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Abstract. A two strain tuberculosis model with treatment which allows TB patients
with the drug sensitive of strain Mycobacterium tuberculosis to be cured is presented.
The model is further extended to incorporate quarantine for active TB cases with
multi-drug resistant TB strains. The model assumes that latently infected individuals
develop active disease as a result of endogenous activation and exogenous reinfection.
Qualitative analysis of the model including positivity, boundedness and persistence
of solutions are presented. The thresholds and equilibria quantities for the models
are determined and stability of the solution is analyzed. From the study we conclude
that quarantine of the multi-drug resistant tuberculosis cases reduces the multi-drug
resistant tuberculosis induced reproduction number to values below unit, thus this
intervention strategy can control the development of multi-drug resistant tuberculosis
epidemic. Also effective chemoprophylaxis and treatment of infectives result in a
reduction of multi-drug resistant tuberculosis cases since most multi-drug resistant
tuberculosis cases are a result of inappropriate treatment.

Key words: Tuberculosis model, chemoprophylaxis, treatment, quarantine, exoge-

nous re-infection, multi-drug resistant.

1 Introduction

Tuberculosis (TB) is second common cause of death after HIV/AIDS (Frieden
et al., [17]) in the world. There were an estimated 8-9 million new cases of
TB in 2000, fewer than half of which were reported, 3-4 million cases were
sputum-smear positive, the most infectious form of the disease (Corbet et al.
[11]). Tuberculosis is a bacterial disease with an estimated one third of the
world population as its reservoir (Castillo-Chavez and Feng, [8]). It is caused
by Mycobacterium tuberculosis bacteria (Mtb). The disease is most commonly
transmitted from a person suffering of infectious tuberculosis to susceptible and
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possibly latently infected individuals by infected droplets produced by an indi-
vidual with active TB coughs, sneezes or talks (Castillo-Chavez and Feng, [8]).
Individuals with latent forms of TB are not clinically ill and cannot transmit
TB (Miller, [20]). Sub-Saharan Africa remains the epicenter of the epidemic,
but India, China, Indonesia, Bangladesh and Pakistan together account for
more than half of the cases in the world (Frieden et al., [17]). TB has declined
in the developed world, but has increased in the former Soviet Union due to
general failure of TB control programs (Shilov and Dye, [24]). Periodic sur-
veys have shown that over 10% of new TB cases in Latvia, Estonia and some
parts of Russia are multi-drug resistant (WHO, 2003). Multi-drug resistant TB
(MDRTB) is defined as resistance to isoniazid and rifampicin whether there is
resistance to other first line drugs or not (Davies, [12]). It is therefore incor-
rect to classify a patient as having MDRTB if one is infected with a bacterium
susceptible to rifampicin but resistant to many other drugs. Resistance to iso-
niazid and streptomycin only is the most common form of resistance to more
than one drug. This is not strictly MDRTB, perhaps another separate term is
needed to define this combination of resistances (Davies, [12]). The success of
the drug treatment of TB has catalyzed the emergence of a new wave drug re-
sistant TB. Early single use of streptomycin has taught us that taking one drug
on its own for TB would lead to drug resistance (Davies, [12]). A combination
of poor compliance and poor medical supervision can result n multi-drug re-
sistance. However some acquire MDRTB by being infected with a multi-drug
resistant strain. MDRTB is transmitted in the same way as the normal drug
sensitive strain. Current estimates are at least 2000 newly active MDRTB cases
in South Africa each year (National Tuberculosis Research Programme, [23]).
Cure rates for MDRTB are under 50%, over 30% of MDRTB are fatal within
two years. The remainder are chronic and continue to be infectious, posing a
threat to communities (National Tuberculosis Research Programme, [23]).

Except South Africa, most developing countries in Sub-Saharan Africa such
as Zimbabwe lack second line drugs because they are poor. Second line drugs
are drugs used to treat MDRTB. Preventing the outbreak of MDRTB remains
the effective key in controlling this epidemic. The spread of MDRTB bacteria
depends on factors such as the total number and concentration of infectious
people in any place and time of exposure, along with the presence of people with
a higher risk of being infected such as those with HIV/AIDS. Failure to control
MDRTB leads to the creation of extensively drug resistant TB (XDRTB) which
is resistant to first and second line drugs. Treatment options for XDRTB are
limited, and in May 2007 an individual with XDRTB was quarantined in the
USA to prevent the spread of the disease (Singh, [25]).

Coexistence of different pathogens (strains) in the same host were studied
(Ackleh and Allan, [1]; Allen et al., [2]; Blower and Gerberding, [4]; Blyuss
and Kyrychko, [5]; Castillo-Chavez and Feng, [7, 8]; Dye and William, [15];
Martcheva et al., [18]; May and Nowak, [19]; Nowak and Sigmund, [22]; Naresh
and Tripath, [21]). Castillo-Chavez and Feng [7, 8]) studied a two strain TB
model in the context of treatment. Our work differs from all these studies that,
in addition to treatment, we consider the possible benefits to the community
if MDRTB cases are quarantined. We have also added a scenario where an
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individual sick from the drug sensitive TB can be infected with multi-drug
resistant TB and move to MDRTB stage. We have also incorporated a scenario
where an individual in the latent stage of drug sensitive TB can become sick
with MDRTB after being infected with drug resistant strain.

2 Model

We subdivide the population into susceptible individuals (S), those exposed
to drug sensitive TB only (ET1 ), individuals with symptoms of TB and drug
sensitive, (IT1 ), those who have recovered (RT ), those exposed to multi-drug
resistant TB (ET2) and those displaying symptoms of TB and multi-drug resis-
tant, (IT2 ). Susceptible humans are recruited into the population at per capita
rate Λ. Susceptible individuals acquire Mtb infection following contact with an
active TB case at a rate λi, i = 1, 2 where i = 1 and i = 2 represent rates of
infection by drug sensitive strain and multi-drug resistant strain, respectively.
The large population size N(t) is

N(t) = S(t) + ET1(t) + IT1(t) + RT (t) + ET2(t) + IT2(t).

