00) 0

x K(x + 73,y + 73,73,0) dr3,

= Z hi (f2(r, Vp*(A) ™ + Z RE(F(m, \)p'(N) ™! in case 1,
i=1 i=1

<y 2hy P \? oo At .
Px(A) = pTL PR (p* —l—p*) (A+v") NG o I case 2,
n 2
= Zthfik(T, N || 2% || /g (N\) in case 1,
i=1 k=1
ZZh* (7, A) || 2% || /g«()\) in case 2,
i=1 k=1
a(\) = fHr, N (T, )\)/zi(m,)\)dx/zf(y,)\)dy/exp{—)\rg}

T T 0

x b(x + 73,y + 73, 73) K (v + 73,y + 73,73,0) d73 in case 1,

P D
q«(\) = p%m* + E(p%z,u +p§171*) + (p )? pzz 1. 1D case 2,

o

7N = FL7 N2 ) / / exp{— A3} (2, \)d / 22y, N)dy
T 0 T

x b(x + Tg,y + 73,73)K (x + 73,y + 73, 73,0)d73 in case 1,

*

* p *
7"(\) —p111+p (p121+p21 1)+(p )2p§21 in case 2.

*
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Here
p;j,i* = fsl (Ta )‘)ff(Ta )‘) /Zsl* (xa )\)dI / 2]2* (y7 )‘)"i}sj,l(‘xa Y, )‘) dya
pi;‘z — fSl(T, )\)ff(r, )\)/zi*(x,)\)dx/z?*(y,)\)fiij,l(x,y,)\) dy.

In Case 2, constants h. and h* are defined by (3.40). Equations (3.27), (3.38),
and (3.39) show that p(A\) > p.«(A) — oo as A — oo. If p()\) < 1, then there

exists A > ), such that p()\) = 1, since p € C°(\, 00). If n[l_in ]ﬁ()\) > 1, where
AE[N A

A1 is a unique root of j,()\) = 1, then there is no such A > X that s(A) =1

Theorem 1. Let conditions of one of Lemmas 2, 3, and 4 be satisfied. Then
the following assertions are true:

e If p(A) <1, then system (3.7), (3
tion (w* (11, \), w? (12, \)) with A
L1(0,00),

9), (3.10) has at least one positive solu-
> A, such that wk € CO(Q*)NCH(QF)N

2 (e, A N ha /a7 (V) < w (i, A) < 28 (e, M (7, B g

*

where k = 1,2,1 = 1,...,n. If conditions of Lemma 3 are satisfied and
n =2, Ay = Ay = 0, then this solution depends on one positive parameter
(see (3.37)).
e If min p(A) > 1 with a unique root, \1 of px(\) = 1, then system (3.7),
AE[AAL] _
(3.9), (3.10) has no positive solutions for A > A.

Obviously, conditions of this theorem are satisfied if the inequalities 5*(\) < 1

and p.(\) > 1 are satisfied, respectively.

Theorem 2. Let conditions of Thgorem 1 be satisfied and let in addition m;s €
CY([r,00)?), 0is and vE, € CHLO(Q3). Then the following assertions are true:

e Under condition p(A) < 1 system (2.1)~(2.7) has at least one class of
positive solutions of type (3.1) which depends on parameter f and posses
the properties:

UF e CO(QF)NCH(Q"), k=1,2,i=1,....n, U} € CUQ*) N C"(Q?),
and X = X\ > . Under the conditions of Lemma 8 andn =2, Ay = Ay =
0 this class depends on two parameters (see (3.37)).
e Under condition n[ljn ]ﬁ()\) > 1 system (2.1)~(2.7) has no nontrivial
AE[AN A

separable solutions of type (3.1) for A > .

