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Abstract. This paper presents some new results on a spectrum in a complex plane
for the second order stationary differential equation with one Bitsadze–Samarskii type
nonlocal boundary condition. In this paper, we survey the characteristic function
method for investigation of the spectrum of this problem. Some new results on
characteristic functions are proved. Many results of this investigation are presented
as graphs of characteristic functions. A definition of constant eigenvalues and the
characteristic function is introduced for the Sturm–Liouville problem with general
nonlocal boundary conditions.
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1 Introduction

Problems with nonlocal boundary conditions (NBCs) arise in various fields
of mathematical physics [11, 15, 25], biology and biotechnology [32, 43], and
in other fields. A. Bitsadze and A. Samarskii considered a certain class of
spatial nonlocal problems [2]. Later, in [4, 23, 40], generalizations of Bitsadze–
Samarskii type conditions were proposed. J. Cannon [3] investigated integral
type NBCs. Linear second order ordinary equations with an integral type NBC
have been considered in [29]. The problems with integral NBCs were investi-
gated for parabolic equations [25, 28], for elliptic equations [19, 45], and for
hyperbolic equations [1, 14, 46]. Some necessary and sufficient existence and
uniqueness conditions for solving stationary differential and discrete problems
were obtained in [8, 9]. Numerical methods for problems with NBCs are in-
vestigated in [5, 6, 7, 12]. Nonnegative solutions of problems with NBCs were
investigated by some authors [13, 20, 24, 30].
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The multi-point boundary value problem for the second-order ordinary dif-
ferential equations was initiated by Ilyin and Moiseev [22]. The completeness
of eigenvectors of a nonsymmetric system is closely related to eigenvalue prob-
lems for pencils of ordinary differential operators [31]. Ilyin obtained necessary
and sufficient properties of a subsystem of eigenfunctions and adjoint functions
(as a basis) for Keldysh’s bundle of ordinary differential operators [21]. An
eigenvalue problem with the NBCs is closely linked to boundary problems for
differential equations with NBCs [1, 24, 27, 37].

In [16, 17, 18, 26] eigenvalue problems with NBCs are considered for the
points at different ends of the interval. In [10, 38, 41] similar problems are
investigated for the operators with a NBC of Bitsadze–Samarskii or integral
type. However, the eigenvalue problems for differential operators with NBC are
considerably less investigated than in the case of classical boundary conditions.

The goal of this paper is to make a survey of various characteristic func-
tions for the Sturm–Liouville problem with one Bitsadze–Samarskii type NBC.
In Section 2, we investigate how the spectrum depends on some boundary con-
dition parameters γ and ξ for this problem. We introduce constant eigenvalue
points, complex and real characteristic functions. Some results for such a prob-
lem on real eigenvalues are published in [33, 34, 35, 39, 42, 44]. In Section 3, we
present a definition of constant eigenvalue points and characteristic functions
for Sturm–Liouville problem with general NBCs.

The main results of this article are presented in Section 2.3, Lemma 1,
Section 2.5, Lemma 2 and a generalization of constant eigenvalues points and
characteristic function is given in Section 3.

2 Characteristic Functions for a Sturm–Liouville Prob-
lem with one Bitsadze–Samarskii Type NBC

Let us consider the Sturm–Liouville Problem with Bitsadze–Samarskii type
NBC:

−u′′ = λu, t ∈ (0, 1), (2.1)

u(0) = 0, u(1) = γu(ξ), (2.2)

with the parameters γ ∈ C, ξ ∈ [0, 1] and eigenvalues λ ∈ C.

Remark 1. The case of NBC (2.2) is important in the investigation of multi-
dimensional and non-stationary problems, and numerical methods. Charac-
teristic functions for other types of NBCs were investigated by Pečiulytė in
her PhD Thesis and in [33, 34]. Theoretical results on the real spectrum are
presented in [44].

If γ = 0, then we have the classical Sturm–Liouville problem. In this case, all
eigenvalues of problem (2.1)–(2.2) are positive and algebraically simple:

λk = z2
k, uk(t) = sin(zkt), zk = πk, k ∈ N := {1, 2, . . .}. (2.3)

In the case of γ 6= ∞ and ξ = 0, or ξ = 1 and γ 6= 1 we have the classical
case, as well. For γ = ∞ we have a “boundary” condition u(ξ) = 0 instead of
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(2.2). So, this case is similar to the classical one for ξ > 0:

λl = p2
l , ul(t) = sin(zlt), pl = πl/ξ, l ∈ N. (2.4)

We denote sets Ẑ := {zk}∞k=1
, P̂ := {pl}∞l=1

.