Individuals in different human subgroups suffer from natural death at a con-
stant rate µ. The force of infection (λi), associated with Mtb infection is
λi = (βicITi

)/N , where βi is the probability that an individual is infected with
one infectious individual and c is per capita contact rate. Susceptible are in-
fected with drug sensitive Mtb at rate λ1 and multi-drug resistant strain at
rate λ2 entering classes ET1 and ET2 , respectively. Individuals in ET1 enter
the infectious class IT1 from endogenous reactivation progression and exoge-
nous reinfection at rates k1 and δ1λ1, with δ1 ∈ (0, 1) since primary infection
offers some degree of immunity. Active forms of tuberculosis are treated using
first line drugs (rifampicin, isoniazid, pyrazinamide, ethambutol) taken daily
for two months and followed by a daily intake of rifampicin and isoniazid for a
period of four months. Exposed individuals are treated with isoniazid. Twelve
months isoniazid daily intake gives 70% to 90% protection against development
of active TB, six months of therapy provides 50% to 60% protection (Coleman
and Slutkin, [10]). However for suspected isoniazid-resistant Mtb infection it
is safest to treat with rifampicin (with or without isoniazid). Individuals in
ET1 receive chemoprophylaxis at a rate of r1 and move to the recovered class
RT . Individuals infected with Mtb in ET1 can acquire TB resistance following
infection with the drug resistant strain at rate and λ2 and enter ET2 . Indi-
viduals sick with drug sensitive strain of TB receive treatment at rate r2 and
a proportion pr2 respond to treatment and move into RT , a proportion qr2

partially respond and move back to the exposed class ET1 and in the remaining
proportion (1 − (p + q))r2 failure of treatment results in the development of
multi-drug resistant strains and the individuals move into ET2 .

There is an additional disease induced-death d1 for those in IT1 . Individuals
in this class acquire drug resistance from being infected with the drug resistant
strain at rate λ2 and this process is referred to as super-infection. Those in RT

are not fully immune to Mtb, are infected with drug sensitive strain at rate λ1

to move into ET1 , and are infected with drug resistant strain at rate λ2 to move

Math. Model. Anal., 14(3):291–312, 2009.
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into ET2 . Individuals in ET2 enter the drug resistant active TB class, IT2 from
endogenous reactivation at rates k2, and exogenous reinfection at rates λ1 and
δ2λ2 with δ2 ∈ (0, 1) since primary infection confers some degree of immunity.
Individuals in the infectious class IT2 suffer an additional disease induced death
at rate d2. As it is difficult to treat MDRTB in developing countries such as
Zimbabwe due to the unavailability of second line drugs, we ignore treatment
of the multi-drug resistant strain. This makes our model more appropriate for
resource-poor settings. The model flow diagram is shown in Figure 1. The
following system of differential equations describe the interaction of the two
strains:



























































S′(t)=Λ−(λ1 + λ2)S−µS,

E′
T1

(t)=λ1(S+RT )−δ1λ1ET1−λ2ET1−(k1+µ+r1)ET1+qr2IT1 ,

I ′T1
(t)=δ1λ1ET1+k1ET1−λ2IT1−(r2+µ+d1)IT1 ,

R′
T (t)=pr2IT1+r1ET1−(λ1+λ2)RT−µRT ,

E′
T2

(t)=λ2S+(1−(p+q))r2IT1+λ2RT−λ1ET2−δ2λ2ET2−(µ+k2)ET2 ,

I ′T2
(t)=λ1ET2+δ2λ2ET2+k2ET2+λ2ET1+λ2IT1−(µ+d2)IT2 .

(2.1)

Figure 1. Structure of model. In this case γ = 1.
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2.1 Invariant region

The two strain TB transmission model (2.1) will be analyzed in a suitable
region as follows. We first show that system (2.1) is dissipative. That is all
solutions are uniformly bounded in a proper subset K ⊂ R

6
+.

Let, (S, ET1 , IT1 , RT , ET2 , IT2) ∈ R
6
+ be any solution with non-negative ini-

tial conditions. Using a theorem by Birkhoff and Rota [3] on differential in-
equality it follows that

lim sup
t→∞

S(t) ≤ Λ

µ
.

Taking the time derivative of N(t) along a solution path of the system gives

N ′(t) = Λ − µN(t) − d1IT1 − d2IT2 .

Model system (2.1) has a varying population size (N ′ 6= 0) and therefore a
trivial equilibrium is not feasible. Let α = min(d1, d2), then,

N ′ ≤ Λ − µN − α(IT1 + IT2) < Λ − µN.

So that (following Birkhoff and Rota, [3])

0 ≤ N ≤ Λ

µ
+ N(0)e−µt,

where N(0) represents the value evaluated at the initial values of the respective

variables. Thus 0 ≤ N ≤ Λ

µ
, as t → ∞. Therefore all feasible solutions of

system (2.1) enter the region

K =

{

(S, ET1 , IT1 , RT , ET2 , IT2) ∈ R
6
+ : N ≤ Λ

µ

}

.

Thus, K is positively invariant and it is sufficient to consider solutions in K.
Existence, uniqueness and continuation results for system (2.1) hold in this
region. It can be shown that all solutions of system (2.1) starting in K remain
in K for all t ≥ 0. All parameters and state variables for model system (2.1)
are assumed to be non-negative for t ≥ 0 since it monitors human population.

2.2 Disease free equilibrium and stability analysis

The disease free equilibrium is given as

U0 =
(

S0, E0
T1

, I0
T1

, R0
T , E0

T2
, I0

T2

)

=
(Λ

µ
, 0, 0, 0, 0, 0

)

.

The basic reproduction number is defined as the number of secondary infec-
tions produced by a single infectious individual during the entire infectious
period. In our case the reproduction number defines the number of secondary
TB infections produced by a single active TB individual during the entire in-
fectious period. Mathematically it is defined as the spectral radius of the next

Math. Model. Anal., 14(3):291–312, 2009.
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generation matrix (van den Driessche and Watmough, [13]). Following van den
Driessche and Watmough [13] to determine the reproduction number of the
model system (2.1) we have

F =

















λ1(S + RT )
0
0

λ2(S + RT )
0
0

















and

V =

























(δ1λ1 + λ2)ET1 + (µ + k1 + r1)ET1 − qr2IT1

(µ + d1 + r2)IT1 + λ2IT1 − k1ET1 − δ1λ1ET1

µRT + (λ1 + λ2)RT − r1ET1 − pr2IT1

(µ + k2)ET2 + (λ1 + δ2λ2)ET2 −
(

1 − (p + q)
)

r2IT1

(µ + d2)IT2 − λ2(IT1 + ET1) − k2ET2 − (λ1 + δ2λ2)ET2

µS + (λ1 + λ2)S − Λ

























.

