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Abstract. We consider a mechanical model which describes the frictionless unilat-
eral contact between an electro-elastic body and a rigid electrically non-conductive
foundation. For this model, a mixed variational formulation is provided. Then, using
elements of the saddle point theory and a fixed point technique, an abstract result is
proved. Based on this result, the existence of a unique weak solution of the mechanical
problem is established.
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1 Introduction

In this paper we study a frictionless unilateral contact problem involving the
piezoelectric effect. The piezoelectricity can be described as follows: when
mechanical pressure is applied to a certain classes of crystalline materials
(e.g ceramics BaT iO3, BiFeO3), the crystalline structure produces a volt-
age proportional to the pressure. Conversely, when an electric field is ap-
plied, the structure changes his shape producing dimensional modifications
in the material. Actually, there is a big interest into the study of piezoelec-
tric materials, this type of materials being used in radioelectronics, electro-
acoustics and measuring equipments. In the same time, due to the fact that
the parts of the equipments are in contact, the interest for the contact prob-
lems is increasing. The literature concerning this topic is very rich, see for
example [10, 11, 14, 15, 16, 22, 23, 24] for modelling in piezoelectricity and
[5, 6, 13, 17, 20, 25] for the modelling and the analysis of the contact pro-
cesses. Some theoretical results for contact models taking into account the
interaction between the electric and the mechanic fields have been obtained in
[7, 18, 19, 21].
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324 A. Matei

In this paper we use a mixed variational formulation of the piezoelectric
contact problem, which consists one of the traits of the novelty of the present
paper. For details concerning the mathematical tools we refer to [1, 2, 3, 4, 6,
12]. The main motivation of this approach is that in the last years this type of
formulation in contact mechanics is preferred from numerical point of view, see
for example [7, 8, 9]. The present paper follows [7] where a frictional bilateral
contact problem for electro-elastic materials was treated.

The rest of this paper is organized as follows. In Section 2 we provide
some notation and preliminaries. In Section 3 we describe the physical setting,
formulate the mathematical problem and state the main result, Theorem 1. In
Section 4 we provide an abstract result, Theorem 2, then we prove Theorem 1.
The last section contains some conclusions and comments.

2 Notation and Preliminaries

Let us denote by S
3 the space of second order symmetric tensors on R

3. Every
element in R

3 or S
3 will be typeset in boldface and by " · " and | · | we denote

the inner product and the Euclidean norm on R
3 and S

3, respectively. Thus,

u · v = uivi, |v| = (v · v)1/2, σ · τ = σijτij , |τ | = (τ · τ )1/2,

u,v ∈ R
3, σ, τ ∈ S

3.

Here and below, the indices i and j run between 1 and 3 and the summation
convention over repeated indices is adopted.

Let Ω ⊂ R
3 be a bounded domain. We introduce the following functional

spaces on Ω,

H = {u = (ui) | ui ∈ L2(Ω)}, H = {σ = (σij) | σij = σji ∈ L2(Ω)},
H1 = {u ∈ H | ε(u) ∈ H}, H1 = {σ ∈ H | Div σ ∈ H},

where

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij,j).

Here and below the index that follows a comma indicates a partial deriva-
tive with respect to the corresponding component of the independent variable.
The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the inner
products,

(u,v)H =

∫

Ω

uivi dx, (u,v)H1 = (u,v)H + (ε(u), ε(v))H,

(σ, τ )H =

∫

Ω

σijτij dx, (σ, τ )H1 = (σ, τ )H + (Div σ,Div τ )H .

The associated norms on the spaces H , H, H1 and H1 are denoted by ‖ · ‖H ,
‖ · ‖H, ‖ · ‖H1 and ‖ · ‖H1 , respectively.

Let us assume that the boundary ofΩ, denoted by Γ is Lipschitz continuous.
We denote by n the unit outward normal vector on the boundary, defined
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a.e. In order to simplify the writing, everywhere below, for every field (scalar,
vectorial or tensorial) we will use the same notation in order to indicate his
Sobolev trace on Γ.

