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Abstract. In present article the sequence of holomorphic in region D functions
Fn(z) which have exactly n zeros in this region is considered. The limit properties of
the sequence Fn(z), of functions with non-vanishing divided differences of n-th order
are investigated. One interpolation property, connected with Chebyshev systems is
considered.
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1 Introduction

Let us define divided difference of n-th order of function holomorphic in some
region D by formula

[

F (z) ; z0, . . . , zn

]

=
1

2πi

∫

Γ

F (ξ) dξ

(ξ − z0) . . . (ξ − zn)
,

where Γ is a simple closed contour, enclosing all the points z0, . . . , zn ( [3, 6]).
Using the conditions imposed on divided differences of n-th order it is possible
to determine special subclasses of univalent and multivalent functions which
play an important role in the geometric theory of functions of complex variable.
One of such conditions is, for example, the condition [F (z) ; z0, . . . , zn] 6= 0
for any pairwise distinct z0, . . . , zn ∈ D. If [F (z) ; z0, z1] 6= 0 for all pairs
z0, z1 ∈ D, then F (z) – univalent function in D.

Denote by Kn(D), n = 0, 1, 2, . . . , the class of holomorphic in D functions
F (z), for which [F (z); z0, . . . , zn] 6= 0 for any pairwise different z0, . . . , zn ∈ D
(see, [5]). For n = 0 we have a class K0(D) of non-vanishing in D functions.
K1(D) is a class of univalent in D functions. If F (z) ∈ Kn(D), n ≥ 2, then
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314 E. Kiriyatzkii and J. Kirjackis

Ψ (z) = [F (z) ; z, z1, . . . , zn−1] is univalent in D function for any z1, . . . , zn−1 ∈
D. Note that if F (z) ∈ Kn(D), then F (n)(z) 6= 0 in D.

The rest of the paper is organized as follows. In Section 2, the main problem
and the result (Theorem 2) are formulated. For the proof of Theorem 2, we
need four auxiliary lemmas, which are presented in Section 3. In Section 4,
Theorem 2 is proved. Next we give several corollaries, remarks and examples
related to Theorem 2. Final conclusions are given in Section 6.

2 Formulation of the Problem

LetD is a domain of complex plane and Q certain bounded set from the domain
D. The set Q may be finite as well as infinite. Let Pn(z) be a polynomial of
n-th degree (n ≥ 1) with leading coefficient equal to one. Denote by W (Q) the
set of all such polynomials with roots from the set Q.

Let R be the family of functions ϕ(z), ϕ(0) = 1, for which znϕ(z) ∈ Kn(E),
n = 1, 2, . . ., E = {|z| < 1}. E. G. Kirjackis ([4]) has proved that family R
consists only of rational functions

ϕ (z) =
1

1 − az
, |a| ≤ 1.

Notice that this result was also established by German mathematician St. Ru-
scheweyh, but using another method [8]. In paper [7] we have proved the
following theorem.

Theorem 1. Let Ex(z0) is a circle |z − z0| < x and r, ρ be fixed numbers,

where 0 < ρ < r. Suppose τ is a fixed number from Eρ(z0). The holomorphic

in Er(z0) function ϕ(z) satisfies the condition

(z − τ )
n
ϕ (z) ∈ Kn (Er (z0)) , n = 0, 1, 2, . . . ,

if and only if it takes the form

ϕ (z) =
a

bz + c
, a 6= 0.

The purpose of our work is formulation and proof of the following more
general assertion.

Theorem 2. Let ϕ(z) be a holomorphic in D function and bounded set Q from

the domain D has no limit points on the boundary of the domain D. Let Pn(z),
n = 1, 2, 3, . . . be a sequence of polynomials from W (Q). Then

Pn(z)ϕ(z) ∈ Kn(D), n = 1, 2, . . . (2.1)

if and only if function ϕ(z) takes the form

ϕ (z) =
a

bz + c
, a 6= 0. (2.2)

For the proof of Theorem 2 we need several lemmas.
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On Some Limit Properties of Functions 315

3 Auxiliary Lemmas

Lemma 1 [[7]]. Function F (z) belongs to class Kn(D), n ≥ 1 if and only if for

any polynomial P (z) of degree not greater than n−1 the equation F (z) = P (z)
has in D not more than n roots and there exists such polynomial for which this

equation has exactly n roots in D.