The infected compartments are ET1 , IT1 , ET2 and IT2 . Thus

F =









0 β1c 0 0
0 0 0 0
0 0 0 β2c
0 0 0 0









and

V =















µ + k1 + r1 −qr2 0 0

−k1 µ + d1 + r2 0 0

0 −
(

1 − (p + q)
)

r2 µ + k2 0

0 0 −k2 µ + d2















.

The dominant eigenvalues of FV −1 are given by

R1=
β1ck1

(k1+r1+µ)(d1+µ)+r2(r1+µ+k1(1−q))
, R2=

β2ck2

(µ+k2)(µ+d2)
.

The reproduction number is given as Rrs = max {R1,R2}, where R1 and R2

are reproduction numbers for drug sensitive TB strain only and drug resistant
TB strain only respectively. Theorem 1 follows from van den Driessche and
Watmough [13] (Theorem 2).

Theorem 1. The disease free equilibrium point U0 is locally asymptotically sta-
ble if Rrs < 1, that is R1 < 1 and R2 < 1, and unstable otherwise.

2.3 Endemic equilibria and invasion reproduction numbers

There are three possible endemic equilibria for model system (2.1): two bound-
ary equilibria U1 (when only the first strain is present) and U2 (when only the
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second strain is p resent), and the interior equilibrium point U3 (when both
strains exist).

2.3.1 The drug sensitive TB-strain only equilibrium

This is obtained by setting ET2 = IT2 = 0 and p + q = 1. The drug sensitive
TB only equilibrium in terms of the equilibrium value of the force of infection
λ∗

1 is given as
U1 = (S∗, E∗

T1
, I∗T1

, R∗
T , 0, 0), (2.2)

where S∗ = Λ/µ + λ∗
1,

E∗
T1

=
(r2 + µ + d1)Λ

(λ∗
1 + µ)(A1λ2∗

1 + B1λ∗
1 + C1)

, I∗T1
=

Λ(δ1λ
∗
1 + k1)

A1λ2∗
1 + B1λ∗

1 + C1

R∗
T =

(1 − q)r2Λ(δ1λ
∗
1 + k1)r2

(λ∗
1 + µ)(A1λ2∗

1 + B1λ∗
1 + C1)

+
Λr1(r2 + µ + d1)

(λ∗
1 + µ)(A1λ2∗

1 + B1λ∗
1 + C1)

,

A1=δ1(µ+d1), B1=δ1µ(µ+r2−qr2+µ + d1)+(µ+d1)(µ+k1)+µr2,

C1 = µ(µ + k1 + r1)(µ + d1) + r2(k1 − k1q + r1 + µ).

Substituting equation (2.2) into the equation for λ∗
1, we obtain

λ∗
1g(λ∗

1) = λ∗
1(A2λ

∗2
1 + B2λ

∗
1 + C2) = 0,

where λ∗
1 = 0 corresponds to the disease free equilibrium and g(λ∗

1) = 0 corre-
sponds to the existence of endemic equilibria where

A2 =
1

(µ + k1 + r1)(µ + dT1 + r2) − qr2k1
,

B2 =
µ + k1 + d1 + r2 − β1c

(µ + k1 + r1)(µ + d1 + r2) − qr2k1
, C2 = 1 −R1.

By examining the quadratic equation we see that there is a unique endemic
equilibrium if B2 < 0 and C2 = 0 or B2

2 − 4A2C2 = 0, there are two if
C2 > 0, B2 < 0 and B2

2 − 4A2C2 > 0, and there is non-otherwise. The
coefficient A2 is always positive and C2 is positive or negative if R1 is less
than or greater than one respectively. We therefore rewrite these conditions in
Lemma 1.

Lemma 1. Model system (2.1) has (i) precisely one unique endemic equilibrium
if C2 < 0 ⇔ R1 > 1, (ii) precisely one unique endemic equilibrium if B2 < 0
and C2 = 0 or B2

2 − 4A2C2 = 0, (iii) precisely two endemic equilibria if C2 >
0, B2 < 0 and B2

2 − 4A2C2 > 0, (iv) otherwise there are none.

To find the backward bifurcation point, we set the discriminant B2
2−4A2C2 = 0

and make R1 the subject of the formulae to obtain

Rc
1 = 1 − B2

2

4A2
,

from which it can be shown that backward bifurcation occurs for values of R1

in the range Rc
1 < R1 < 1. We now state Theorem 2 to show the existence of

the endemic equilibrium point U1.

Math. Model. Anal., 14(3):291–312, 2009.
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Theorem 2. The endemic equilibrium point U1 exists for R1 > 1.

Proof. Analyzing the equation g(λ∗
1) = 0 we get λ∗

1 =
−B2+(B2

2−4A2C2)
(1/2)

2A2

from which it is clear that the disease is endemic when

λ1 > 0 ⇒ B2
2 − 4A2C2 > B2

2 ⇒ 4A2(1 −R1) < 0 ⇒ R1 > 1.

Thus the endemic equilibrium point U1 exists whenever R1 > 1. ⊓⊔

To determine the asymptotic stability of U1 we make use of the Centre
Manifold theory (Carr, [6]) as described in Theorem 4.1 of Castillo-Chavez and
Song [9]. To use the Centre Manifold theory let us make the following change of
variables S = x1, ET1 = x2, IT1 = x3, RT = x4, ET2 = x5 and IT2 = x6, so that

N(t) =
∑6

n=1 xn. Using the vector notation X = (x1, x2, x3, x4, x5, x6)
T model

system (2.1) can be written in the form X ′(t) = F = (f1, f2, f3, f4, f5, f6)
T as

follows

x′
1(t) = f1 = Λ −

∑2
j=1 βjcx3jx1
∑6

n=1 xn

− µx1,

x′
2(t) = f2=

β1cx3(x1+x4)
∑6

n=1 xn

−δ1β1cx3x2
∑6

n=1 xn

− β2cx6x2
∑6

n=1 xn

−(k1+µ + r1)x2+qr2x3,

x′
3(t) = f3 =

δ1β1cx3x2
∑6

n=1 xn

− β2cx6x3
∑6

n=1 xn

+ k1x2 − (r2 + µ + d1)x3, (2.3)

x′
4(t) = f4 = pr2x3 + r1x2 −

∑2
j=1 βjcx3jx4
∑6

n=1 xn

− µx4,

x′
5(t)=f5=

β1cx6(x1+x4)
∑6

n=1 xn

+(1−(p+q))r2x3−(µ+k2)x5−
β1cx3x5
∑6

n=1 xn

−δ2β2cx6x5
∑6

n=1 xn

,

x′
6(t) = f6 =

β1cx3x5
∑6

n=1 xn

+
δ2β2cx6x5
∑6

n=1 xn

+ k2x5 +
β2cx6(x2 + x3)

∑6
n=1 xn

− (µ + d2)x6.

