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Abstract. The work presents an extension of the conventional Kalman filtering
concept for systems of fractional order (FOS). Modifications are introduced using the
Grünwald-Letnikov (GL) definition of the fractional derivative (FD) and correspond-
ing truncation of the history length. Two versions of the fractional Kalman filter
(FKF) are shown, where the FD is calculated directly or by augmenting the state
vector with the estimate of the FD. The filters are compared to conventional integer
order (IO) Position (P-KF) and Position-Velocity (PV-KF) Kalman filters as well
as to an adaptive Interacting Multiple-Model Kalman Filter (IMM-KF). The perfor-
mance of the filters is assessed based on a hand and a head motion data set. The
feasibility of the given approach is shown.

Key words: Kalman filter, fractional-order system,fractional filtering, sensor fusion,

Grünwald-Letnikov derivative.

1 Introduction

Progress in developing low-cost MEMS (Microelectromechanical Systems) sen-
sors and significant increase of available computational power of embedded
systems stimulated research on developing algorithms for combining (fusing)
sensors with complementary properties within a single system. The fusion is
typically performed via an optimal or suboptimal estimator, where Kalman
filters or its modifications are usually employed. The fusion is based on a mo-
tion model in the prediction step and the measurements of different modalities
during the correction stage. The final performance of such a system is better
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than that based on a single sensor type. The work extends the conventional
sensor fusion schemes for FOS starting with a basic linear Kalman Filters.

a)

b)

Figure 1. Example of real motion measurements with added Gaussian noise: X component
of position measurements a) for hand and b) head motion.

Although the number of applications where fractional calculus (FC) is used,
has significantly increased in the last years [3], it still lacks wide acceptance
in scientific and engineering community [13]. It could be explained not only
by the absence of intuitive geometrical and physical interpretation as there is
for some IO operators [5, 13], but as well by an existence of several alternative
definitions [5, 10], which impose extra work in comprehensing and applying FC.
Recent achievements in understanding and interpreting FC operators [5, 13, 14]
and development of efficient tools for FOS [7, 12] allowed to apply FC for
the processes which are better described with fractional order (FO) rather
than IO models. One could refer [6, 12] for formal definitions of FC with
results on recent unifying approach in [10]. Extension of the classical system
theory for both continuous-time and discrete-time fractional linear system is
provided in [8, 9] with a tutorial on fractional order signal processing techniques
in [2]. The role of FC in soft matter physics, theory of complex materials
and viscoelastic behavior, its ability to include effects with non-conservative
forces and power-law phenomena propose an idea to capture the complexity of
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a) b)

Figure 2. a) Histogram of measured acceleration for ideal hand motion X component and
b) autocorrelation function. Measurements performed in a global coordinate frame. Similar
results hold for increments of measured accelerations (not shown).

human dynamics (see Fig. 1) by proper extension of filtering schemes with
FC operators. The idea is supported by the evidences [3] of sk dynamics
in muscles and joint tissues throughout human musculoskeletal system. The
Kalman Filter assumes the process being driven by Gaussian noise. Recent
work [16] suggested the acceleration of the human limbs to be better represented
with Fractional Brownian Motion. Indeed, for our test signals in global frame
we have checked both accelerations and their increments of being normally
distributed using the Jarque-Bera normality test, where the hypothesis was
rejected with α = 0.05. Thus the assumption about Gaussian noise is violated.
Tails in measured distribution and significant values of autocorrelation function
for non-zero sample lag can be seen in Fig 2. Thus the concept of FD is
introduced as a model for some of the effects described above.

The rest of the paper is organized as follows: after revision of the basic
concepts of FC and Kalman filtering in Section 2, we present construction of
linear FKF in Section 3 and compare their performance to conventional IO
schemes for tracking real human limb motion in Section 4 with the concluding
remarks at the end of the paper.

2 Theory

The continuous differential and integral operators can be generalized into one
operator aDα

t as [2]:

aDα
t =



























dα

dtα
ℜ(α) > 0,

1 ℜ(α) = 0,
∫ t

a

(dτ)
−α

ℜ(α) < 0,
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where a and t are the limits of operation with alternative definitions of FD in
[11]. The choice of the GL definition is caused by its suitability for data which
are not necessarily defined via known functional relation and by its straight-
forward computational scheme for a causal signal:

aDα
t [f(t)] = lim

h→0

1

hα

⌊ t−a

h ⌋
∑

k=0

(−1)k

(

α

k

)

f(t − kh)

= lim
h→0

1

hα

⌊ t−a

h ⌋
∑

k=0

(−1)k Γ (α + 1)

k!Γ (α − k + 1)
f(t − kh).