For a vectorial field v, we denote by vn and vτ the normal and the tangential

components on the boundary, defined as follows:

vn = v · n, vτ = v − vnn.

For a regular (say C1) stress field σ, the application of its trace on the boundary
to n is the Cauchy stress vector σn. Furthermore, we define the normal and
tangential components of the Cauchy vector on the boundary by the formulas

σn = (σn) · n, στ = σn − σnn

and we note that the following identity takes place

σn · v = σn vn + στ · vτ . (2.1)

Finally, we recall the useful Green’s formula

(σ, ε(v))H + (Div σ,v)H =

∫

Γ

σn · v da ∀v ∈ H1. (2.2)

For a proof of the formula (2.2) and for more details related to this section, we
send the reader to [5].

3 The Model and the Statement of the Main Result

We consider an elasto-piezoelectric body that occupies the bounded domain
Ω ⊂ R

3, in contact with a rigid electrically non-conductive foundation. We
assume that the boundary Γ is partitioned into three disjoint measurable parts
Γ1, Γ2 and Γ3, such that meas(Γ1) > 0 and Γ 3 is a compact subset of Γ\Γ 1.
Let us denote by n3 the restriction of n to Γ3. The body Ω is clamped on Γ1,
body forces of density f0 act on Ω and surface traction of density f2 act on Γ2.
Moreover, we assume that Γ3 is the potential contact zone and we denote by
g : Γ3 → R the gap function. By gap in a given point of Γ3 we understand the
distance between the deformable body and the foundation measured along of
the outward normal n. Let us consider a second partition of the boundary Γ in
two disjoint measurable parts Γa and Γb such that meas(Γa) > 0 and Γb ⊇ Γ3.
On Γa the electrical potential vanishes and on Γb we assume electric charges of
density q2. Since the foundation is electrically non-conductive, and assuming
that the gap zone is also electrically non-conductive, q2 must vanish on Γ3. By
q0 we will denote the density of the free electric charges on Ω.

We denote by u = (ui) the displacement field, by σ = (σij) the stress
tensor, by ϕ the electric potential field and by D = (Di) the electrical field.
We start the modelling writing the universal equilibrium equations

Div σ + f0 = 0 in Ω, (3.1)

div D = q0 in Ω. (3.2)

Math. Model. Anal., 14(3):323–334, 2009.
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In order to describe the behavior of the materials, we use the constitutive law

σ = Cε(u) + E⊤ ∇ϕ in Ω, (3.3)

D = Eε(u) − β∇ϕ in Ω, (3.4)

where C = (Cijls) is the elasticity tensor, E = (Eijl) is the piezoelectric tensor
and β is the permitivity tensor. We use here E⊤ to denote the transpose of the
tensor E ,

E σ · v = σ · E⊤ v, ∀σ ∈ S3, v ∈ R
3,

and we notice that E⊤ = (E⊤
ijl) = (Elij) for all i, j, l ∈ 1, 3. Such kind of electro-

mechanic relations can be found in the literature, see, [24].
To complete the model, we prescribe the mechanical and the electrical

boundary conditions. According to the physical setting we write

u = 0 on Γ1, σ n = f2 on Γ2, (3.5)

ϕ = 0 on Γa, D · n = q2 on Γb. (3.6)

To model the contact process, we use the Signorini condition with non-zero
gap. In addition, we assume that the contact is frictionless. Consequently, we
can express mathematically the frictionless contact condition as follows

στ = 0, σn ≤ 0, un ≤ g, σn(un − g) = 0 on Γ3. (3.7)

Knowing the displacement field u and the electric field ϕ we can compute
the stress tensor σ and the electric displacement D using (3.3) and (3.4),
respectively. Therefore, the displacement field u and the electric field ϕ are
called the main unknowns.

To resume, we consider the following problem.

Problem 1. Find the displacement field u : Ω → R
3 and the electric potential

field ϕ : Ω → R such that (3.1)–(3.7) hold.