The Jacobian matrix of system (2.3) at U0 is given by

J(U0)=

















−µ 0 −β1c 0 0 −β2c
0 −(k1+µ+r1) qr2+β1c 0 0 0
0 k1 −(r2+µ+d1) 0 0 0
0 r1 pr2 −µ 0 0
0 0 (1−(p+q))r2 0 −(µ+k2) β2c
0 0 0 0 k2 −(µ + d2)

















(2.4)

From (2.4) it can be shown that

R1 =
β1ck1

(k1 + r1 + µ)(d1 + µ) + r2(r1 + µ + k1(1 − q))
,

R2 =
β2ck2

(µ + k2)(µ + d2)
.

(2.5)
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If β1 is taken as a bifurcation point and if we solve R1 = 1 for β1 we obtain

β1 = β∗ =
(k1 + r1 + µ)(d1 + µ) + r2(r1 + µ + k1(1 − q))

ck1

(2.6)

The linearized system of the transformed system (2.3) with β1 = β∗ has a
simple zero eigenvalue. Thus the Centre Manifold theory can be applied in the
analysis of the dynamics of system (2.3) near β1 = β∗. The Jacobian of system
(2.3) near β1 = β∗ has a right eigenvector associated with the zero eigenvalue
given by u = [u1, u2, u3, u4, u5, u6]

T , where

u1 = −u3

µ

(

β∗c +
(1 − (p + q))r2k2β2c

(µ + d2)(µ + k2)(1 −R2)

)

< 0 if 1 > R2,

u2 =
(r2 + µ + d1)u3

k1
=

(qr2 + β∗c)u3

k1 + µ + r1
> 0, u3 = u3 > 0, (2.7)

u4=
((r2 + µ + d1)r1 + pr2k1)u3

k1µ
> 0, u5=

(1 − (p + q))r2u3

(µ + k2)(1 −R2)
> 0 if 1 > R2,

u6=
(1−(p+q))r2k2u3

(µ+d2)(µ+k2)(1−R2)
>0 if 1>R2.

The left eigenvector associated with the zero eigenvalue at β1 = β∗ is given by
v = [v1, v2, v3, v4, v5, v6]

T where,

v1 = 0, v2 =
k1v3

k1 + r1 + µ
, v3 = v3 > 0, v4 = 0,

v5 =
((k1 + r1 + µ)(r2 + µ + d1) − (qr2 + β∗c)k1)v3

(k1 + r1 + µ)(1 − p − q)r2
> 0

if (k1 + r1 + µ)(r2 + µ + d1) − qr2k1 > β∗ck1,

v6 =
β2cv5

µ + d2
=

(µ + k2)v5

k2
⇔ R2 = 1.

(2.8)

Further we use Theorem 3 proven by Castillo-Chavez and Song [9].

Theorem 3. Consider the following general system of ordinary differential
equations with a parameter φ

dx

dt
= f(x, φ), f : R

n × R → R and f ∈ C
2(Rn × R), (2.9)

where 0 is an equilibrium of the system that is f(0, φ) = 0 for all φ and assume

A1: A = Dxf(0, 0) = ( ∂fi

∂xj

(0, 0)) is the linearization of system (2.9) around

the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and
other eigenvalues of A have negative real parts;

A2: Matrix A has a right eigenvector u and a left eigenvector v correspond-
ing to the zero eigenvalue.

Math. Model. Anal., 14(3):291–312, 2009.
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Let fk be the kth component of f and

a =

n
∑

k,i,j=1

vkuiuj

∂2fk

∂xi∂xj

(0, 0), b =

n
∑

k,i=1

vkui

∂2fk

∂xi∂φ
(0, 0). (2.10)

The local dynamics of (2.9) around 0 are totally governed by a and b.
i. a > 0, b > 0. When φ < 0 with |φ| << 1, 0 is locally asymptotically

stable, and there exists a positive unstable equilibrium; when 0 < φ << 1, 0
is unstable and there exists a negative and locally asymptotically stable equilib-
rium.

ii. a < 0, b < 0. When φ < 0 with |φ| << 1, 0 unstable; when 0 <
φ << 1, 0 is locally asymptotically stable, and there exists a positive unstable
equilibrium.

iii. a > 0, b < 0. When φ < 0 with |φ| << 1, 0 is unstable, and there
exists a locally asymptotically stable negative equilibrium; when 0 < φ << 1, 0
is stable, and a positive unstable equilibrium appears.

iv. a < 0, b > 0. When φ changes from negative to positive, 0 changes its
stability from stable to unstable. Correspondingly a negative unstable equilib-
rium becomes positive and locally asymptotically stable.

Computations of a and b. The sign of a is associated with the following
none vanishing partial derivatives of F

∂2f2

∂x2∂x3
=

∂2f2

∂x3∂x2
= −β∗cµ(1 + δ1)

Λ
,

∂2f2

∂x2∂x6
=

∂2f2

∂x6∂x2
= −β2cµ

Λ
,

∂2f2

∂x2
3

= −2β∗cµ

Λ
,

∂2f2

∂x3∂x5
=

∂2f2

∂x5∂x3
= −β∗cµ

Λ
,

∂2f2

∂x3∂x6
=

∂2f2

∂x6∂x3
= −β∗cµ

Λ
,

∂2f3

∂x2∂x3
=

∂2f2

∂x3∂x2
= −δ1β∗cµ

Λ
,

∂2f3

∂x3∂x6
=

∂2f3

∂x6∂x3
= −β2cµ

Λ
,

∂2f5

∂x2∂x6
=

∂2f5

∂x6∂x2
= −β2cµ

Λ
, (2.11)

∂2f5

∂x3∂x5
=

∂2f5

∂x5∂x3
= −β∗cµ

Λ
,

∂2f5

∂x3∂x6
=

∂2f5

∂x6∂x3
= −β2cµ

Λ
,

∂2f5

∂x5∂x6
=

∂2f5

∂x6∂x6
= −β2cµ(1 + δ2)

