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Abstract. Consider two-point boundary value problems of resonance type x′′ +x =
f(t, x, x′), x(0) = x(π) = 0. We investigate existence and multiplicity of solutions to
such problems by using the quasilinearization process.
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1 Introduction

In this paper we consider the two-point nonlinear boundary value problem

x′′ + x = f(t, x, x′), (1.1)

x(0) = 0, x(π) = 0, (1.2)

where t ∈ I := [0, π], f ∈ C(I × R
2; R) (conditions on f will be imposed

later). The problem under consideration is a problem at resonance because the
linear part

(

l2x
)

(t) := x′′ + x is resonant with respect to the given boundary
conditions (1.2). Indeed, the homogeneous problem

x′′ + x = 0, x(0) = x(π) = 0

has nontrivial solutions and therefore the given problem (1.1), (1.2) may have
no solutions at all, even if a continuous nonlinearity f is bounded.

On the other hand, it is well known that problem (1.1), (1.2) is solvable if

f = f(t) and

π
∫

0

f(t) sin t dt = 0.

So one can try to find conditions on f(t, x, x′), which ensure the existence of
a solution to the problem (1.1), (1.2).
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The solvability of the problem under consideration has been studied by
several authors. For instance, if f = f(t, x) = h(t) − g(t, x), where h ∈ L2(I),
g ∈ C(I × R; R), then in accordance with the well-known Landesman-Lazer
theorem [6] there exists at least one solution of the problem (1.1), (1.2) if the
following inequality holds:

π
∫

0

g−(t) sin t dt <

π
∫

0

h(t) sin t dt <

π
∫

0

g+(t) sin t dt,

where g−(t) = lim sup
x→−∞

g(t, x) and g+(t) = lim inf
x→∞

g(t, x).

Some authors (see, for example, [5, 7]) consider that a key condition, for
the existence of at least one solution of the problem (1.1), (1.2), is that the
function f satisfies a monotonicity assumption with respect to the variable x.
Other authors provide another solvability conditions for this problem [1, 2, 4].

We investigate solvability of the problem (1.1), (1.2) applying the quasilin-
earization method [8, 9]. We try to reduce the equation (1.1) to a quasi-linear
one of the form

(L2x) (t) = F (t, x, x′), (1.3)

where a function F is continuous, bounded and Lipschitzian in x and x′ and
the extracted linear part (L2x) (t) is non-resonant with respect to the given
boundary conditions (1.2), that means that the respective homogeneous prob-
lem

(L2x) (t) = 0, x(0) = x(π) = 0

has only the trivial solution. If such a reduction is possible then in accor-
dance with Conti’s theorem [3] the modified problem (1.3), (1.2) is solvable.
In addition, we use the fact, that an oscillatory type of a solution x(t) of the
quasi-linear problem (1.3), (1.2) corresponds to a type of non-resonance of the
linear part in (1.3).

If a solution x(t) of the modified quasi-linear problem (1.3), (1.2) is located
in the domain Ω(t, x, x′), where both equations (1.1) and (1.3) are equivalent,
then the original problem at resonance (1.1), (1.2) has a solution of definite
type.

If the equation (1.1) can be reduced to another quasi-linear equation
(

L∗

2x
)

(t) = F ∗(t, x, x′),

which is equivalent to (1.1) in different domain Ω∗(t, x, x′) and moreover the
linear parts (L2x) (t) and

(

L∗

2x
)

(t) are essentially different (i.e. with different
types of non-resonance), then the original problem (1.1), (1.2) is expected to
have multiple solutions.

2 Preliminaries

Consider a quasi-linear problem (1.3), (1.2). A linear part (L2x) (t) in (1.3) for
general case can be written in the form x′′+p(t)x′+q(t)x, where p, q ∈ C(I; R).
Several definitions will be used in the sequel.
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Definition 1. A linear part (L2x) (t) in (1.3) is i-nonresonant with respect to
the given boundary conditions (1.2) if a solution x(t) of the Cauchy problem

(L2x) (t) = 0, x(0) = 0, x′(0) = 1

has exactly i zeros in the interval (0, π) and x(π) 6= 0.