Here ⌊x⌋ means the integer part of x and Γ (x) is Euler’s gamma function. This
can be considered as a generalization of the conventional integer n-th derivative
operator with backward finite difference. Although the IO derivative needs a
finite number of terms and therefore is a local operator, the FD requires an
infinite number of terms and differently from IO derivatives has a memory of
all the past events.

a) b)

Figure 3. a) GL derivative used to calculate FO and IO derivatives of f(x) = e2x (h = 0.01).
b) Example of FD for the real measured X axis displacement (HAND data set, Ts = 1sec)

The basic limitation of the GL definition is the summation which results in
a limited accuracy of the calculations. For numerical calculation of FD we can
use the following discrete approximation derived from the GL definition:

(t−L)D
α
t [f(t)] ≈

1

hα

N(t)
∑

k=0

bkf(t − kh), N(t) = min

{⌊

t

h

⌋

,

⌊

L

h

⌋}

, (2.1)

where L is the length of the memory, h is the step size of the calculation
and N is the number of coefficients used in the approximation. The binomial
coefficients bk are calculated as follows:

b
(α)
0 = 1, b

(α)
k =

(

1 −
1 + α

k

)

b
(α)
k−1.
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GL definition can be directly applied for numerical evaluation of FD in the case
of analytically defined functions (Fig. 3a) as well as real measured signals (Fig.
3b). For detailed treatment of FC one can refer to [7, 12, 15].

Kalman filter ensures an optimal solution under a number of assumptions
about system noise and dynamics and it became a major tool for solving linear
filtering problems due to its efficient recursive scheme (Fig. 4).

Figure 4. General prediction-correction structure of Kalman Filter.

A discrete-time process [4] with the state x ∈ ℜn is governed by the linear
stochastic difference equation and has a measurement equation as follows:

xk = Axk−1 + Buk−1 + wk−1,

zk = Hxk + vk.

Here z ∈ ℜm, wk and vk representing process and measurement noises at time
instance k: p (w) ∼ N (0, Q) and p (v) ∼ N (0, R). Then the discrete Kalman
filter consists of 2 stages [4]: prediction or time update:

x̂−

k = Ax̂k−1 + Buk−1,

P−

k = APk−1A
T + Q,

and correction or measurement update:

Kk = P−

k HT
(

HP−

k HT + R
)

−1
, (2.2)

x̂k = x̂−

k + Kk

(

zk − Hx̂−

k

)

, (2.3)

Pk = (I − KkH)P−

k . (2.4)
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Here A, B, H are from the description of the system, P−

k and x̂−

k are the a
priori estimate of error covariance and the state estimate, Pk and x̂k are the
corresponding posteriori estimates and Kk is the Kalman gain [1].

The Position-based Kalman Filter (P-KF) is designed with only the position
variable in the state. The Position-Velocity Kalman filter (PV-KF) is derived
from the P-KF by adding the 1st order derivative (velocity) to the estimated
state. The premise regarding a time-invariant model can be easily violated
by a human hand motion, where several regimes do exist depending on the
user activity. Single fixed-model Kalman filter can fail to cover all possible
situations of interest. In practice this issue can be resolved by using adaptive
Kalman filter schemes such as, for example, Interacting Multiple-Model (IMM-
KF) methods, where a finite number of the process models is running in parallel
and a soft switching scheme is used for state estimation from the combination
of models based on calculated likelihoods (see [1] for details on IMM-KF).

3 Methods

Consider a Position Fractional Kalman Filter of the order α (αP-FKF) as a
generalization of the linear Kalman filter for position estimation. Recall (2.1)
and with the assumption for the process model:

(t−L)D
α
t [x(t)] ≈(t−L+h) Dα

t+h[x(t)],

for h = 1, N(t) = L/h = N , we obtain:

∆αxk−1 ≈

N
∑

j=0

bjxk−1−j ,

∆αxk ≈
N+1
∑

i=0

bixk−i = b0xk +
N+1
∑

i=1

bixk−i.