Lemma 2 [[5]]. Let n is a fixed natural number and the sequence Fm(z), m =
1, 2, 3, . . . , of functions from Kn(D) uniformly converges inside D to function

F (z). Then F (z) belongs to the class Kn(D) or is the polynomial of degree not

greater than n− 1.

Lemma 3 [[7]]. Let u(z) is a holomorphic in D function and (z − γ)u(z) ∈
Kn(D), n ≥ 1. Then u(z) ∈ Kn−1(D).

Lemma 4. Let bounded set Q from the domain D has no limit points on the

boundary of the domain D. Let

Pn(z) ∈W (Q), n = 1, 2, . . . , (3.1)

and ϕ(z) ∈ K0(D). If

Pn(z)ϕ(z) ∈ Kn(D), n = 1, 2, . . . , (3.2)

then there exists a point λ from the D that

(z − λ)nϕ(z) ∈ Kn(D), n = 1, 2, . . . .

Proof. Let us assume that polynomials Pn(z), n = 1, 2, . . . are formed by
means of the finite number of roots q1, . . . , qm ∈ Q. Since the sequence (3.1)
consists of polynomials with increasing degrees, then there are infinitely many
polynomials from sequence (3.1), which have the same root, whose multiplicity
is unbounded, i.e., it approaches infinity. Let it be the root q (one of roots
q1, . . . , qm). Let us represent the mentioned infinite set of polynomials in the
form of sequence Pnk

(z), k = 1, 2, 3, . . . , where the polynomial Pnk
(z) has a

root q of multiplicity ρk. According to (3.2) and Lemma 3, we will obtain

(z − q)ρk ϕ (z) ∈ Kρk
(D) , k = 1, 2, 3, . . .

Since ρk → ∞, then by using Lemma 3, we obtain

(z − q)
n
ϕ (z) ∈ Kn (D) , n = 1, 2, . . . .

We proved Lemma 4 on the assumption that polynomials (3.1) were formed
by means of the finite number of roots q1, . . . , qm from Q. Let us assume now
that polynomials (3.1) are formed by means of the infinite set of different roots
from Q. Let us represent these polynomials in the form of

Pn (z) = (z − an1) (z − an2) . . . (z − ann) , n = 1, 2, 3, . . . .

Math. Model. Anal., 14(3):313–321, 2009.
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Let us fix an arbitrary natural number m and will construct the polynomials
of degree m:

Pm (z;n) = (z − an1) (z − an2) . . . (z − anm) , n = m,m+ 1,m+ 2, . . . .

According to Lemma 3 we have

Pm (z;n)ϕ (z) ∈ Kn (D) , n = m,m+ 1,m+ 2, . . . .

Since the sequence of polynomials

Pm(z;n), n = m,m+ 1,m+ 2, . . . .

uniformly bounded inside the region D, then according to the principle of
the condensation [2] let us extract from it a subsequence, which uniformly
converges inside D to the polynomial P ∗

m (z) = (z − b1) . . . (z − bm). But then
the sequence of functions

Pm (z;n)ϕ (z) , n = m,m+ 1,m+ 2, . . .

uniformly converges to the function P ∗

m(z)ϕ(z). By using Lemma 2 we obtain

P ∗

m (z)ϕ (z) ∈ Km (D) , m = 1, 2, 3, . . .