If the linear parts (L2x) (t) and (L∗

2x) (t) have different types of non-reso-
nance we say for brevity that they are essentially different. For instance, the
linear part

(

x′′+(1+3t)x
)

is 2-nonresonant with respect to the given boundary

conditions (1.2) (see Fig. 1), but the linear part
(

x′′ + (1 + 3 sin t)x
)

is 1-non-
resonant (see Fig. 2), therefore these linear parts are essentially different.
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Figure 1. Solution of the prob-
lem x

′′ + (1 + 3t) x = 0, x(0) = 0,
x
′(0) = 1.
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Figure 2. Solution of the prob-
lem x

′′+(1+3 sin t) x = 0, x(0) =
0, x

′(0) = 1.

Definition 2. Let ξ(t) be a solution of the problem (1.3), (1.2)
(

or (1.1),

(1.2)
)

. We say that ξ(t) is an i-type solution if there exists ε > 0 such that
∀ δ ∈ (0, ε] the difference u(t; δ) = x(t; δ)−ξ(t) has exactly i zeros in the interval
(0, π) and u(π; δ) 6= 0, where x(t; δ) is a neighbouring solution for ξ(t), i.e. it
solves the same equation (1.3)

(

or (1.1)
)

and satisfies the initial conditions







x(0; δ) = ξ(0), x′(0; δ) = ξ′(0) + δ · sgn ξ′(0), if ξ(t) 6≡ 0,

x(0; δ) = 0, x′(0; δ) = δ if ξ(t) ≡ 0.

For instance, the trivial solution of the problem x′′ +x = −7 arctanx, (1.2)
is 2-type solution because the difference between neighbouring solution and
the trivial one in the interval (0, π) has exactly two zeros (see Fig. 3), and the
trivial solution of the problem x′′ + x = −9 arctanx, (1.2) is 3-type solution
(see Fig. 4).

An i-type solution ξ(t) of the problem (1.3), (1.2)
(

or resp.: (1.1), (1.2))
has the following characteristics in terms of the variational equation: a solution
y(t) of the variational equation

(L2y) (t) = Fx(t, ξ(t), ξ′(t))y + Fx′(t, ξ(t), ξ′(t))y′,

or resp.:

y′′ + y = fx(t, ξ(t), ξ′(t))y + fx′(t, ξ(t), ξ′(t))y′

Math. Model. Anal., 14(2):247–257, 2009.
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Figure 3. Difference between neigh-
boring solution and trivial solution of
the problem x

′′ + x = −7 arctan x,
x(0) = 0, x(π) = 0.
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Figure 4. Difference between neigh-
boring solution and trivial solution of
the problem x

′′ + x = −9 arctan x,
x(0) = 0, x(π) = 0.

subject to the initial conditions

y(0) = 0, y′(0) = 1

either has exactly i zeros in the interval (0, π] or it has exactly i zeros in the
interval (0, π) and y(π) = 0. The cases of the i-th zero of y(t) being at t = π

or (i + 1)-th zero being at t = π are not excluded.

The following result for quasi-linear problem (1.3), (1.2) was proved in [8, 9].

Theorem 1. Quasi-linear problem (1.3), (1.2) with i-nonresonant linear part

(L2x) (t) has an i-type solution.

Definition 3. Let equations (1.1) and (1.3), where the linear part (L2x) (t) is
non-resonant with respect to the boundary conditions under consideration, be
equivalent in the domain

ΩN = {(t, x, x′) : 0 ≤ t ≤ π, |x| < N, |x′| < N1} (2.1)

in the sense that any solution x : I → R of (1.1) with a graph in ΩN is
also a solution of (1.3) and vice versa. Suppose that any solution x(t) of the
quasi-linear problem (1.3), (1.2) satisfies the estimates

|x(t)| < N, |x′(t)| < N1. (2.2)

We will say then that the problem (1.1), (1.2) allows for quasilinearization with
respect to a linear part (L2x) (t).

Theorem 2. If problem (1.1), (1.2) allows for quasilinearization with respect

to some i-nonresonant linear part (L2x) (t), then it has an i-type solution.