In order to study this problem, we make the following assumptions:

• For

C = (Cijls) : Ω × S
3 → S

3, Cijls = Cijsl = Clsij ∈ L∞(Ω) (3.8)

there exists mC > 0 such that Cijlsεijεls ≥ mC |ε|2, ∀ε ∈ S
3, a.e. on Ω,

where

E = (Eijk) : Ω × S
3 → R

3, Eijk = Eikj ∈ L∞Ω). (3.9)

• For the permitivity tensor

β = (βij) : Ω × R
3 → R

3, βij = βji ∈ L∞(Ω) (3.10)

there exists mβ > 0 such that βijEiEj ≥ mβ|E|2, ∀E ∈ R
3, a.e. on Ω.
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Concerning the mechanical and the electrical data we will assume

f0 ∈ L2(Ω)3, f2 ∈ L2(Γ2)
3, q0 ∈ L2(Ω), q2 ∈ L2(Γb). (3.11)

Moreover, there exists gext : Ω → R such that

gext ∈ H1(Ω), gext = 0 on Γ1, gext ≥ 0 on Γ \ Γ1, g = gext on Γ3, (3.12)

the unit outward normal to Γ3, n3, is assumed to be constant. (3.13)

Based on these assumptions, we will give a mixed variational formulation of
this mechanical problem, using the Hilbert spaces,

V = { v ∈ H1|v = 0 on Γ1}, W = {ψ ∈ H1(Ω)|ψ = 0 on Γa}, Ṽ = V ×W .

We consider the inner products (·, ·)V : V × V → R, (·, ·)W : W ×W → R and
(·, ·)Ṽ : Ṽ × Ṽ → R defined as follows

(u,v)V = (ε(u), ε(v))H, (ϕ, ψ)W = (∇ϕ,∇ψ)H , (3.14)

(ũ, ṽ)Ṽ = (u,v)V + (ϕ, ψ)W .

Let us remember the Korn inequality: there exists cK = cK(Ω,Γ1) > 0 such
that

‖ε(v)‖H ≥ cK‖v‖H1 , ∀v ∈ V.

Furthermore, the following Poincaré’s type inequality takes place: there exists
cP = cP (Ω,Γa) > 0 such that

‖ϕ‖L2(Ω) ≤ cP ‖∇ϕ‖[L2(Ω)]3 , ∀ϕ ∈ W .

Consequently (V, (·, ·)V , ‖ · ‖V ), (W , (·, ·)W , ‖ · ‖W), and (Ṽ , (·, ·)Ṽ , ‖ · ‖Ṽ ), are
Hilbert spaces.

Keeping in mind (3.1) and (3.3), the Green’s formula (2.2) yields for all
v ∈ V

∫

Ω

C ε(u) · ε(v) dx+

∫

Ω

E ε(v) · ∇ϕdx =

∫

Ω

f0 · v dx+

∫

Γ

σn · v da. (3.15)

Next, multiplying (3.4) by ∇ψ, for all ψ ∈ W , we deduce

∫

Ω

E ε(u) · ∇ψ dx−
∫

Ω

β∇ϕ · ∇ψ dx =

∫

∂Ω

D · n −
∫

Ω

div Dψ. (3.16)

Subtracting (3.16) from (3.15) and keeping in mind (3.2), (3.5) and (3.6), we
obtain, for every (v, ψ) ∈ Ṽ ,

∫

Ω

C ε(u) · ε(v) dx+

∫

Ω

E ε(v) · ∇ϕdx −
∫

Ω

E ε(u) · ∇ψ dx+

∫

Ω

β∇ϕ · ∇ψ dx

=

∫

Ω

f0 · v dx+

∫

Γ2

f2 · v da−
∫

Γb

q2 ψ da+

∫

Ω

q0 ψ dx+

∫

Γ3

σn · v da.

Math. Model. Anal., 14(3):323–334, 2009.
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Since στ = 0 on Γ3, taking into account (2.1) we can write

∫

Γ3

σn · v da =

∫

Γ3

σn vn da, ∀v ∈ V.