Λ
,

∂2f5

∂x2
6

= −2β2cµ

Λ

It follows from (2.7), (2.8), (2.10) and (2.11) that a = ϕ1 +ϕ2 +ϕ3 +ϕ4 where,

ϕ1 = −2β∗cµv3u
2
3

Λh2

(

(1 + δ1)h1 + k1

k1
+

(1 − p − q)r2(µ + d2 + k2)

(µ + k2)(µ + d2)(1 −R2)

)

− 2β2cµv3u
2
3

Λh2

(

(1 − p − q)r2k2h1

(µ + d2)(µ + k2)(1 −R2)k1

)

,

ϕ2 =
2cµv3u

2
3

Λ

(

δ1β∗h1

k1
− β2(1 − p − q)r2k2

(µ + k2)(µ + d2)(1 −R2)

)

,
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ϕ3 = −2(h1h2 − (qr2 + β∗c)k1)cµv3µ
2
3

Λh2

( β∗k1(µ + d2) + β2k2h1

k1(µ + d2)(µ + k2)(1 −R2)

)

− 2(h1h2 − (qr2 + β∗c)k1)(µ + d2 + k2)β2cµv3µ
2
3

Λh2(µ + d2)(µ + k2)(1 −R2)

−
2(h1h2−(qr2 + β∗c)k1)(1−p−q)

(

(µ+δ2)(µ+d2)+k2

)

k2r2β2cµv3µ
2
3

Λh2

(

(µ+d2)(µ+k2)(1−R2)
)2 ,

ϕ4 =
2β2c(h1h2 − (qr2 + β∗c)k1)(β∗(µ + d2) + k2β2)cµv3u

2
3

Λh2(µ + d2)2(µ + k2)(1 −R2)
,

with h1 = µ + d1 + r2, h2 = k1 + r1 + µ. For some ϕi > 0, i = 1, 2, 3 we have
a > 0 otherwise a < 0.

The sign of b is associated with the following none vanishing partial deriva-
tives of F at the disease-free equilibrium:

∂2f2

∂x3∂β∗

= c,
∂2f1

∂x3∂β∗

= −c. (2.12)

It follows from (2.7), (2.8), (2.10) and (2.12) that

b =
k1cv3u3

k1 + r1 + µ
> 0. (2.13)

Using Theorem 3, items (i) and (iv) we establish the following result.

Theorem 4. If R2 < 1 and there is ϕi < 0, i = 1, 2, 3, 4 such that a < 0
then model system (2.1) has a unique endemic equilibrium U1 which is locally
asymptotically stable for R1 > 1 but close to 1. If there is ϕi > 0 such that
a > 0 then the direction of the bifurcation at R1 = 1 is backward.

2.3.2 The drug resistant TB-strain only equilibrium

This equilibrium solution is obtained by setting ET1 = IT1 = RT = 0 in equa-
tion (2.1). The drug resistant TB expressed only in terms of the equilibrium
value of the force of infection λ∗

2 is given by U2 = (S∗∗, E∗∗
T2

, I∗∗T2
), where

S∗∗ =
Λ

µ + λ∗
2

, E∗∗
T2

=
λ∗

2Λ

(µ + λ∗
2)(µ + k2 + δ2λ∗

2)
,

I∗∗T2
=

λ∗
2Λ(δ2λ

∗
2 + k2)

(µ + λ∗
2)(µ + k2 + δ2λ∗

2)(µ + d2)
.

(2.14)

Substituting U2 into the equation for the force of infection λ∗
2 we have

λ∗
2h(λ∗

2) = λ∗
2(Aλ∗2

2 + Bλ∗
2 + C) = 0,

where λ∗
2 = 0 corresponds to the disease-free equilibrium and h(λ∗

2) = 0 corre-
sponds to the existence of an endemic equilibria where

A =
δ2

(µ + k2)(µ + d2)
, B =

k2 − β2cδ2 + (δ2 + 1)(µ + d2)

(µ + d2)(µ + k2)
, C = 1 −R2.

Math. Model. Anal., 14(3):291–312, 2009.
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Examining the quadratic equation h(λ∗
2) = 0 we see that there is a unique

equilibria if B < 0 and C = 0 or B2 − 4AC = 0, and if C > 0, B < 0 and
B2 − 4AC > 0, and there is no equilibria otherwise. The coefficient A at λ∗2

2 is
always positive and C is positive or negative if R2 is less than or greater than
one respectively. We therefore rewrite these conditions in the following lemma.

Lemma 2. Model system (2.1) has (i) precisely one unique endemic equilibrium
if C < 0 ⇔ R2 > 1, (ii) precisely one unique endemic equilibrium if B < 0 and
C = 0 or B2 − 4AC = 0, (iii) precisely two endemic equilibria if C > 0, B < 0
and B2 − 4AC > 0, (iv) otherwise there is none.

To find the backward bifurcation point, we set the discriminant B2 − 4AC = 0
and make R2 the subject of the formula to obtain

Rc
2 = 1 − B2/(4A),

from which it can be shown that the backward bifurcation occurs for values of
R2 in the range Rc

2 < R2 < 1.
We now state Theorem 5 on the existence of the endemic equilibrium U2.

Theorem 5. The endemic equilibrium U2 exists for R2 > 1.

Proof. Analyzing the equation h(λ∗
2) = 0, we get λ∗

2 = −B+(B2−4AC)(1/2)

2A
,

from which it is clear that the disease is endemic when λ∗
2 > 0 which implies

B2 − 4AC > B2 ⇒ 4(1 − R2) < 0 ⇒ R2 > 1. Thus the endemic equilibrium
U2 exists whenever R2 > 1. ⊓⊔

To determine the local asymptotic stability of U2 we can use the Centre
Manifold theory similar to the analysis of U1.

2.3.3 Interior equilibrium

The endemic equilibrium where both TB strains exist is denoted by

U3 = (S∗∗∗, E∗∗∗
T1

, I∗∗∗T1
, R∗∗∗

T , E∗∗∗
T2

, I∗∗∗T2
),

where the expressions for S∗∗∗, E∗∗∗
T1

, I∗∗∗T1
, R∗∗∗

T , E∗∗∗
T2

, I∗∗∗T2
are too cumber-

some to be written down explicitly. Stability analysis of U3 can be done using
the Centre Manifold theory similar to the analysis of U1, but is not shown here
to avoid repetition.