If the sequence b1, b2, b3, . . . contains only finite number of terms, then according
to the first assumption about roots, Lemma 4 is proven. Let the sequence
b1, b2, b3, . . . contain infinitely many of pairwise different terms. Then from the
sequence b1, b2, b3, . . . by virtue of its boundedness let us extract a subsequence
c1, c2, c3, . . . , which converges to a certain number g, g ∈ Q ⊂ D. Let us now
take arbitrarily a natural number m and construct a sequence of polynomials
of degree m:

Pmn (z) = (z − cn) (z − cn+1) . . . (z − cn+m−1) , n = 1, 2, 3, . . . . (3.3)

Using Lemma 3 and taking into account (3.3), we conclude that

Pmn (z)ϕ (z) ∈ Km (D) .

Taking n to infinity and using Lemma 2 we will get

(z − g)
m
ϕ (z) ∈ Km (D) .

Since m is arbitrary natural number we can write

(z − g)n ϕ (z) ∈ Kn (D) , n = 1, 2, 3, . . . .

Thus the Lemma 4 is proved. ⊓⊔
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4 Proof of Theorem 2

Let Pn(z) ∈ W (Q), n = 1, 2, 3, . . . and ϕ(z) ∈ K0(D). Let furthermore

Pn (z)ϕ (z) ∈ Kn (D) , n = 1, 2, 3, . . .

By Lemma 4 there exists a point z0 in D for which

(z − z0)
n ϕ (z) ∈ Kn (D) , n = 1, 2, . . . (4.1)

Thus, we have obtained that if the function ϕ(z) satisfies the condition (3.2) in
Theorem 2, then it satisfies also the condition (4.1). Let us choose such value
of r that the circle |z − z0| < r completely belongs to D. Since ϕ(z) ∈ K0(D)
and the condition (4.1) is fulfilled, then by Theorem 1 the function is of the
form (2.2).

It remains to show that any holomorphic inD function ϕ(z) of the form (2.2)
satisfies the condition (2.1). Indeed, for n ≥ 1 the equation Pn(z)ϕ(z) = T (z),
where T (z) is the arbitrary polynomial of degree not higher than n− 1, cannot
have more than n roots in region D. But then, from Lemma 1 it follows that

Pn (z)ϕ (z) ∈ Kn (D) , n = 1, 2, 3, . . .

The Theorem 2 is completely proved.

5 Discussion of Theorem 2

Remark 1. Remind that the set W (Q) consists of polynomials with roots from
the set Q, Q ⊂ D. In Theorem 2 we have assumed that the set Q does not
have limit points on the boundary of the region D. On the assumption that
the set Q has limit point on the boundary of D, Theorem 2 is not always valid.
We will prove this fact with the aid of the following examples.

Example 1. Let Π = {Rez > 0} and

Pn (z) =

(

z − 1

n

)n

, n = 1, 2, 3, . . . .

It is clear that the set Q has limit point ζ = 0, which belongs to boundary of
the region Π. The polynomial h(z) = z + 1 satisfies the condition

(

z − 1

n

)n

h (z) ∈ Kn (Π) , n = 1, 2, 3, . . .

In fact, for any n ≥ 1

[(

z − 1

n

)

(z + 1) ; z0, . . . , zn

]

= z0 + . . .+ zn 6= 0, ∀z0, . . . , zn ∈ Π.

However, polynomial h(z) = z + 1 is not of the form (2.2) as it asserts Theo-
rem 2.

Math. Model. Anal., 14(3):313–321, 2009.
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Example 2. Let

ϕ (z) =
2 − z

(1 − z)
2 .