Let us consider a : Ṽ × Ṽ → R the bilinear form,

a(ũ, ṽ) :=

∫

Ω

C ε(u) · ε(v) dx+

∫

Ω

E ε(v) · ∇ϕdx

−
∫

Ω

E ε(u) · ∇ψ dx+

∫

Ω

β∇ϕ · ∇ψ dx

for all ũ = (u, ϕ), ṽ = (v, ψ) ∈ Ṽ . Moreover, using the Riesz representation
theorem, we define f̃ ∈ Ṽ such that for all ṽ = (v, ψ) ∈ Ṽ ,

(f̃ , ṽ)Ṽ =

∫

Ω

f0 · v dx+

∫

Γ2

f2 · v da−
∫

Γb

q2 ψ da+

∫

Ω

q0 ψ dx.

Consequently, using the Green formula (2.2), we deduce that

a(ũ, ṽ) = (f̃ , ṽ)Ṽ +

∫

Γ3

σnvn, ∀ṽ ∈ Ṽ . (3.17)

In order to provide a mixed weak formulation, we define a dual Lagrange

multiplier λ ∈ D :=
(

[H1/2(Γ3)]
3
)′

such that

〈λ,v〉Γ3 := −
∫

Γ3

σn vnds, ∀v ∈ [H1/2(Γ3)]
3, (3.18)

where [H1/2(Γ3)]
3 denotes the space of restrictions of traces of all functions be-

longing to V and 〈·, ·〉Γ3 denotes the duality pairing betweenD and [H1/2(Γ3)]
3.

Moreover, we define a bilinear form b : Ṽ ×D → R, as follows

b(ṽ, µ) := 〈µ,v〉Γ3 , ∀ṽ = (v, ψ) ∈ Ṽ , µ ∈ D. (3.19)

Using (3.19), keeping in mind that the Sobolev trace operator is linear and
continuous and taking into account (3.14), we deduce that there exists Mb > 0
such that

|b(ṽ, µ)| ≤Mb‖ṽ‖Ṽ ‖µ‖D. (3.20)

In addition, using the properties of the Sobolev trace operator, it can be shown
that there exists α > 0 such that

inf
µ∈D,µ 6=0D

sup
ṽ∈Ṽ ,ṽ 6=0

Ṽ

b(ṽ,µ)

‖ṽ‖Ṽ ‖µ‖D

≥ α. (3.21)

Furthermore, we introduce a set as follows,

Λ :=
{

µ ∈ D : 〈µ, v〉Γ3 ≤ 0 ∀v ∈ K
}

, (3.22)
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where
K :=

{

v ∈ [H1/2(Γ3)]
3 : vn ≤ 0 on Γ3

}

.

We note that λ ∈ Λ and, using the assumption (3.13), we deduce that gextn3 ∈
V, gn3 being the trace of gextn3 on Γ3.

Taking into account the definition of λ, (3.18), the definition of b(·, ·), (3.19),
and the definition of Λ, (3.22), we get:

b(ũ,λ) = 〈λ, gn3〉Γ3 , b(ũ,µ) ≤ 〈µ, gn3〉Γ3 , ∀µ ∈ Λ.

Thus, denoting by g̃ext := (gextn3, 0W) ∈ Ṽ we can write

b(ũ,λ) = b(g̃ext,λ), b(ũ,µ) ≤ b(g̃ext,µ), ∀µ ∈ Λ. (3.23)

Keeping in mind (3.17), (3.23) we obtain the following weak formulation of
Problem 1.

Problem 2. Find ũ ∈ Ṽ and λ ∈ Λ, such that

a(ũ, ṽ) + b(ṽ,λ) = (f̃ , ṽ)V , ∀ṽ ∈ V,

b(ũ,µ − λ) ≤ b(g̃ext,µ − λ), ∀µ ∈ Λ.

The main result of this paper is the following.

Theorem 1. Assume that (3.8)–(3.13) hold. Then, Problem 2 has a unique

solution (ũ,λ) ∈ Ṽ × Λ. Moreover, if (ũ,λ) and (ũ∗,λ∗) are two solutions of

Problem 2 corresponding to the data (f̃ , g̃ext) ∈ Ṽ × Ṽ and (f̃
∗
, g̃∗

ext) ∈ Ṽ × Ṽ ,
respectively, then

‖ũ − ũ∗‖Ṽ + ‖λ − λ∗‖D ≤ C
(

‖f̃ − f̃
∗‖Ṽ + ‖g̃ext − g̃∗

ext‖Ṽ

)

,

where C = C(C, E ,β, α,Mb) > 0.