The case with one classical boundary condition. If γ = ∞ and ξ = 0,
then the second boundary condition (2.2) is the same as the first boundary
condition in (2.2). If γ = 1 and ξ = 1, then the second boundary condition
(2.2) becomes the identity 0 ≡ 0. So, these two cases correspond to the problem
with one classical boundary condition:

−u′′ = λu, t ∈ (0, 1), (2.5)

u(0) = 0. (2.6)

The characteristic equation for the second order ordinary equation (2.5) is
−µ2 = λ. If λ = 0, then the general solution of this equation is u = Ct+C1, and
functions u = Ct satisfy problem (2.5)–(2.6). If λ 6= 0, then the characteristic
equation has two different roots µ = q1,2 (see Figure 1). Let q be the root with
a positive real part when λ is a nonnegative real number, and the root with
a positive imaginary part for negative λ. Thus, we have a bijection λ = q2

between the domain Cq = {z ∈ C : − π/2 < arg z ≤ π/2 or z = 0} and the
whole complex plane Cλ = C (see Figure 2).

Figure 1. Roots of the
equation q2 = λ.

Figure 2. Bijective mapping λ = q2 between Cλ and Cq.

If we find such q, then the corresponding eigenvalue is defined as λ = q2.
Then the roots q1,2 = ±i q, and the general solution are given in the following
form

u = C1e
i q t + C2e

−i q t = C3 sin(qt) + C4 cos(qt).

All functions u = C sin(qt) satisfy equation (2.5) and boundary condition (2.6).
In both cases (q = 0 and q 6= 0), we can write a formula for the solution

u = C sin(qt)/q = C sinh(−i qt)/(−i q), q ∈ Cq, (2.7)

where C ∈ C is an arbitrary constant [44]. So all λ ∈ C are eigenvalues of
problem (2.5)–(2.6).

Math. Model. Anal., 14(2):229–246, 2009.
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2.1 Constant eigenvalues

Let us return to problem (2.1)–(2.2) and consider that 0 < ξ < 1 and γ ∈ C.
If we substitute function (2.7) into the second boundary condition (2.2), then
we get the equality

C
(

sin q/q − γ sin(ξq)/q
)

= 0. (2.8)

There exists a nontrivial solution (eigenfunction) if q is the root of the function

f(q) := γ sin(ξq)/q − sin q/q. (2.9)

In the case λ = q = 0, we get the equality γξ − 1 = 0. So, the eigenvalue λ = 0
exists if and only if γ = 1/ξ [42, 44].

Let us consider the case q 6= 0. If sin(ξq) = 0 and sin q = 0, then equality
(2.9) is valid for all γ ∈ C. In this case, we have constant eigenvalues (that do
not depend on the parameter γ) λ = q2, where q is a constant eigenvalue point,
see [42, 44]. It is the root of the system

{

sin q = 0,

sin(ξq) = 0.
(2.10)

In this paper, we suppose that m and n (n > m > 0) are positive coprime in-
teger numbers. Constant eigenvalues exist only for rational ξ = r = m

n
∈ [0, 1],

and those eigenvalues are equal to λk = c2
k, ck = πk, k ∈ nN := {n, 2n, 3n, . . .}

[44], and ck ∈ C := Ẑ ∩ P̂ are positive real numbers.

2.2 Complex characteristic function

All nonconstant eigenvalue points (that depend on the parameter γ) are γ-
points of the meromorphic function

γ = γc(q) := sin q/sin(ξq), γc : Cq → C. (2.11)

Note that, if γ is fixed, then the γ-point is the root of the equation γc(q) = γ.
So, nonconstant eigenvalue is defined as λ = q2(γ). We call this function a
complex characteristic function. The graphs of the functions |γc(q)|, Re γc(q),
and Re γc(

√
λ) are presented in Figure 3 for ξ = 1/2. The function γc(πq) is

drawn in the graphs instead of the function γc(q). In this case, zeroes of the
function are the points k, k ∈ N. We can investigate these functions only for
Im q ≥ 0 and Re q ≥ 0 because γ̄c(q) = γc(q̄) [44].