Definition of ¢ and p shows that separable solutions exist if pairs produce
sufficiently large number of offsprings.
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4 The Case of Constant Vital Rates

In this section, we consider the case where vital rates satisfy the following
conditions:

(H) vF and l/fj Vk,i,s, and j are positive constants and do not depend on

the sex and confession number, b§j7 Vk, s, j are positive constants and do not

depend on k, my; and osj, Vs and j are positive constants and do not depend
on the confession number, {25, are a positive constants.

Then w? is also independent of k. Set

k k k k
0 =0sj, bsyj=bg;, v=v=v5, m=mg, w=uw;.

Equations (3.12), (3.13), and (3.14) can be written in the form

dw;
;T) =—wv+m+Nw, +my+o)exp{—2v+ 0o+ N7}
X /exp{(21/+a+)\)x}wi(x) dx, T > T, (4.1)
w; (1) = w;(0) exp{—(v + N7}, (4.2)
0)= g 3 00 7 (r)d 7 ()d
w; = 2V+U+>\sj=1 sj94s7,i Ws(x)ax wj\y)ay,
A4+2v+0>0. (4.3)

Letting z;(11) = w;(11) exp{(2v 4+ 0 + A\)71 }, we get the integro-differential

equation
T1

zz{f(V+afm)zifm(1/+a)/zi(x)dac:O,

T

which by Eq. (4.2) reduces to
2+ (m—v—0)zi—m+0)zi=0, 1 >71=0,
2i(1) = w;i(0) exp{(v + o)1}, 2i(T) = (v + 0 — m)z(7).
This problem has the solution

zi(T1) = %((V +o)exp{(v+ o)} +mexp{—-mn + (v+o+ m)r}).
Thus

wilr)  exp{—(+ N}

o0 = viorm  rormen{-+otmin-n}). @4
Then

/Wmmzw@mﬁ

exp{—(v+ N7}, v+o m
AN =
) v+o+m (1/+)\+2V—|—0+m+)\

)y A+v>0. (4.5)
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Now from (4.3) it follows that
mA(N)

w;(0) = m Z bsj{2sj,iws(0)w; (0). (4.6)
System (4.6) is of the form (3.26) with ¢ = mAQ)? and a® bsj 825 and
Yy . . w q*2 +O'+)\ 531* sjolsj,i
therefore has at least one positive solution
hi(2 A ;
ww#%, hi = — o ci=1,...,n; ¢y =1. (4.7)
Z ¢s¢jbsj~osj,1

s,j=1

By using 2 Z f w;i(z)dr =1 and (4.5)—(4.7) we get the equation for A:

=17

23 hi(2v+ 0+ N)/m = AN, (4.8)
i=1
which has a root
(2v + o) exp{—vT7}
v(2v 4+ o+ m)

Y

—v<A<o0, if QZh (2v+o)/m > A(0) =

=1

A=0, if Qihi(Ql/ +0)/m = A(0),

i=1

n
A>0, if Qth‘(QV +0)/m < A(0).
i=1
Theorem 3. Under the hypothesis (H) system (3.2)—(3.7) has the unique so-
lution of the form (4.4) where (w1(0),...,w,(0)) is defined by Eqs. (4.7) with
at least one set (hi,...,hn) of positive constants h;,i =1,...,n. For each set
(h1,...,hy), the unique X is determined by Eq. (4.8).

5 Proofs of Lemmas 1 and 2

Proof of Lemma 1. We first prove that G} (71, z,\) < 2m*||@w?|| and is contin-
uous for sufficiently large A\. For A > —v, and w? € L}r (1,00), by definition we
get