2.3.4 Invasion reproduction numbers

When the drug sensitive strain (strain 1) is at equilibrium a single drug resistant
strain (strain 2) will be able to invade if the number of secondary infectives
produced by strain 2 is greater than 1 that is when R2:1 > 1, where

R2:1 =
R2

R1
=

β2ck2(µ + k1)(µ + d1)

(µ + k2)(µ + d2)β1ck1H1
. (2.15)
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If we assume β1 = β2 = β, k1 = k2 = k, d1 = d2 = d which do not correspond
to a reality in general, since individuals infected with resistant strain suffer
increased disease induced death rate compared with their other counterparts.
Then (2.15) becomes,

R2:1 =
1

H1
> 1, since H1 < 1.

Thus strain 2 is able to invade the equilibrium of strain 1. Considering the
other way round, from R1:2 = H1 < 1 we get that strain 1 is not able to invade
the equilibrium of strain 2.

Next we state Theorem 6 whose proof follows from Castillo-Chavez and
Feng [7, 8].

Theorem 6. The following three statements are valid:

(a) The endemic equilibrium U1 of system (2.1) is locally asymptotically
stable if R1 > 1 and R2 < 1, and unstable whenever R1 < 1.

(b) The endemic equilibrium U2 of system (2.1) is locally asymptotically
stable if R2 > 1 and R1 < 1.

(c) The endemic equilibrium U3 of system (2.1) is locally asymptotically
stable if Rrs > 1 and unstable otherwise.

2.4 Analysis of the reproduction number, Rrs

In the absence of any intervention strategy that is when r1 = r2 = 0 we have
the reproduction number for model system (2.1) as,

lim
(r1,r2)→(0,0)

Rrs = lim
(r1,r2)→(0,0)

max {R1,R2} = max {R1N
,R2} ,

where,

R1N
=

β1ck1

(µ + k1)(d1 + µ)
.

Rewriting R1 in terms of R1N
we have,

R1 = H1R1N
, H1 =

(µ + k1)(µ + d1)

(µ + k1 + r1)(µ + d1 + r2) − k1qr2
< 1.

The fact that H1 < 1 suggests that treating of infectives and chemoprophylaxis
reduces the endemic. Analyzing the two reproduction numbers R1 and R1N

we note that chemoprophylaxis and treatment of infectives greatly reduces
epidemic:

∆N = R1N
−R1 = R1N

(1 − H1) > 0.

If chemoprophylaxis is the only intervention strategy we have the chemopro-
phylaxis induced reproduction number as,

R1c
=

β1ck1

(µ + k1 + r1)(µ + d1)
= H2R1N

, H2 =
µ + k1

µ + k1 + r1
.

Math. Model. Anal., 14(3):291–312, 2009.
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Clearly we obtain H2 < 1, suggesting that chemoprophylaxis reduces the epi-
demic. Also supporting that argument we have the estimate

∆c = R1N
−R1c

=
r1

µ + k1 + r1
R1N

> 0.

The critical chemoprophylaxis value is equal to

rc
1 = (µ + k1)(R1N

− 1).

If r1 < rc
1 chemoprophylaxis will not eradicate the epidemic, but if r1 > rc

1 then
chemoprophylaxis will be able to eradicate the epidemic. A similar analysis
for the case where we have introduced the treatment of infectives as the only
intervention strategy can be easily done and the critical treatment value can
be shown to be

rc
2 = (µ + d2)(R1N

− 1).

Figure 2. Graphs of the critical chemoprophylaxis (rc

1
) and treatment (rc

2
) values against

R1N
for µ = 0.01, d1 = 0.3, k1 = 0.0002.

Figure 2 is a graphical representation of critical values (chemoprophylaxis
and treatment) against the no intervention reproduction number for the case
where we have one infectious individual introduced into fully susceptible pop-
ulation. This shows that rc

1 < rc
2 for all values of R1N

> 1 suggesting that
chemoprophylaxis is superior as an intervention strategy than treatment of in-
fectives if introduced at the beginning of the TB epidemic in a fully susceptible
population.

3 Effects of Quarantine for Multi-drug Resistant TB

We explore the possible benefits of quarantining TB patients with multi-drug
resistant TB. Individuals who are sick with multi-drug resistant TB are de-
tected at a constant rate θ and moved to the quarantined state Q. Individuals
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in Q die at the same rate as those infectious with multi-drug resistant TB but
not quarantined, IT2 . Incorporating quarantine Q for multi-drug resistant TB,
the system (2.1) becomes


















































S′(t)=Λ−(λ1+λ2)S−µS,

E′
T1

(t)=λ1(S+RT )−(δ1λ1+λ2)ET1−(k1+µ+r1)ET1+qr2IT1 ,

I ′T1
(t) = δ1λ1ET1 + k1ET1 − λ2IT1 − (r2 + µ + d1)IT1 ,

R′
T (t)=pr2IT1+r1ET1−(λ1+λ2)RT−µRT ,

E′
T2

(t)=λ2S+(1−(p+q))r2IT1+λ2RT−(λ1+δ2λ2)ET2−(µ+k2)ET2 ,

I ′T2
(t)=(λ1+δ2λ2)ET2+k2ET2+λ2ET1+λ2IT1−(µ+θ+d2)IT2 ,

Q′(t)=θIT2−(µ+d2)Q

(3.1)

with,

λqi
=

βicITi

Nq

, i = 1, 2, Nq(t) = S + ET1 + IT1 + RT + ET2 + IT2 + Q.

Model system (3.1) is studied in the following region,

K▽ =
{

(S, ET1 , IT1 , RT , ET2 , IT2 , Q) ∈ R
7
+ : Nq(t) ≤ Λ/µ

}

,

which is positively invariant with respect to model system (3.1) as any solution
of (3.1) starting in K▽ remain in K▽.

3.1 Disease free equilibrium and stability analysis

The disease free equilibrium of model system (3.1) is given by,

M0 = (S0, E0
T1

, I0
T1

, R0
T , E0

T2
, I0

T2
, Q0) =

(

Λ/µ, 0, 0, 0, 0, 0, 0
)

.

Following van den Driessche and Watmough [13], the reproduction number
for model system (3.1) is R0q

= max
{

R1,R2q

}

, where R1 is as defined in

a previous section and R2q
=

β2ck2

(µ + k2)(µ + d2 + θ)
is the quarantine induced

reproduction number for the multi-drug resistant strain. Theorem 7 follows
from van den Driessche and Watmough [13] (Theorem 2).