Remark 2 [Case of rational ξ = m/n]. The complex characteristic function for
ξ = m/n is periodical in the real direction γc(q + 2πn) = γc(q), n ∈ N and it
is even with respect to the line Re q = πn in the domain Re q ∈ [0, 2πn], i.e.,
γc(πn − q) = γc(πn + q). Thus, we can consider this function in the domain
Re q ∈ [0, πn]. Moreover, the complex characteristic function is an even (odd)
function with respect to the line Re q = πn/2 in the domain Re q ∈ [0, πn] for
m, n ∈ Nodd (m ∈ Nodd, n ∈ Neven or m ∈ Neven, n ∈ Nodd) [44]. Finally, we
can restrict to the domain Re q ∈ [0, πn/2] for investigating some properties of
this function.
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a) |γc(q)|, q ∈ Cq b) Re γc(q), q ∈ Cq c) Re γc(
√

λ), λ ∈ C

Figure 3. The complex characteristic function γc(πq) for ξ = 1/2.

All zeroes z ∈ Z := Ẑ r C and poles p ∈ P := P̂ r C of the function
γc(q), lie in the positive part of the real axis [44]. We also use the notation
P = P ∪ {p0 := 0, p∞ := +∞}. Note that, for ξ = 1/n, n ∈ N, there are no
poles, i.e., the complex characteristic function γc(q) is an entire function. So,
there are no poles in the whole interval (p0; p∞) = (0; +∞) in this case, while
in the other cases we have an infinite sequence of poles [44].

2.3 Complex-real characteristic function

In this Section, we describe characteristic functions for the Sturm–Liouville
problem (2.1)–(2.2) with real γ ∈ R. In this case, we must investigate only the
real part of the complex characteristic function Re γc(q) (see, Figure 3b) and
have an additional condition Im γc(q) = 0. Some information on the function
Re γc(q) can be presented as a surfacecontours on the graph of this function
(see, Figure 3b) for ξ = 1/2) or contour lines on the plane Cq ((see, Figure 4
for ξ = 1/3, 2/3, 3/4).
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Figure 4. Contour lines of the function Re γc(πq) for various ξ.

We call the restriction Im γc(q) = 0 of the complex characteristic function
a complex-real characteristic function. This restricted function γ(q) is defined
on some subset (net) N := γ−1(R) := {q ∈ Cq : Im γc(q) = 0} ⊂ Cq and
γ = γc|N : N → R. In the general case, the subset N is a union of curves. A
complex-real characteristic function describes complex eigenvalue points (and
complex eigenvalues) for real γ.

Math. Model. Anal., 14(2):229–246, 2009.
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Let q = x + iy. Then the condition Im γc(q) = 0 is equivalent to

cosx sin(ξx) sinh y cosh(ξy) − sin x cos(ξx) cosh y sinh(ξy)

sin2(ξx) cosh2(ξy) + cos2(ξx) sinh2(ξy)
= 0 (2.12)

and

γc|N =
sinx sin(ξx) cosh y cosh(ξy) + cosx cos(ξx) sinh y sinh(ξy)

sin2(ξx) cosh2(ξy) + cos2(ξx) sinh2(ξy)
. (2.13)

a) complex b) complex-real c) eigenvalue points, γ = 4

Figure 5. Characteristic functions for ξ = 1/2 in Cq .

a) (Re q, γ) b) (Im q, γ) c) N ⊂ Cq

Figure 6. Projections of the complex-real characteristic function γ(πq) for ξ = 1/2.

We get the eigenvalue points as γ-values of the complex-real characteristic
function γ(q) (see, Figure 5). Projections of the complex-real characteristic
function are shown in Figure 6. The net N is a projection into the domain
Cq. We add arrows that show how the eigenvalue points are moving, i.e., the
direction in which the parameter γ is growing. In Figure 8, we see the parts (on
three planes) of the complex-real characteristic function graph where there exist
complex eigenvalue points. The case of a positive imaginary axis (Re z = 0,
Im z > 0) corresponds to negative eigenvalues. Projections into plane Cq may
give various curves.

We call the point qc ∈ Cq such that γ′(qc) = 0, a critical point.