By assuming ∆αxk ≈ ∆αxk−1 it follows:

xk =
1

b0





N
∑

j=0

bjxk−1−j −

N+1
∑

i=1

bixk−i





with b0 = 1. With di = bi − bi+1 the state-space representation is given as
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...
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≈















d0 d1 · · · dN−1 dN

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0





























xk−1

xk−2

...
xk−N

xk−N−1















. (3.1)

It can be easily shown that IO derivatives in the form of the finite differences
can be obtained as special cases from (3.1). The parameter h cancels out from
the expression above, although it obviously scales the noise matrices of the
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process. For the design of the KF we assume the completeness of the state,
take Ψi = Υi−1 − Υi and for non-zero input:

x−

k =

N+1
∑

i=1

Ψixk−i + Buk−1. (3.2)

Here
Υi = diag

[

(−1)i
(

α1

i

)

· · · (−1)i
(

αM

i

)
]

,

the orders of the M system equations are α1, . . . , αM and x0 and P0 are initial
conditions. The obtained result is similar to the one in [17]. αP-FKF allows a
direct substitution of α = 1, but it doesn’t permit to set the Q values separately
for the derivative estimation. Proceeding similarly as for the case of αP-FKF:

∆αxk−1 ≈

N
∑

j=0

bjxk−1−j , ∆αxk ≈

N+1
∑

j=0

bjxk−j . (3.3)

Assuming ∆αxk ≈ ∆αxk−1 we get:

xk ≈ ∆αxk−1 −
N+1
∑

j=1

bjxk−j , ∆αxk ≈
N

∑

j=0

bjxk−1−j .

Augmenting the state with the FD and previous state estimates for zero input
we obtain
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(3.4)
Here h is the discretization step from the definition of the FD. This is equivalent
to the IO difference schemes for α ∈ Z. For example with n = 1:

xk = xk−1 + hα∆αxk−1 = xk−1 + ∆Tv. (3.5)

Here ∆T is a time interval and v is the velocity. Following (3.2),(3.3) and (3.4)
we can rewrite the prediction step and generalize it for the system equations
M > 1:

Φ1 =

[

−Υ1 I
Υ0 0

]

, Φi =

[

−Υi 0
Υi−1 0

]

, i > 1,

[

xk

∆αxk

]

−

=

N+1
∑

j=1

Φj

[

xk−j

∆αxk−j

]

+ Buk−1,
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with ∆0xk = xk. For both αP-FKF and αPV-FKF the rest of the equations
are identical to (2.2)–(2.4) and the difference from the standard KF is in the
prediction step only. We don’t update the history estimates in the prediction
step, thus the process noise is added only to xk (αP-FKF) or to both xk and
∆αxk (αPV-FKF). Differently from [17], P−

k can’t be simplified similarly to
state prediction due to correlation introduced by the state augmentation and
we estimate FD together with the state variable. Filters can be constructed
either component-wise (separate filters for X , Y and Z) or by combining them
within the state if any coupling is of interest. Upper summation limit has to
be changed to the last N samples and sampling period Ts considered.

4 Experimental Results

The choice of a process model for sensor fusion algorithm is crucial for achieving
good performance at a low sensor measurement rate. In practice a fixed-order
model is considered as a trade-off between noise and delay, while adaptive fil-
tering schemes can be used to handle the varying dynamics of the system. In
order to imitate a linear filtering case for a sensor fusion problem, we evalu-
ated the performance of the developed methods on the position measurements
(correspondingly x, y and z object position components) obtained with the
help of ViconTM Motion Tracking System. For this purpose we used human
head (HEAD) and hand (HAND) motion data sets recorded with a sampling
period Ts = 0.02 sec (further we take Ts = 1 sec. for simplicity). The recorded
data represent typical user activity in virtual-reality applications. Noisy mea-
surements were generated by adding Gaussian noise with σ = 0.05 m to each
position component of the ViconTM data.