T1 T1 T1

Gi(r1,2,)) :/Ri(n,x,w?A)exp{*/li(f,k)df}dnS /Ri(n,x,ﬁ,/\)dn

T n T

/dn/Zw Kis(z,y,m — 2, \) (V2 Jrgig)‘(mﬁ—n—wm—w) dy

n
- / > wl(y)dy / Ky — e )02 40| v o d
T S=1 xT
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/ZQm“’ T, y)w dy/exp{ / Vis + 0is }(5+1,£+y 13 de}

n (o]
X (V1.23+0-is)‘(77:y+77*1ﬂ7*1) dn< Z/ y)2mis(x, y) dy <2m*||@?|.
s=1

Hence,

G%(Tl,l‘,)\) < /gZ (n,z, \)dn < 2m”* Hw2H (5.1)

for A > —v, and w? € LY (7,00), and

T2

G2 (2,7, ) < / g2 (w.m, Ny < 2m x| @' (5.2)

x

for A > —v, and w' € Ll (7,00). It is easy to see that, due to hypothe-
ses of Lemma 1, G} (7, , )\) 1511, A\), G2(x, 72, \), 12(72,\), and [2(72, \) are
continuous functlons Therefore Volterra equations (3.23) and (3.24) have a
unique positive global solution. Obviously, it satisfies Egs. (3.19) and (3.20)
and zF € C%([r,00)) N CY((7,00)) for A > —v,.

Now we prove inequalities 25 < 2F < 28 TLet (
estimate of 2 follows easily from Egs. (3. 25) and (3.
the upper estimate. Define

w') € D. The lower

w',
26). It remains to prove

Z}<n>=zl<>/ dx/zw w@aym — @, N dy, Z1(r) =1,

T

Z2(r) = 22(r2) + / dx/zw Ky, om— 2N dy, Z2(r) = 1.

T

Taking into account Egs. (3.19) and (3.20) and the definition of K;, 7%, I¥, R¥,
and gF we get

dz}  dz} 1 T
il /Zw Kis(11,9,0,A) dy

n
/ d:c/Zw Kis(z,y, 11— x’)\)()\+Vi15+yi25+0i5)|(7—1,7—1+y—x,7—1—x)dy

T
T1

—(A+ 1/1-1 + 7"11),211 + /zil(m)gil(ﬁ,x,)\) dx + zilril(ﬁ,EJQ)

T
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/ dx/Zw Kis(z,y, 71 — 2, N\ +vi(m, 7 +y — 2,71 — x)dy

T
T1

- /dzil(:n)Ril(ﬁ,:E,u_)Q, Ndr = —(\+v})z}

T

/ dx/Zw Kis(z,y, 71 — 2, VAN +vh (11,71 +y — 2,71 — 2)dy

T

~\N+v)Z ZHr) = 1.
Hence, 2} < Z} <exp{—(A+v.)(r1 —7)} and similarly 22 < Z2? < exp{—(\ +

vi)(ma — )}

Now we find the upper estimate for ||dzF/dr||. Define
Tk
¥ (7, \) = exp{ - /lf(m,)\) dx}.

Since .
17!

MTR) i NI (7, 0) <0 for A > v,

Tk

from (3.23) it follows that

™ n
dz}| _ dIT} '
i< 1 -1 1 1
dril = dn {1+ /(HZ (n, 1)) dn/zz (z)g: (n,x,)\)d:c}
T1
+/zi1(x)gil(ﬁ,x,)\) dx.
Then we get

/dﬂl dr ]I(H}(n,/\))1dn/nzil(x)gi1(n,x,/\) dr

H dm dmy

T
T1

/dﬁ/ x)g; (7'1 x, ) de = 1+/d7'1/z-1(x)gi1(7'1,x,)\)dx

—/(H-(n,m /d” ) 4 /z3 g (1,2, \) da

T

T1

2/d7’1/zz1 )gi (11,2, \) dz

[o )

(o]
1+2/z /gz T, T, A) dT, A > —v,.
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Similarly,
dz2 7 7
H - / ( )dﬂf/g?(l’,’]'%)\)dfr% A> —v,.
dTQ

From here by estimates (5.1) and (5.2) we get
d J
I3

since (@', @w?) € D and A\ > —v,. Therefore, by the Riesz [6] criterion set D is
compact.