Lemma 1. There exist only real critical points for problem (2.1)–(2.2).
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Proof. The condition γ′(q) = 0 is equivalent to
(

cos q sin(ξq) − ξ sin q cos(ξq)
)

/sin2(ξq) = 0. (2.14)

So, if q ∈ Cq is a critical point, then two equalities are valid:

sin q = γ sin(ξq), cos q = ξγ cos(ξq). (2.15)

Let us eliminate sin(ξq) and cos(ξq) and express sin2 q as follows:

sin2 q = sin2 x cosh2 y−cos2 x sinh2 y+i sin(2x) sinh(2y)/2 =
1 − γ2ξ2

1 − ξ2
. (2.16)

Since the right-hand side of (2.16) is real for real γ, the critical points are real
(the case sinh(2y) = 0) or if q = x + iy, where sin(2x) = 2 sinx cosx = 0. In
the case cosx = 0 and |γ| > 1, we have cosh2 y = (1 − γ2ξ2)/(1 − ξ2) 6 1, i.e.,
y = 0 as well. For real γ ∈ (−1, 1), all eigenvalue points are real numbers and
there are no critical points (see, [44, Lemma 5]). So, critical points may exist
only for q = x + iy, where sin x = 0. If we eliminate sin q and cos q, then we
can derive that critical points may exist only for q = x+ iy, where sin(ξx) = 0,
analogously. If we join these two conditions, then we can make a conclusion
that critical points may exist only for ξ = m/n ∈ Q and q = x + iy, where
sin x = 0 and sin(ξx) , i.e., x = 2πnk, k ∈ N (constant eigenvalue point). For
ξ = m/n the function γc(q) is periodical in the real direction

γc(2πnk + iy) = γc(iy) = sin(iy)/sin(iyξ) = sinh y/sinh(yξ).

The derivative of the function sinh y/sinh(yξ) is negative for y < 0 and positive
for y > 0 (see, [36, Theorem 1]). Consequently, all critical points exist only for
y = 0. ⊓⊔
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Figure 7. Projection of a complex-real characteristic function to Cq near the critical point
qc; w = γc(q) is the complex-real characteristic function, wc is the critical value.

A few curves of the domain N can intersect only at the critical point qc

(see, Figure 7). It is valid that γ′′(qc) 6= 0 for problem (2.1)–(2.2) (see, [44,
Corollary 7]). So, two symmetrical “complex” curves are orthogonal with the
real axis and eigenvalue points leave or enter the real axis orthogonally in this
problem.

Math. Model. Anal., 14(2):229–246, 2009.
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Figure 8. Complex-real cha-
racteristic function for com-
plex and negative eigenvalues
in the case ξ = 1/2.
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Figure 9. a) Complex-real characteristic function for
real eigenvalues in the case ξ = 1/2. b) The graph of the
real characteristic function.

2.4 Real characteristic function

If we take q only in the rays q = x ≥ 0 and q = −ix, x ≤ 0 (see, Figure 9)
instead of q ∈ Cq, then we get positive eigenvalues in case of the ray q = x > 0,
and we get negative eigenvalues for the ray q = −ix, x < 0. The point q =
x = 0 corresponds to λ = 0. For the function γc : Cq → R we obtain its two
restrictions on those rays: γ+(x) = γc(x+i0) for x ≥ 0, and γ−(x) = γc(0− ix)
for x ≤ 0. The function γ+ corresponds to the case of nonnegative eigenvalues,
while the function γ− corresponds to that of nonpositive eigenvalues. Let us
use the notation

{f1(x); f2(x)} := { f1(x), for x < 0, f2(x), for x ≥ 0.

All the real eigenvalues λ = {−x2; x2} are investigated using a real character-
istic function γ : R → R: γ(x) := {γ−(x); γ+(x)} (see, Figure 9). We use the
same notation of this function as for the complex-real characteristic function.
Such a restriction of the characteristic function is very useful for investigat-
ing real eigenvalues. For the complex characteristic function (2.11), the real
characteristic function can be written as:

γ(x) = {sinhx/sinh(ξx); sinx/sin(ξx)}, ξ ∈ (0, 1).

The cases ξ = 1/2 and ξ = 1/4 were described in [42].

We draw constant eigenvalues as vertical lines which intersect with the
x-axis at the constant eigenvalue points. We call the union of the graph of
the real characteristic function and all constant eigenvalue lines a generalized
real characteristic function (see, Figure 10). Then, for each γ∗, the constant
function γ ≡ γ∗ (horizontal line) intersects the graph of the real characteristic
function γ(x) or constant eigenvalue lines at some points. Now we have all real
eigenvalue points xi for this γ∗ (see, Figure 11). Usually, we enumerate the
eigenvalues in such a way: xk(0) = πk, k ∈ N, i.e., using the classical case.
Eigenvalues (and xk(γ)) are continuously dependent on the parameter γ.
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- critical pointg=0

a) real b) generalized real

Figure 10. Real characteristic functions, ξ = 1/2.
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g
*

xx xxx
54321

Figure 11. Generalized real
characteristic function and real
eigenvalue points xi.