Theorem 3. Suppose that the problem (1.1), (1.2) allows for quasilinearization

with respect to i-nonresonant linear part (L2x) (t) in a domain ΩN defined by

(2.1) and, at the same time, it allows for quasilinearization with respect to

j-nonresonant linear part (L∗

2x) (t) in a domain

ΩK = {(t, x, x′) : 0 ≤ t ≤ π, |x| < K, |x′| < K1},

where i 6= j. Then the problem (1.1), (1.2) has at least 2 solutions of different

types.
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Corollary 1. Suppose that the problem (1.1), (1.2) allows for quasilinearization
with respect to n essentially different (in the sense of Definition 3) linear parts
in n different domains of the form (2.1). Then it has at least n solutions of
different types.

3 Quasilinearization of a Problem at Resonance

Quasilinearization process in some cases can be successfully applied to the
boundary value problems of resonant type. If a problem at resonance allows
for quasilinearization with respect to some non-resonant linear part then we
can state an existence of a solution of definite type to this problem.

Quasilinearization process consists of the following stages:

1. Reduce equation (1.1) by extracting some non-resonant linear part;

2. Truncate the right hand side of the reduced equation;

3. Check the inequalities of the form (2.2).

3.1 Application 1

Consider the differential equation

x′′ + x = −λ2 arctanx (3.1)

together with the boundary condition (1.2). The equation (3.1) is equivalent
to the following equation

x′′ + (1 + k2)x = k2x − λ2 arctanx.

If k2 6= n2 − 1, n ∈ N then the extracted linear part
(

x′′ + (1 + k2)x
)

is non-
resonant with respect to (1.2). Let us denote fk(x) := k2x − λ2 arctanx and
try to bound this function by a modulus of its local extremum

Mk = |fk(xext)| = λ2 arctan

√

λ2

k2
− 1 − k2

√

λ2

k2
− 1. (3.2)

Choose Nk such that

|x| ≤ Nk ⇒ |fk(x)| ≤ Mk.

Such a number Nk can be calculated as a positive root of the equation

k2N − λ2 arctanN = λ2 arctan

√

λ2

k2
− 1 − k2

√

λ2

k2
− 1. (3.3)

Consider then instead of the function fk(x) the function

Fk(x) := fk

(

δ(−Nk, x, Nk)
)

, where δ(u, v, z) =







z, v > z,

v, u ≤ v ≤ z,

u, v < u.

Math. Model. Anal., 14(2):247–257, 2009.
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The modified quasi-linear equations (for different values of k)

x′′ + (1 + k2)x = Fk(x) (3.4)

are equivalent to the given equation (3.1) in the respective domains

Ωk = {(t, x) : 0 ≤ t ≤ π, |x| < Nk}. (3.5)

Theorem 4. If there exists some k2 ∈ (i2 − 1, (i + 1)2 − 1), i ∈ N, which

satisfies the inequality

π√
1 + k2| sin(π

√
1 + k2)|

∣

∣

∣

∣

∣

λ2 arctan

√

λ2

k2
− 1 − k2

√

λ2

k2
− 1

∣

∣

∣

∣

∣

< Nk, (3.6)

where Nk is a positive root of the equation (3.3), then there exists an i-type

solution of the problem (3.1),(1.2).

Proof. If k2 ∈ (i2 − 1, (i + 1)2 − 1), i ∈ N then the extracted linear part in
(3.4) is i-nonresonant with respect to (1.2). The modified problems (3.4),(1.2)
are solvable and the respective solutions can be written in the integral form as

xk(t) =

π
∫

0

Gk(t, s)Fk

(

x(s)
)

ds,

where Gk(t, s) is the Green function of the respective homogeneous problem

x′′ + (1 + k2)x = 0, x(0) = x(π) = 0.