Theorem 7. The disease-free equilibrium M0 is locally asymptotically stable
whenever R0q

< 1 and unstable otherwise.

We write system (3.1) as,

dX

dt
= F (X, Y ), (3.2)

dY

dt
= G(X, Y ), G(X, 0) = 0,

where X = (S, RT ) and Y = (ET1 , IT1 , ET2 , IT2 , Q) with X ∈ R
2 denoting

the number of uninfected individuals and Y ∈ R
5 denoting the number of the

infected individuals including the latent and the infectious.

Math. Model. Anal., 14(3):291–312, 2009.
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The disease-free equilibrium point is now denoted by

M0 = (X∗, 0), X∗ =
(

Λ/µ, 0
)

.

We now state conditions (H1) and (H2) in equation (3.3) which must be sat-
isfied to guarantee local asymptotic stability.

H1 For
dX

dt
=F (X, 0), X∗ is globally asymptotically stable (g.a.s)

H2 G(X, Y )=DY − ̂G(X, Y ), ̂G(X, Y )≥ 0 for (X, Y )∈K5,
(3.3)

where D = DY G(X∗, 0) is an M -matrix (the off diagonal elements of D are
nonnegative) and K5 is the region where the model makes biological sense. If
system (3.2) satisfies the conditions in (3.3) then Theorem 8 holds.

Theorem 8. The fixed point M0 = (X∗, 0) is a globally asymptotically stable
point of system (2.1) provided that R0q

< 1 and assumptions in (3.3) are
satisfied.

Proof. From Theorem 7, M0 is locally asymptotically stable for R0q
< 1.

Consider

F (X, 0) =

[

Λ − µS
−µRT

]

,

D =













−(k1+r1+µ) β1c + qr2 0 0 0
k1 −(r2+µ+d1) 0 0 0
0 (1−(p+q)) r2 −(µ+k2) β2c 0
0 0 k2 −(µ+θ+d2) 0
0 0 0 θ −(µ+d2)













and

̂G(X, Y ) =















̂G1(X, Y )
̂G2(X, Y )
̂G3(X, Y )
̂G4(X, Y )
̂G5(X, Y )















=



















β1cIT1

(

1 − S + RT − δ1ET1

Nq

)

+ λq2ET1

λq2IT1 − δ1λq1ET1

β2cIT2

Nq

(Nq − S − RT + δ2ET2) + λq1ET2

−(λq1 + δ2λq2)ET2 − λq2(ET1 + IT1)
0



















.

Thus ̂G(X, Y ) is not greater than or equal to zero, for (X, Y ) ∈ K5 since
̂G4(X, Y ) < 0 implying (H2) in (3.3) is not satisfied. Consequently M0 may
not be globally asymptotically stable. Thus in this case backward bifurcation
as proved in Feng et al. [16] occurs at R0q

= 1 and that double endemic
equilibria can be supported for Rc

q < R0q
< 1, where Rc

q is a positive constant.
However in the absence of exogenous reinfection M0 is globally asymptotically
stable. ⊓⊔

3.2 Endemic equilibria

There are three possible endemic equilibria for model system (3.1): two bound-
ary, M1 (when only the first strain is present) and M2 (when only the second
strain is present) and the interior equilibrium M3.
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3.2.1 The drug sensitive TB-strain only equilibrium

The drug sensitive TB-strain only equilibrium is given by

M1 = (S∗, E∗
T1

, I∗T1
, R∗

T , 0, 0, 0), (3.4)

where S∗, E∗
T1

, I∗T1
, R∗

T are similar to the ones defined in equation (2.2) in
terms of equilibrium value of the force of infection λ∗

1q
and the analysis of M1

is thus similar to the analysis of U1 in subsubsection 2.3.1.

3.2.2 The drug resistant TB-strain only equilibrium

The drug resistant TB only equilibrium is given by

M2 = (S∗∗, 0, 0, 0, E∗∗
T2

, I∗∗T2
, Q∗∗), (3.5)

and it is expressed in terms of the equilibrium value of the force of infection λ∗
q2

:

S∗∗ =
Λ

λ∗
q2

+ µ
, E∗∗

T2
=

Λλ∗
2q

(λ∗
q2

+ µ)(δ2λ∗
q2

+ µ + k2)
,

I∗∗T2
=

Λλ∗
2q

(δ2λ
∗
q2

+ k2)

(µ + d2 + θ)(λ∗
q2

+ µ)(δ2λ∗
q2

+ µ + k2)
,

Q∗∗ =
θΛλ∗

2q
(δ2λ

∗
q2

+ k2)

(µ + d2)(µ + d2 + θ)(λ∗
q2

+ µ)(δ2λ∗
q2

+ µ + k2)
.

M2 can be analyzed similarly to U2 in subsubsection 2.3.2.

3.2.3 Interior equilibrium point

M3 = (S∗∗∗, E∗∗∗
T1

, I∗∗∗T1
, R∗∗∗

T , E∗∗∗
T2

, I∗∗∗T2
, Q∗∗∗), (3.6)

where the expressions for S∗∗∗, E∗∗∗
T1

, I∗∗∗T1
, R∗∗∗

T , E∗∗∗
T2

, I∗∗∗T2
, Q∗∗∗ are too

cumbersome to be written down explicitly. Using the approach by Castillo-
Chavez and Feng [7, 8] it can be easily shown that the endemic equilibria (3.4),
(3.5) and (3.6) are stable for R0q

< 1 and unstable otherwise.

3.3 Analysis of the quarantine induced reproduction number

If θ = 0, then R2q
= R2. Rewriting the quarantine induced reproduction

number R2q
in terms of R2 we have

R2q
= HqR2, Hq =

µ + d2

µ + d2 + θ
.

Clearly Hq < 1, thus the quarantining plays a significant role in reducing the
spread of multi-drug resistant TB.

∆q = R2 − HqR2 =
θ

µ + d2 + θ
> 0,

Math. Model. Anal., 14(3):291–312, 2009.
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for which ∆q > 0 implies that quarantine is effective in controlling the spread
of multi-drug resistant TB. Differentiating R2q

with respect to θ we obtain

∂R2q

∂θ
= − R2q

µ + d2 + θ
. (3.7)

The fact that equation (3.7) is negative implies that quarantine is effective in
controlling the spread of multi-drug resistant TB.