Remark 3. We can define a generalized complex-real characteristic function
analogously, i.e., add vertical lines at constant eigenvalue points (see, Figure 15,
ξ = 0.5) to the graph of the complex-real characteristic function.

γ = 0 0 < γ < γ1 γ = γ1 ≈ 1.0515

γ1 < γ < 2.5 γ = 2.5 γ > 2.5

Figure 12. Generalized real characteristic functions γ(xπ; ξ) for ξ = 2/5.

Example 1 [ξ = 2/5]. In Figure 12, we see how the eigenvalue points are chang-
ing subject to a real value of the parameter γ in the case ξ = 2/5. For γ∗ = 0
(the classical case), we have xk = πk, λk = x2

k, k ∈ N, for 0 < γ∗ < γ1 ≈ 1.0515
all eigenvalues are positive and simple. If γ∗ = γ1, then some eigenvalue points
combine into one point and we have double eigenvalues. For γ1 < γ∗ < 2.5,
some eigenvalues are complex (we draw them as circles), other eigenvalues are

Math. Model. Anal., 14(2):229–246, 2009.
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positive and simple. In the case γ∗ = 2.5, we have simple positive eigenvalues
(constant and nonconstant), and one zero eigenvalue λ1 = 0 as well as multiple
(triple) eigenvalues, in addition. In this case, there exist complex eigenvalues,
too. For γ∗ > 2.5, we obtain simple positive eigenvalues, complex eigenvalues,
and one negative eigenvalue λ1 = −x2

1. The real positive eigenvalues approach
poles as γ∗ → +∞. We can investigate the negative γ∗ values analogously.

Real eigenvalues for Sturm–Liouville problems were investigated in [33, 34,
44]. Graphs of the generalized functions γ(x) for various ξ are shown in the
Figure 13.
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Figure 13. Generalized real functions γ(xπ) for various ξ.

Example 2 [Case ξ = (n−1)/n, n ∈ N]. We consider the characteristic function
in the interval x ∈ [0, πn] (see, Remark 2). The point x = πn = pn−1 = c1 is
a unique constant eigenvalue point in this interval. In each interval (pk−1, pk),
k = 1, . . . , n − 1 we have exactly one zero of the real characteristic function.
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Figure 14. Domain N for various ξ.

Then we obtain (see,[44, Corollary 13, Corollary 15]) that the characteristic
function is a decreasing function in each interval (pk−1, pk), k = 1, . . . , n − 1,
i.e., there are no critical points for x ∈ (0, πn).

Example 3 [ξ = (n − 2)/n, n ∈ Nodd]. We consider the characteristic function
in the interval x ∈ [0, πn] (see, Remark 2) once more. The point x = πn =
pn−1 = c1 is a unique constant eigenvalue point in this interval. In each interval
(pk−1, pk), k = 1, . . . , n − 1, k 6= k0 := (n − 1)/2 we have exactly one zero of
the real characteristic function. So, the characteristic function is a decreasing
function in each interval. In the interval (pk0−1, pk0

) we have two zeroes and one
critical point x = πn/2 (see,[44, Corollary 15]), i.e., there is only one critical
point x = πn/2.

2.5 Complex eigenvalues

Theoretical investigation of complex eigenvalues is a very difficult problem
even for simple nonlocal boundary problem such as (2.1)–(2.2). Therefore, we
present only simple properties of a complex part of the spectrum for this prob-
lem. The domains N for various ξ are shown in Figure 14. Since γ̄c(z) = γc(z̄),
for a complex-real characteristic function, the equality γ(z) = γ(z̄) is valid.
Thus, in this subsection we investigate a complex-real characteristic function
in the domain

C+
q := {q = x + iy : x > 0, y > 0}.