Let us note that ϕ(z) is univalent in unit disc E = |z| < 1. Let the set Q
consists of numbers z0 = 0, zn = −(n− 3)/(n+ 1), n = 1, 2, 3, . . . . Let us take
the sequence of the polynomials

Pn (z) = z

(

z +
n− 3

n+ 1

)n−1

, n = 1, 2, 3, . . .

from the W (Q). The set Q has a limit point z = −1, on the circumference
|z| = 1. Let us prove that

Pn (z)ϕ (z) ∈ Kn (E) , n = 1, 2, 3, . . . . (5.1)

For n = 1 assertion (5.1) is true, because function zϕ(z) is univalent, that is
zϕ(z) ∈ K1(E). It is not difficult to establish identity

z
(

z +
n− 3

n+ 1

)n−1 2 − z
(

1 − z
)2 = P ∗

n−1

(

z
)

+
2n−2

(

n− 1
)n−1

(

n+ 1
)n−2

z + 1−n
1+n

(

1 − z
)2

for n ≥ 2. Using elementary properties of divided differences we get

[

Pn

(

z
)

ϕ
(

z
)

; z0, . . . , zn

]

= 2n−2
(n− 1

n+ 1

)n−1[ z + 1−n
1+n

(

1 − z
)2 ; z0, . . . zn

]

= 2n−2
(n− 1

n+ 1

)n−1(

−1 +
2

n+ 1

n
∑

m=0

1

1 − zm

)

n
∏

m=0

1

1 − zm
6= 0,

∀z0, . . . , zn ∈ E.

Thus relation (5.1) is correct, but function ϕ(z) is not linear-fractional of form
(2.2).

Remark 2. We assumed until now that W (Q) consists of the polynomials with
roots from the set Q and Q ⊂ D. Let us assume now that the set consists of
the polynomials whose all roots belong the set Q, however, these roots do not
belong to region D. The following example shows that in this case Theorem 2
also will not be valid.

Example 3. Let

f (z) =
z

(1 − z)
2 . (5.2)

It is not difficult to check that

[

f (z) ; z0, . . . , zn

]

=
(

−1 +

n
∑

m=0

1

1 − zm

)

n
∏

m=0

1

1 − zm
6= 0, ∀z0, . . . , zn ∈ E.

Consequently f(z) ∈ Kn(E), n = 1, 2, . . . . Next we will use the following
lemma.
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Lemma 5 [see [6]]. Let linear-fractional function

ξ =
az + b

cz + d
, ad− bc 6= 0

maps domain D onto domain D∗. If F (ξ) ∈ Kn(D∗), n = 1, 2, . . . , then

(cz + d)n−1 F

(

az + b

cz + d

)

∈ Kn (D) .

Function ξ = (z + x)/(1 + xz), 0 < x < 1, maps one-to-one unit disc E onto
itself. Using Lemma 5 and elementary properties of divided differences we get
that

(

z +
1

x

)n z + x

(1 − z)
2 ∈ Kn (E) , n = 1, 2, . . . .

Next we form a set Q from numbers −1/x. Then W (Q) consists of polynomials

Pn (z) =
(

z +
1

x

)n

with roots from the set Q and these roots do not belong to the unit disc E. It
is clear from (5.3) that Theorem 2 does not take place.

Example 4. Let Pn(z) = (1 + z)n and ϕ(z) = 1 + z. It is not clear that

Pn (z)ϕ (z) ∈ Kn (D) , n = 1, 2, . . .

Here the polynomial Pn(z) has the root z0 = −1 which belongs to the circum-
ference |z| = 1, and the function ϕ(z) is not a linear-fractional function. In
this case Theorem 2 is also not valid.

Example 5. Let us give one additional interesting in our view example, related
to the sequence of the polynomials. Consider function ψ(z) = ez. For any
z0, . . . , zn ∈ E the formula

[

ψ (z) ; z0, . . . , zn

]

=

t1
∫

0

t1
∫

0

. . .

tn−1
∫

0

ψ(n) (ζ) dt1 . . . dtn,

0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ t1, . . . , 0 ≤ tn ≤ tn−1,

ζ = z0 + t1 (z1 − z0) + . . .+ tn (zn − zn−1) ∈ E

is valid ([6]). Since Re
{

ψ(n) (ζ)
}

> 0, ∀ζ ∈ E, then

Re
{[

ψ (z) ; z0, . . . , zn

]}

=

t1
∫

0

t1
∫

0

. . .

tn−1
∫

0

Re
{

ψ(n) (ζ)
}

dt1 . . . dtn>0,

∀z0, . . ., zn∈E.