The Green function satisfies the estimate

|Gk(t, s)| ≤ Γk :=
1√

1 + k2 | sin(π
√

1 + k2)|
. (3.7)

Then we get that |xk(t)| ≤ πΓkMk. If a number k2 is such that the inequality

πΓkMk < Nk (3.8)

holds, then the original problem (3.1),(1.2) allows for quasilinearization with
respect to i-nonresonant linear part in the domain Ωk defined by (3.5) and
therefore it has an i-type solution. It follows from (3.7), (3.2), (3.3) that the
inequality (3.8) reduces to (3.6). The proof is complete. ⊓⊔

We have computed results (see Table 1) for certain values of λ2, which show
that some numbers k2 satisfy the inequality (3.6).

Example 1. In the boundary value problem

x′′ + x = −9 arctanx, x(0) = x(π) = 0 (3.9)

the parameter λ2 = 9 and in accordance with results presented in Table 1 this
problem allows for three essentially different quasilinearizations (for k2 = 1,
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Table 1. Results of calculations for the problem (3.1), (1.2).

λ2 k2 Mk π Γk π Γk Mk Nk

λ2 = 7 k2 = 1 5.8329 2.3046 13.4427 16.4022

k2 = 5 0.7853 1.2987 1.0200 1.5568

λ2 = 8 k2 = 1 7.0297 2.3046 16.2008 19.1793

k
2 = 5 1.3995 1.2987 1.8177 2.0745

λ
2 = 9 k

2 = 1 8.2502 2.3046 19.0137 21.9782

k
2 = 6 1.2967 1.3238 1.7165 1.8180

k2 = 8.5 0.0799 3.9909 0.3189 0.5021

6 and 8.5). Then there exist at least 3 solutions of different types. We have
computed all of them. First, it has the trivial solution, which is a 3-type
solution (see Fig.4). Fig. 5 a illustrates the second solution given for the initial
data ξ2(0) = 0, ξ′2(0) = 2.283. It is a 2-type solution because the difference
between it and a neighbouring solution has exactly two zeros in the interval
(0, π) (see Fig. 5 b for δ = 0.1).

0.5 1 1.5 2 2.5 3
t

-0.6

-0.4

-0.2

0.2

0.4

0.6

Ξ2

0.5 1 1.5 2 2.5 3
t

-0.06

-0.04

-0.02

0.02

0.04

0.06
x - Ξ2

a) b)

Figure 5. 2-type solution of the problem (3.9).

An 1-type solution of the problem (3.9) with the initial data ξ1(0) = 0,
ξ′1(0) = 10.651 is presented in Fig. 6 a. Fig. 6 b illustrates the difference between
this solution and its neighbouring solution (for δ = 0.1).
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Figure 6. 1-type solution of the problem (3.9).

Math. Model. Anal., 14(2):247–257, 2009.
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Example 2. The boundary value problem

x′′ + x = −8 arctanx, x(0) = x(π) = 0, (3.10)

in accordance with calculations presented in Table 1, allows two essentially dif-
ferent quasilinearizations. That means that there exist at least 2-type solution
and 1-type solution of the problem (3.10). We have computed them, but the
obtained solutions are different from the trivial solution. This fact shows that
a problem at resonance can have a solution which can not be exposed applying
the quasilinearization process. We will say for brevity that such a solution is a

resonant solution.
A resonant solution η(t) of the problem (1.1), (1.2) has the following char-

acteristics in terms of the variational equation: a solution y(t) of the variational
equation

y′′ + y = fx(t, η(t), η′(t))y + fx′(t, η(t), η′(t))y′

subject to the initial conditions y(0) = 0, y′(0) = 1 satisfies y(π) = 0. Indeed,
if η(t) is the trivial solution of the problem (3.10) (η(t) ≡ 0) then the respective
variational equation is

y′′ + y = −8y (3.11)

and the function y(t) = 1

3
sin 3t is a solution of (3.11) which satisfies the initial

conditions y(0) = 0, y′(0) = 1 and y(π) = 0.
A resonant solution η(t) of the problem (1.1), (1.2) has the following char-

acteristics in terms of the neighbouring solutions: for small enough δ > 0 the
difference u(t; δ) between some neighbouring solution x(t; δ) and a resonant
solution η(t) satisfies the condition u(π; δ) = 0.