The proof of this theorem will be presented in the next section; it follows by
using an abstract result, Theorem 2.

4 An Abstract Result and Proof of Theorem 1

Let (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y , ‖ · ‖Y ) be two Hilbert spaces and let us
consider two bilinear forms as follows: a(·, ·) : X ×X → IR is non-symmetric
and (a) there exists Ma > 0 such that

|a(u, v)| ≤Ma‖u‖X‖v‖X , ∀u, v ∈ X, (4.1)

(b) there exists ma > 0 such that

a(v, v) ≥ ma ‖v‖2
X , ∀v ∈ X, (4.2)

and b(·, ·) : X × Y → IR, for which (c) there exists Mb > 0 such that

|b(v, µ)| ≤Mb‖v‖X‖µ‖Y , ∀v ∈ X, µ ∈ Y, (4.3)

Math. Model. Anal., 14(3):323–334, 2009.



i

i

“MMA14v26” — 2009/7/20 — 10:12 — page 330 — #8
i

i

i

i

i

i

330 A. Matei

(d) there exists α > 0 such that

inf
µ∈Y,µ6=0Y

sup
v∈X,v 6=0X

b(v, µ)

‖v‖X‖µ‖Y

≥ α. (4.4)

Let Λ ⊂ Y be a closed, convex set that contains 0Y . We consider now the
following problem:

Problem 3. For given f, g ∈ X, find u ∈ X and λ ∈ Λ such that

a(u, v) + b(v, λ) = (f, v)X , ∀v ∈ X, (4.5)

b(u, µ− λ) ≤ b(g, µ− λ), ∀µ ∈ Λ. (4.6)

We emphasize that the bilinear form a(·, ·) is non-symmetric. Consequently,
Problem 3 is not a saddle point problem. Moreover, we are interested here in
the case g 6= 0X . An analysis of the particular case g = 0X can be found in [7].

The following result holds.

Theorem 2. Let f, g ∈ X and assume that (4.1)–(4.4) hold. Then, there exists

a unique solution of Problem 3, (u, λ) ∈ X × Λ. Moreover, if (u1, λ1) and

(u2, λ2) are two solutions of Problem 3, corresponding to the data functions

f1, g1 ∈ X and f2, g2 ∈ X, then there exists K = K(α,ma,Ma,Mb) > 0 such

that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤ K(‖f1 − f2‖X + ‖g1 − g2‖X). (4.7)

Proof. Let a0(·, ·) and c(·, ·) be the symmetric and the antisymmetric part of
a(·, ·), respectively,

a0 : X ×X → R a0(u, v) :=
(

a(u, v) + a(v, u)
)

/2, ∀u, v ∈ X,

c : X ×X → R c(u, v) :=
(

a(u, v) − a(v, u)
)

/2, ∀u, v ∈ X.

For a given r ∈ [0, 1], we introduce the following bilinear form

ar : X ×X → R ar (u, v) := a0(u, v) + r c(u, v), ∀u, v ∈ X. (4.8)

We observe that for each r ∈ [0, 1],

ar(u, u) ≥ ma‖u‖2
X , |ar(u, v)| ≤ 2Ma‖u‖X‖v‖X , ∀u, v ∈ X.

Furthermore, we note that for all u, v ∈ X,

|a0(u, v)| ≤Ma‖u‖X‖v‖X , |c(u, v)| ≤Ma‖u‖X‖v‖X , ∀u, v ∈ X.

Let us consider the following auxiliary problem.
For given f, g ∈ X, find u ∈ X and λ ∈ Λ, such that

ar (u, v) + b(v, λ) = (f, v)X , ∀v ∈ X, (4.9)

b(u, µ− λ) ≤ b(g, µ− λ), ∀µ ∈ Λ. (4.10)

The rest of the proof will be constructed in several steps.
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Step 1. If r = 0, Problem (4.9)–(4.10) has a unique solution. Indeed, if
r = 0, Problem (4.9)–(4.10) is equivalent to the saddle point problem: find
u ∈ X and λ ∈ Λ such that

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) ∀v ∈ X, µ ∈ Λ,

where L : X × Λ→ IR is the functional defined as follows:

L(v, µ) :=
1

2
a(v, v) − (f, v)X + b(v, µ) − b(g, µ).