Therefore ψ (z) ∈ Kn (E), n = 1, 2, . . . . Applying the Lemma 5 we obtain

(

1 + ζ̄z
)n−1

ez+ζ/1+ζ̄z ∈ Kn (E) , ∀ζ ∈ E, n = 1, 2, . . . .

Math. Model. Anal., 14(3):313–321, 2009.
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Corollary 1. Let set Q from the domain D has no limit points on the boundary
of the domain D. Let Pn(z), n = 1, 2, 3, . . . is a sequence of polynomials from
the set W (Q). The condition

Pn (z)h (z) ∈ Kn (D) , n = 1, 2, 3, . . .

for the polynomial h(z) is satisfied if and only if h(z) ≡ a, where a 6= 0.

Definition 1. Let u0 (z) , u1 (z) , . . . , un (z) be a set of linearly independent
and holomorphic in domain D functions. If for any complex c0, c1, . . . , cn (ex-
cept the case where c9, c1, . . . , cn are all zeros) equation

c0u0 (z) + c1u1 (z) + ...+ cnun (z) = 0

has not more than n roots in domain D, then the system of functions
{

u0(z), u1(z), . . . , un(z)
}

is called Chebyshev system in domain D.

Particularly, if for any complex c0, c1, . . . , cn equation

c01 + c1z + . . .+ cn−1z
n−1 + U (z) = 0

has in D not more than n roots, then the system 1, z, . . . , zn−1, U (z) forms the
Chebyshev system in D (for example [1].

Lemma 6. The condition U(z) ∈ Kn(D), n ≥ 1 is necessary and sufficient for

the system 1, z, . . . , zn−1, U (z) to be Chebyshev system in D ([6, 8]).

Corollary 2. Let ϕ(z) be a holomorphic in D function and a bounded set Q
from the domain D has no limit points on the boundary of the domain D. Let
Pn(z) ∈ W (Q), n = 1, 2, . . . . If the functions 1, z, . . . , zn−1, Pn (z)ϕ (z) for any
n, n ≥ 1 form a Chebyshev system in D, then

ϕ (z) =
a

bz + c
, a 6= 0. (5.3)

In fact, by Lemma 6 Pn (z)ϕ (z) ∈ Kn (D) for any n ≥ 1 and using Theo-
rem 2 we get (5.3).

Lemma 7. For function U(z) to be interpolated by polynomial of n−1-th degree

not more than in n points it is necessary and sufficient that U(z) ∈ Kn(D).

The proof follows from the Lemma 6.

Corollary 3. Let ϕ(z) be a holomorphic in D function and a bounded set Q
from the domain D has no limit points on the boundary of the domain D. Let
Pn(z) ∈ W (Q), n = 1, 2, . . . . If for any number n ≥ 1 any rational function

b0 + b1z + . . .+ bn−1z
n−1

Pn (z)
(5.4)

interpolates holomorphic in D function ϕ(z) at most in n points from D, then

ϕ (z) =
a

bz + c
, a 6= 0.
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Indeed, by condition every rational function (5.4) interpolates the function
ϕ(z) at most in n points. Therefore, every polynomial b0 +b1z+ . . .+bn−1z

n−1

interpolates the function Pn(z)ϕ(z) at most in n points. Then by Lemma 7 we
have that Pn (z)ϕ (z) ∈ Kn (D) for any n ≥ 1. Using Theorem 2 we obtain
(5.3).

6 Conclusions

Lemmas 6, 7 and Corollaries 2, 3 indicate a close connection between the spe-
cial Chebyshev systems and the interpolation of functions by correct proper
fractions. In the present paper article, the classes Kn (D) , n = 0, 1, 2, . . . are
considered in the aggregate which enables us to have sufficiently complete in-
formation on the limit property of a sequence composed of functions, belonging
to different classes.
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