4m*
A+ vy

Il <1+

=12

It remains to prove the continuity of the operator F* in D. Let (w't, w?h)

and (w'?,w??) € D. Let corresponding pairs be (z! (~,w21),22(~,w11)) and

(21(-,w22),22(-,w12)). Set
Ad® = o™ — @*t, AP = 2P w%,) - 2R aM, ), k=12
From Egs. (3.21) and (3.22) it follows that

dAz}
dTl o

(A v (1) + (1, 0*) Azf — 23t (1, Aw?)

/Az (z)R} (11, x, w* )\)dx—i—/ Y& R} (11, 2, Aw?, N)dx, Az} (T) =0,
2

T

dA
—Z —( N+ V2 (1) + ri (o, ') AzZ — 22 rE (1o, Aw?)
T2
/Az (x, T2, W 12,)\)dx—l—/zfl(x)R?(x,Tg,Awl,)\)dx, Az?(r) =0.
Hence

Az ]Iexp{]l(k+1/3(y)+7"il(y, dy}{/ [Az] (@) R} (n, x, @, X)

+2 (@ )Rl(n,x Aw?, V)] dx — 2t ()i (n, Aw®)} dn

Azl :/dx/exp{*/(A+V3(y) +ri(y, 0%))dy}

x [Azj(x )Rl(n,:ﬂ w2, N) + 2t (2) R (n, %, Aw?, X)) dn

or

—~ /eXp{— /(A + v (y) + i (y, @)}z (n)r} (n, Aw?) dny.
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From here by using Eqgs. (5.1) and (3.15), for A > —v,, we get the inequality

1+4+e !t
A+uv

|Az} < 2m* / | Az} (z)|d2 4 2m* || Aw? |

which shows that

2m*(1 +e7 1)

Azl <
| Zz'— >\+l/*

[@?]| exp{2m* (11 — 7)}

and similarly,

2| < 2m*(1+e!

Az
| A+ v,

l%" | exp{2m™ (72 — 7)}.

But |Az}| < 22}* = 2exp{—(A + v.) (1 — 7)} for A > —v.. Hence,

o To(N)
D) * 1 —1
4zt < [ 1aztian < 2202 Dy [ exptom(n - r)jan
A+ vy
+2 / exp{2m* (1 — 7)}dr = er(A) || A& || +ea (M),
20
where
14+et s -
(N = T (@p{2m (7 () ~ 1} = 1) < a (),
2 . _ _
ca(N) = Nt exp{—(A + v.)(T«(A) = 7)} < ca(N), A > A,

Choose 7,(A\) and || Aw?|| such that ca(\) < €;/2 for A > X and ||Aw?| <
€1/2¢1(N), e > 0. Then ||Az2|| < € for A > \. Similarly, ||Az2| < € for
A > X. Therefore, operator F* is continuous in D for A > X. Thus, we
conclude that operator F* is completely continuous. The proof of Lemma 1 is
completed.

Proof of Lemma 2. Letting w¥(0) = wi(0)¢F, from Eq. (3.26) we get
—1
{Z¢ (bjasg lq U} U} )‘)} ’ (53)

Zl¢1 J sgz
pr=1, oF= ”—, i=2,...,n, k=1,2. (5.4)
;1¢1 7 a] 1
We look for positive ¢!, (b? Vs, j. We consider the case as] i
Vs, j, k. Tt is evident that ¢F € (¢¥,¢**), i = 2,...,n, where

>0, ie $2;>0

E_ .k k kx k ok
¢y = min asj,i/m.a.xasj,lv ™" = max asj,i/m.m Qsj.1-
8,51 85,0 8,51 87,8
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From (5.4) with & = 1 and i = 2 we get the quadratic equation for ¢3,