Now we have to find the critical values for the case when we have quarantine
as an intervention strategy against multi-drug resistance. We set R2q

= 1 and
obtain

θc = (µ + d2)(R2 − 1).

If θc > θ, quarantine results in the reduction of multi-drug resistant TB but
does not eradicate the epidemic. When θ > θc, the multi-drug resistant TB
will be eradicated through quarantine.

4 Numerical Simulations

Systems (2.1) and (3.1) are simulated using the fourth order Runge-Kutta nu-
merical scheme coded in C++. The parameter values in Table 1 and the initial
conditions (in millions) are the following S(0) = 11, ET1(0) = 3.15, IT1 (0) =
0.42, RT (0) = 0, ET2(0) = 0.35, IT2(0) = 0.08. In Table 1, a* and b* denotes

Table 1. Model parameters.

Definition Symbol Estimate(Range) Source

Recruitment rate Λ 0.029year−1 b*
Natural mortality rate µ 0.02year−1 b*
Contact rate c 2year−1 Estimate
TB induced death rate d1, d2 0.3,0.5year−1 a*
Probability of being infected βi, i = 1, 2 0.35 (0.1-0.6)year−1 a*
Natural rate of progression to active TB k1, k2 0.00013,0.001year−1 a*
Probability of recovery from active TB p 0.8year−1 Estimate
Probability of moving back to
latency after treatment q 0.0001year−1 Estimate
Probability of recovery from latency γ 0.9year−1 Estimate
Relapsing rate q 0.00001year−1 Estimate
Treatment rate for the latently infected r1 0.2year−1 Estimate
Treatment rate for the infectives r2 0.3year−1 Estimate
Quarantine rate θ 0.7year−1 Estimate
Modification parameter δ1 0.5year−1 Estimate
Modification parameter δ2 0.59year−1 Estimate

values and ranges adapted from Dye et al. [14], and Central Statistics Office of
Zimbabwe. We simulate both drug sensitive and multi-drug resistant dynamics
of TB in the absence of any intervention, in the presence of chemoprophylaxis,
and treatment.

In the absence of quarantine for MDRTB, even with chemoprophylaxis and
treatment for the drug sensitive strain, the susceptible population increases
slightly, then falls and remains constant as shown by Figure 3 trend 3. In the
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Figure 3. Simulated quarantine on the susceptible (S) and recovered (RT ). Trends 1, 2, 3
and 4 represent the susceptible population with quarantine for MDRTB, recovered population
with quarantine for MDRTB, susceptible population without quarantine for MDRTB, and
recovered population without quarantine for MDRTB. Parameter values are those of Table 1.

presence of quarantine for MDRTB, treatment and chemoprophylaxis for the
drug sensitive strain, the susceptible population size increases to an asymptotic
level as shown in Figure 3 trend 1. Even in the presence of quarantine for
MDRTB, chemoprophylaxis, and treatment for the drug sensitive strain TB is
not eradicated because not all cases are detected.

In the presence of quarantine for MDRTB, the population of the recov-
ered increases then gradually declines to low levels a shown in Figure 3. In
the absence of quarantine for MDRTB the recovered population increases and
and falls off to very low levels when the recovered are infected by multi-drug
resistant (MDR) Mycobacterium tuberculosis strains.

In the absence or presence of quarantine, for MDRTB as long as there is
chemoprophylaxis and treatment for drug sensitive TB, the latently infected
(ET1) and the infectious (IT1 ) individuals will decrease to low levels as shown
in Figures 4 (a) and (b). Chemoprophylaxis and treatment of infectives is can
eradicate drug sensitive TB. As most of MDRTB results from incomplete treat-
ment and mis-use of the drugs, if chemoprophylaxis for the latently infected
and treatment for the infectives is implemented well, MDRTB cases decrease.
In the absence of treatment for MDRTB, individuals in this class die quickly.

In the presence of quarantine for MDRTB, the population size of infective
(IT2 ) increases slightly at the beginning, then declines steadily to low levels
as most of the cases are detected and quarantined as shown in Figure 4 (a).
Once quarantined, infectious cases cannot infect and this decreases the latently
infected (ET2). A decrease in ET2 results in a decrease of the the infective pop-
ulation. In the absence of quarantine, the infective population (IT2) increases
then declines until it reaches a stable state, in which the rate at which indi-
viduals become active with MDRTB is the same as the rate at which active
MDRTB cases die (natural and disease induced).

In the presence of quarantine for MDRTB, population size of the latently

Math. Model. Anal., 14(3):291–312, 2009.
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Figure 4. Simulated the effect of quarantine for MDRTB on the latently infected (ET1
and

ET2
) and the infectious (IT1

and IT2
). Series 1, 2, 3 and 4 represent individuals latently

infected with the drug sensitive strain, infectious individuals with drug sensitive strain, in-
dividuals latently infected with MDR strain and infectious individuals with MDR strains.
Figures (a) and (b) represent quarantine for MDRTB, treatment and chemoprophylaxis for
the drug sensitive TB, and treatment and chemoprophylaxis for the drug sensitive TB and
no quarantine for MDRTB.

infected (ET2) increases slightly then declines to very low levels as a result of
quarantine as shown in Figure 4 (a). The absence of quarantine increases the
total number of individuals in the latency class ET2 as shown in Figure 4 (b).

5 Conclusions

We have presented and analyzed the two strain TB model with chemopro-
phylaxis and treatment for the drug sensitive strain, with and without quar-
antine for the MDRTB. We computed and compared the basic reproduction
numbers of the models to assess the effectiveness of chemoprophylaxis and
treatment in the control of drug sensitive TB and quarantine in the control
of MDRTB. Ordinary TB can be eradicated with chemoprophylaxis for the
latent and with treatment for the infective. We conclude that effective chemo-
prophylaxis and treatment of infective for the drug sensitive TB results in a
reduction of MDRTB cases, as most MDRTB cases come from a failure to
administer TB drugs. The quarantine induced reproduction number suggests
that quarantine is the answer in the control of MDRTB in absence of alterna-
tive treatment plan. Quarantine for MDRTB alters TB epidemics because it
reduces the spread of MDR strains. Reducing MDRTB cases means also reduc-
ing TB related deaths as MDRTB are more fatal than ordinary TB. Given the
non-availability of second line drugs for MDRTB in most developing countries,
quarantine remains the only option to effectively control the spread of MDRTB
in developing countries.
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