The points of the domain N satisfy the equality

M(x, y) := cosx sin(ξx)sinh y/sinh(ξy) − sin x cos(ξx)cosh y/cosh(ξy) = 0

Math. Model. Anal., 14(2):229–246, 2009.
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and sinh y/sinh(ξy) > 0, cosh y/cosh(ξy) > 0 for q ∈ C+
q . In Figure 14, we see

that some parts of the domain N are on the lines. We have such lines if x is a
solution of the system:

sin x cos(ξx) = 0, cosx sin(ξx) = 0. (2.17)

The solutions of this system exist only for rational ξ = m/n:

x = ck = πnk1, k1 ∈ N (2.18)

x = c̃k = πn(k2 − 1/2), k2 ∈ N, m, n ∈ Nodd. (2.19)

In other cases, we have graphs of the function y = ϕ(x) obtained by solving
the following implicit equation

f(y) := sinh y/sinh(ξy)·cosh(ξy)/coshy = sinx/sin(ξx) ·cos(ξx)/cosx. (2.20)

Here f(y) is a decreasing function for y > 0 and f(0) = 1/ξ, f(+∞) = 1,
because

f ′(y) := − ξ sinh(2yξ)

2 sinh2(ξy) cosh2 y

( sinh(2y)

sinh(2yξ)
− 1

ξ

)

< 0. (2.21)

The positiveness of sinh(2y)/sinh(2yξ) − 1/ξ is evident (see, [36, Theorem
1],[44]). As we see in Figure 14 for some ξ, we have only lines in C+

q .

Lemma 2. The eigenvalue points of problem (2.1)–(2.2) belong to the set of
lines in C+

q if ξ = (n− 1)/n, n ∈ N or ξ = (n− 1)/n, n ∈ N or ξ = (n− 2)/n,
m, n ∈ Nodd and all the points of those lines in C+

q are eigenvalue points of
problem (2.1)–(2.2). For other rational ξ = m/n, eigenvalue points belong
to the lines x = ck = πnk1, k1 ∈ N or x = c̃k = πn(k2 − 1/2), k2 ∈ N,
m, n ∈ Nodd. However, there exist eigenvalue points that belong to the graphs
of some functions Im q = ϕ(Re q). In the case of irrational ξ, all the eigenvalue
points belong to such graphs.

Proof. The proof follows from Example 2, Example 3, from the property that
complex-real characteristic function is even with respect to the line Re q = πn/2
in the case ξ = (n − 2)/n, m, n ∈ Nodd, from formulae (2.20)–(2.21) and from
the property that all critical points are real. ⊓⊔

2.6 Dynamics of complex eigenvalues

As shown in the previous subsection, the behavior of eigenvalue points is quite
simple for fixed ξ. Zeroes of the characteristic function are fixed for all ξ. The
poles depend on ξ: pl(ξ) = πl/ξ. A qualitative view of the domain N with
respect to ξ changes when the pole and zero meet at the constant eigenvalue
point. If ξ is growing, then the pole moves to the left. In Figure 15, we see a
typical situation near the constant eigenvalue point.
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Figure 15. Complex-real characteristic functions (real, domain N and complex-real). Their
dependence on the parameter ξ in the neighborhood of the constant eigenvalue point ξ = 0.5
and q = 2π.

3 The Sturm–Liouville Problem with General NBCs

Let us consider a Sturm–Liouville problem with the following NBCs:

−(p(t)u′)′ + q(t)u = λu, t ∈ (0, 1), (3.1)

〈l0, u(t)〉 = 0, (3.2)

〈l1, u(t)〉 = γ〈k, u(t)〉, (3.3)

where p(t) > p0 > 0, p ∈ C1[0, 1], q ∈ C[0, 1], l0, l1 and k are linear functionals.
For example, the functional k can describe multi-point or integral NBCs:

〈k, u(t)〉 =

n
∑

j=1

(

κju(ξj) + κju
′(xj)

)

, 〈k, u(t)〉 =

∫ 1

0

κ(t)u(t)dt,

Math. Model. Anal., 14(2):229–246, 2009.
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and the functionals li, i = 0, 1 can describe local (classical) boundary conditions

〈l0, u(t)〉 = α0u(0) + β0u
′(0), 〈l1, u(t)〉 = α1u(1) + β1u

′(1),

where the parameters |αi| + |βi| > 0, i = 0, 1.

lC lC

a) domain Nλ b) contour lines c) complex-real function

Figure 16. Complex-real function γ̃ : Cλ → R, case ξ = 2/3.