¢2 ¢22¢a%]1+zz¢s syl ¢QZ¢CL%]2+ZZ¢ ¢] 57,27

s#£2 j=1 s#£2 j=1

which has a unique positive continuous solution ¢3 = ®1(¢3,...,$2). Letting

y?ly(q%,@%vqb}b .. 7¢%) = (¢ ) Z¢2a33 1 + ¢3ZZ¢ QS] 5],1}¢é=45%(¢§,___7¢%)a
Jj=1

s;é3j 1
Zé((ﬁéa@%v ¢4117 ) ¢2 ¢3 Z ¢2a33 3+ ZZ ¢ d) Qsj, 3}¢%=¢%(¢§,___7¢%)
s#3 j=1
from (5.4) we derive the equation for ¢i:
Y3 (03 Py (35, 04s -, G0), Ok -, B1) = 25(05: Py (3, -, 03), Dk - -, O)-

(5.5)
Since
Y3 (935 Dby Bl - -+ R )3 (035 P (D55 -+, B0)s D+ ) Y5 (035017, D, 60,
23 (0% 0L, 04, - - 00 )23 (B3 P (B3, - - B0 ), bis - - - 00) <23 (B35 8", 1, - ,070),

and @3 (43, ..., ¢2) is continuous, the graph analysis shows that Eq. (5.5) has
at least one positive continuous solution ¢4 = ®1(¢l, ..., ¢2). Therefore,

We proceed this argument getting from (5.4) with i = n the equation for @},

n—1 n n—1 n

n( Z¢ja7L]1+ZZ¢ ¢j sy,): Z¢j n]n+zz¢ ¢j sj,n>

s=1 j=1 s=1 j=1

where qﬁ%, 3, ..., 0L | depend only on ¢, #?, ..., ¢? and are known continuous
functions. By the argument applied to Eq.(5.5) we prove that this equation
has at least one positive continuous solution ¢1 = @1( ?,...,¢2). Knowing
#L we determine ¢, ..., ¢L | as functions of @2, ..., ¢2.

Now we consider (5.4) for k = 2 and i = 1 getting the equation for ¢?:

qﬁ(qﬁz Ll $3°3 dleal,, ) = ¢1Z¢sasl S s, (56

Jj=2s=1 s=1j=2

where ¢3,...,¢L are known functions of ¢7,...,¢2. By the argument similar
to that applied to (5.5) we prove that Eq. (5.6) has at least one positive con-
tinuous solution ¢7 = @%(¢3,...,¢2). This allows us to determine ¢3,....¢L
as functions of ¢2, ..., ¢2.

We proceed this argument getting, for i = n, the equation

n n—1 n n—1 n

(Zﬁz(d)?zz s sn1+zz¢ 7 sgl):¢iz s snn+zz¢ 7 S]n)

s=1 j=1 s=1 j=1s=1
(5.7)
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where @3, ..., ¢L ¢%, ¢2_; are known continuous functions of ¢2. By using the
argument applied to Eq.(5.4) we prove that Eq.(5.7) has at least one positive
continuous solution ¢2. This allows us to determine ¢, ..., ¢?

n—1-
Thus, when a¥, . > 0, Vs, j, k, system (3.26) has a positive solution

s7,%
(w(0),w" (0)¢3 . .., wi (0)¢y,, wi(0)¢3, ..., wi(0)2)

with at least one positive set (43, ... 8L, ¢%,...¢?2) independent of X and w3 (0)

defined by Eq. (5.3). The proof of Lemma 2 is completed.

6 Concluding Remarks

The existence and non-existence of separable solutions are studied to age-sex
— religion structured human communities model which forbid any confession
change for individuals but let parents choose a religion not necessary their own
for their offsprings. The proof of the existence of separable solutions is based on
the Schauder fixed-point principle which does not let to prove the uniqueness.
The main problem in study of separable solutions to this model is to prove
the existence theorem to system (3.25) and examine the asymptotic behaviour
of its solution as A tends to co. Therefore we have studied only some particular
cases of this system. Examination of the general case is an open problem.
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