3.2 Application 2

Consider the boundary value problem at resonance

x′′ + x = h(t) − r(t, x)x (3.12)

together with (1.2), where t ∈ I := [0, π], h ∈ C(I), r, rx ∈ C(I × R; R).

Suppose that the following conditions are satisfied:

(A1) r is even function in x;

(A2) lim
x→∞

r(t, x) = p(t), p ∈ C
(

I; [0, +∞)
)

;

(A3) lim
x→∞

(∂r(t, x)

∂x
x2

)

= s(t), s ∈ C(I).

The equation (3.12) is equivalent to equation

x′′ +
(

1 + p(t)
)

x = h(t) −
(

r(t, x) − p(t)
)

x. (3.13)

Theorem 5. If a linear part
(

x′′ + (1 + p(t)) x
)

is i-nonresonant with respect

to the boundary conditions (1.2) (i ∈ N) then there exists an i-type solution of

the problem (3.12), (1.2).
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Proof. Denote F (t, x) := h(t) −
(

r(t, x) − p(t)
)

x. Conditions (A1)–(A3)
imply that continuous function F (t, x) is bounded in the domain

Ω = {(t, x) : 0 ≤ t ≤ π, |x| < +∞}. (3.14)

Thus if the extracted linear part
(

x′′+(1 + p(t))x
)

is i-nonresonant with respect
to (1.2) then the problem (3.13), (1.2) (and consequently the original problem
(3.12), (1.2)) has an i-type solution. ⊓⊔

Example 3. Consider the problem

x′′ + x = cos t − t

(

3 − 4

coshx

)

x, x(0) = x(π) = 0. (3.15)

It is a special case of the problem (3.12), (1.2), when r(t, x) = t
(

3 − 4

coshx

)

,

h(t) = cos t and conditions (A1)–(A3) are satisfied. Since lim
x→∞

r(t, x) = 3t,

then we can modify the equation in (3.15):

x′′ + (1 + 3t)x =
4 t x

coshx
+ cos t.

The right hand side function of the obtained equation is continuous and boun-
ded in the domain (3.14). The extracted linear part x′′ + (1 + 3t)x is 2-
nonresonant with respect to the boundary conditions (1.2) (see Fig. 1). There-
fore there exists a 2-type solution of the problem (3.15), we have computed
it.

Fig. 7 a illustrates the solution ξ2(t) of the problem (3.15) with initial data
ξ2(0) = 0, ξ′2(0) = 3.6. This solution, actually, is a 2-type solution, because
the difference between it and the neighbouring solution has exactly two zeros
in the interval (0, π) (see Fig. 7 b for δ = 0.1).
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Figure 7. 2-type solution of the problem (3.15).

Continuously changing initial data we succeeded to compute the other so-
lutions of problem (3.15). An 1-type solution ξ1(t) of (3.15) is depicted in
Fig. 8 a, its initial data is given by ξ1(0) = 0, ξ′1(0) = −0.11. Fig. 8 b illustrates
the difference between it and the neighbouring solution (for δ = −0.1) and
ξ1(t).

Math. Model. Anal., 14(2):247–257, 2009.
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Figure 8. 1-type solution of the problem (3.15).

Fig. 9 a illustrates another solution ξ0(t) of the problem (3.15) subject to
initial data ξ0(0) = 0, ξ′0(0) = −0.739. Here ξ0(t) is a 0-type solution, because
the difference between neighboring solution and this one has no zeros in the
interval (0, π) (see Fig. 9 b for δ = −0.01).
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Figure 9. 0-type solution of the problem (3.15).

Notice that all computed solutions ξ2(t), ξ1(t) and ξ0(t) have exactly one
zero in the interval (0, π), but at the same time they are solutions of different
types.

4 Conclusions

We see that in some cases a solvability of the boundary value problems at
resonance can be proved by using the quasilinearization process. The respective
cases are considered, when the differential equations of resonant type with
bounded or unbounded right hand side function allow for quasilinearization.
Multiplicity results for such boundary value problems are obtained. In the
same time it is shown that a problem at resonance can have a resonant solution
which can not be exposed applying the quasilinearization process.
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