Let ϕ0(t; λ) and ϕ1(t; λ) be two independent solutions of equation (3.1).
For example, we can find such a solution by solving initial value problems with
the conditions: u(0) = 1, u′(0) = 0 and u(0) = 0, u′(0) = 1. Let us denote

Dt
s(λ) := Dt

s[ϕ0, ϕ1](λ) =

∣

∣

∣

∣

∣

ϕ0(t; λ) ϕ1(t; λ)

ϕ0(s; λ) ϕ1(s; λ)

∣

∣

∣

∣

∣

,

〈k1 · k2, D
t
s(λ)〉 :=

∣

∣

∣

∣

∣

〈k1, ϕ0(t; λ)〉 〈k1, ϕ1(t; λ)〉
〈k2, ϕ0(s; λ)〉 〈k2, ϕ1(s; λ)〉

∣

∣

∣

∣

∣

.

All solutions of equation (3.1) are of the form u=C0ϕ0(t; λ)+C0ϕ1(t; λ). There
exists a nontrivial solution of problem (3.1)–(3.3) if and only if Ψ(λ)γ=Φ(λ),
where Ψ := 〈l0 · k, Dt

s(λ)〉, Φ := 〈l0 · l1, Dt
s(λ)〉. Both functions Ψ(λ) and Φ(λ)

are entire functions for λ ∈ C.
We can find constant eigenvalues for problem (3.1)–(3.3) as the roots of the

system
{

Ψ(λ) = 0,

Φ(λ) = 0.

The complex characteristic function

γ̃c := Φ(λ)/Ψ(λ), γ̃c : Cλ → C (3.4)

is a meromorphic function and describes nonconstant eigenvalues. We can
introduce the plane Cq only for the differential operator −u′′. For this operator
the characteristic function (3.4) is more complicated in the plane Cλ than the
characteristic function in the plane Cq. The domain Nλ := γ̃−1

c (R) := {q ∈
Cλ : Im γ̃c(λ) = 0} ⊂ Cλ, γ̃c, contour lines and the complex-real function γ̃c

are presented in Figure 16 for ξ = 2/3 (see, Figure 4, Figure 13, Figure 14
for ξ = 2/3). In this case (see, Lemma 2), the lines become parabolas. The
contour lines and the complex-real function are complicated, too.
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4 Conclusions

In this paper the spectrum for Sturm–Liouville problem with one Bitsadze–
Samarskii type nonlocal boundary condition was investigated.

• The new type of characteristic function (complex-real characteristic func-
tion) was introduced for problem with real parameter γ. Properties of the
complex part of spectrum were investigated with the help of this charac-
teristic function. We prove that projections of this function onto domain
Cq are curves with intersections only in the real part of the spectrum.
Moreover, these curves are often defined by lines (or parabolas in Cλ).
We find the conditions when characteristic curves are defined by lines and
also describe cases when we have only lines as characteristic curves.

• We investigate all characteristic functions (complex, complex-real and
real characteristic functions) for this problem. We summarize some re-
sults which are published in the other articles on real eigenvalues, con-
stant eigenvalues points, critical points. All definitions and examples are
illustrated by graphs. We can do such an investigation for the other prob-
lems with one nonlocal boundary condition. So, our investigation of the
problem with one Bitsadze–Samarskii type nonlocal boundary condition
describes a technique for investigation of such problems.

• Theoretical investigation of complex eigenvalues is a very difficult problem
even for this simple test problem with one Bitsadze–Samarskii type nonlo-
cal boundary condition. Therefore, we present only few simple properties
of a complex part of the spectrum for this problem and give results of
computational analysis as graphs of the complex characteristic functions
and their projections for some values of the parameter ξ.

• We investigate a qualitative view of the domain N with respect to the
dynamics of ξ when the pole and zero meet at the constant eigenvalue
point and show that a dynamical view is still relative simple. We note
that such a simple behavior is valid only for this problem. In the case of
some other nonlocal boundary conditions the situation can be more com-
plicated even for simple integral BC (in this case the constant eigenvalue
point is the pole of characteristic function) or two-points nonlocal BC (in
this case higher order real critical points can exist).

We give a definition of the constant eigenvalues and the complex character-
istic function for the Sturm–Liouville problem with one general type nonlocal
boundary condition. By using characteristic functions we can investigate a very
wide class of problems with nonlocal boundary conditions, analogously to the
problem with one Bitsadze–Samarskii type nonlocal boundary condition.

Acknowledgement

The authors are grateful to Prof. Mifodijus Sapagovas for his valuable comments
and discussions.

Math. Model. Anal., 14(2):229–246, 2009.



244 A. Štikonas and O. Štikonienė
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