According to [4], the previous saddle point problem has at least one solution.
Consequently, Problem (4.9)–(4.10) has at least one solution. In fact, keeping
in mind (4.4), (4.9) and (4.10) we deduce that Problem (4.9)–(4.10) has a
unique solution (u, λ) ∈ X × Λ. Indeed, let us consider (u1, λ1) and (u2, λ2)
two solutions of Problem (4.9)–(4.10). Keeping in mind (4.9) we can write

a(u1 − u2, u2 − u1) + b(u1 − u2, λ2 − λ1) = 0. (4.11)

Using now (4.10) we deduce that b(u1 − u2, λ2 − λ1) ≤ 0. Combining this
inequality with (4.11) we obtain u1 = u2. Moreover,

b(v, λ1 − λ2) = −a(u1 − u2, v), ∀v ∈ X.

Using now the inf-sup property (4.4) we find λ1 = λ2, that concludes Step 1.

Step 2. Let us assume that for given f, g ∈ X there exists a unique solution
of Problem (4.9)–(4.10), (u, λ) ∈ X × Λ. If (u1, λ1) and (u2, λ2) are solutions
of Problem (4.9)–(4.10) corresponding to two given data (f1, g) ∈ X ×X and
(f2, g) ∈ X ×X, respectively, then

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤ α+ma + 2Ma

αma

‖f1 − f2‖X . (4.12)

Indeed, using (4.9) and (4.10) we can write

ar (u1 − u2, u1 − u2) = (f1 − f2, u1 − u2)X + b(u1 − u2, λ2 − λ1),

b(u1 − u2, λ2 − λ1) ≤ b(g, λ2 − λ1) + b(g, λ1 − λ2).

From this relations, taking into account (4.1), (4.2) and (4.4) and keeping in
mind (4.9) we get (4.12), that concludes Step 2.

Step 3. Let τ ∈ [0, 1). Assume that for given f, g ∈ X there exists a unique
solution of Problem (4.9)–(4.10) with r = τ, (u, λ) ∈ X × Λ. Then, for given
f, g ∈ X there exists a unique solution (u, λ) of Problem (4.9)–(4.10) with
r ∈ [τ, τ + t0] ⊂ [0, 1], where

0 < t0 <
αma

Ma (α+ma + 2Ma)
< 1. (4.13)

Indeed, given f, g ∈ X, we define the mapping T : X × Λ→ X × Λ as follows

T (w, ξ) := (u, λ)

Math. Model. Anal., 14(3):323–334, 2009.
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if (u, λ) is the unique solution of the problem

aτ (u, v) + b(v, λ) = (Fs, v)X , ∀v ∈ X,

b(u, µ− λ) ≤ b(g, µ− λ), ∀µ ∈ Λ,

(Fs, v)X = (f, v)X − (s− τ) c(w, v), τ ≤ s ≤ τ + t0 ≤ 1.

Taking into account (4.13), we deduce that T is a contraction. Using the
Banach Fixed Point Theorem, we conclude that T has a unique fixed point.
Let (u∗, λ∗) be the unique fixed point of the operator T . Using the definition
of T , we deduce

aτ (u∗, v) + b(v, λ∗) = (Fs, v)X , ∀ v ∈ X, (4.14)

b(u∗, µ− λ∗) ≤ b(g, µ− λ), ∀µ ∈ Λ, (4.15)

(Fs, v)X = (f, v)X − (s− τ) c(u∗, v), τ ≤ s ≤ τ + t0 ≤ 1. (4.16)

Using now (4.14), (4.15) and (4.16) we deduce that (u∗, λ∗) is a solution of
Problem (4.9)–(4.10) with r = s, s ∈ [τ, τ + t0]. In order to justify the unique-
ness, let us assume that Problem (4.9)–(4.10) with r = s, s ∈ [τ, τ + t0] has
two solutions (u1, λ1), (u2, λ2) ∈ X × Λ. Consequently, we can write

as(u1 − u2, u1 − u2) ≤ b(g, λ2 − λ1) + b(g, λ1 − λ2),

and from this, as(u1 − u2, u1 − u2) ≤ 0. Taking into account the X-ellipticity
of as, we find u1 = u2. Moreover, using (4.4), we deduce that λ1 = λ2 that
concludes Step 3.

Step 4. Using Step 3 a finite number of times, we deduce that Problem
(4.9)–(4.10) admits a unique solution (u, λ) ∈ X × Λ for r = 1.

Step 5. In order to get (4.7), let us consider the data f1, g1 ∈ X and
f2, g2 ∈ X. Taking into account (4.5) and (4.6), we can write

a(u1 − u2, u1 − u2) ≤ (f1 − f2, u1 − u2)X + b(g1 − g2, λ2 − λ1).

Moreover, keeping in mind (4.1)-(4.4), we deduce

ma‖u1 − u2‖2
X ≤ ‖f1 − f2‖X‖u1 − u2‖X +Mb‖g1 − g2‖X‖λ1 − λ2‖Y , (4.17)

α‖λ1 − λ2‖Y ≤Ma‖u1 − u2‖X + ‖f1 − f2‖X . (4.18)

Using (4.17), we can write

ma‖u1−u2‖2
X ≤ ‖f1 − f2‖2

X

2k1
+
k1‖u1 − u2‖2

X

2
+
M2

b ‖g1 − g2‖2
X

2k2
+
k2‖λ1 − λ2‖2

Y

2
,

where k1, k2 are strictly positive constants that will be chosen later. Combining
the last inequality and (4.18) we deduce

(

ma − k1

2
− k2M

2
a

α2

)

‖u1 − u2‖2
X ≤

( 1

2k1
+
k2

α2

)

‖f1 − f2‖2
X +

M2
b ‖g1 − g2‖2

X

2k2
.

Choosing k1, k2 such that (ma − k1/2 − k2M
2
a/α

2) > 0, we deduce that there
exists c∗ = c∗(α,ma,Ma,Mb) > 0 such that

‖u1 − u2‖X ≤ c∗(‖f1 − f2‖X + ‖g1 − g2‖X). (4.19)
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Finally, combining (4.18) and (4.19) we deduce (4.12). ⊓⊔

Using Theorem 2 we can prove Theorem 1.

Proof. [Proof of Theorem 1]. Let us consider X = Ṽ , Y = D, and Λ given by
(3.22). Obviously, Λ is a non-empty, closed, convex subset of H and 0D ∈ Λ.
Using (3.8)–(3.10) we deduce that there exists Ma = Ma(C, E ,β) > 0 and
ma = ma(C,β) >0 such that the bilinear form a(·, ·) satisfies

|a(ũ, ṽ)| ≤Ma‖ũ‖V ‖ṽ‖Ṽ , ∀ũ, ṽ ∈ V,

a(ũ, ũ) ≥ ma ‖ũ‖2
Ṽ
, ∀ũ ∈ Ṽ .

Taking into account (3.20) and (3.21) we deduce that the bilinear form b(·, ·)
satisfies (4.3) and the inf-sup property (4.4). Consequently, Theorem 1 is a
straightforward application of Theorem 2. ⊓⊔

5 Conclusions and Comments

We provided a mixed variational formulation for a frictionless unilateral contact
problem involving electro-elastic materials. The main advantage of this type of
formulation consists in the fact that it offers the possibility to use modern nu-
merical techniques in order to write efficient algorithms for the approximation
of the weak solution. This approach allows to approximate simultaneously the
displacement field, the electric potential and the normal stress field.

A continuation of the study performed in this paper can be the writing of
a discrete mortar formulation of Problem 1. Working on appropriate product
spaces and following [9], mortar techniques with dual Lagrange multipliers can
be applied in order to get an optimal a priori error estimate.
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