For a comparative analysis with IO process models we evaluated the perfor-
mance of a conventional position Kalman filter (P-KF) and a position-velocity
Kalman filter (PV-KF) on the same data sets. The conventional P-KF is a
special case of (3.1) with position variables inside the state vector, α = 0 and
no history augmentation. Similarly, the conventional PV-KF is a special case
of (3.4) with positions and velocities forming the state vector, α = 1 and no
history augmentation. Basic P-KF and PV-KF were compared to our proposed
fractional extensions as shown in (3.1) and (3.4): αP-FKF and αPV-FKF. The
fractionality parameter α was allowed to be different for each component in
αiPV-FKF and is fixed to be the same for all 3 components in αP-FKF and
αPV-FKF. We also compared the performance of our filters to basic adaptive
filtering scheme, namely IMM-KF, commonly used in tracking applications.
The IMM-KF was designed for switching between 2 models equivalent to stan-
dard P-KF and PV-KF as described above [1].

For all filters the measurement noise was taken to be known with the true
value R = 0.0025In and P0 = 10In for all filters except IMM-KF. RMS error
metric (erms) was used as a criteria for filter performance evaluation, whereas
the maximum deviation of the filtered signal from the noiseless reference (e∞) is
presented for examination purpose only. We have used history length of N = 20
samples since the experiments showed it to be enough for our purpose. The best
set for the rest of parameters was found using MatlabTM fminsearch routine
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and corresponding numerical values are presented in Table 1 and Table 2.

Table 1. Performance of different Kalman Filters for the HEAD data set.

Filter Type erms e∞ Parameters

No Filter 0.0878 0.2534
P-KF 0.0422 0.1215 Q = 2.8 · 10−5

αP-FKF 0.0370 0.1098 α = 0.95, Q = 1.17 · 10−7

PV-KF 0.0383 0.1044 Qp = 1.0 · 10−5, Qpv = 1.0 · 10−7

αPV-FKF 0.0365 0.1040 α = 0.75, Qp = 1.82 · 10−7,
Qpv = 3.27 · 10−7

αiPV-FKF 0.0356 0.1255 αx = 0.69, αy = 0.70, αz = 0.42,
Qp = 1.19 · 10−9, Qpv = 5.94 · 10−7

IMM KF 0.0336 0.1499 QP
p = 4.89 · 10−8, QPV

p = 1 · 10−8

QPV
pv = 3.5610−7, p12 = 1

20
, P0 = In

Table 2. Performance of different Kalman Filters for the HAND data set.

Filter Type erms e∞ Parameters

No Filter 0.0870 0.2493
P-KF 0.0442 0.1303 Q = 3.56 · 10−5

αP-FKF 0.0416 0.1540 α = 0.80, Q = 6.73 · 10−7

PV-KF 0.0418 0.1544 Qp = 1.0 · 10−5, Qpv = 1.0 · 10−5

αPV-FKF 0.0407 0.1541 α = 0.54, Qp = 7.42 · 10−7,
Qpv = 2.42 · 10−6

αiPV-FKF 0.0405 0.1541 αx = 0.51, αy = 0.55, αz = 0.43,
Qp = 3.09 · 10−6, Qpv = 2.06 · 10−6

IMM KF 0.0391 0.1534 QP
p = 3.50 · 10−7, QPV

p = 5.73 · 10−6

QPV
pv = 1.210−6, p12 = 1

20
, P0 = In

The performance of αP-FKF for different values of fractionality α and pro-
cess noise Q is shown in Fig. 5a. The result confirms erms sensitivity to α to be
related to our confidence with the process model in terms of Q. Although the
filters of fixed α have the same drawback of poor fitting to varying dynamics,
reasonable performance improvement over basic IO filters can be achieved (Ta-
ble 1 and Table 2) for the best set of parameters. A small performance gain is
found in αiPV-FKF filters probably due to all 3 components of motion having
similar dynamics over the measurement time (4 min.). For given data sets the
best found component-wise fractionality αz (vertical axis) is smaller than αx

and αy and can be explained by the user motion. Although constant order
FKF outperform conventional P-KF and PV-KF schemes, their performance
is still inferior to that of IMM-KF due to the latter’s adaptive nature. The
prediction power of FO models compared to PV-KF can be seen in Fig. 5b,
clearly showing correlation features introduced by FD.

5 Conclusions

The work presents the construction of FO linear Kalman filter using the GL
approximation. Two different types (αP-FKF and augmented state αPV-FKF)

Math. Model. Anal., 14(2):199–209, 2009.
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a)

b)

Figure 5. a) Influence of the model order α on the performance of the αP-FKF for different
values of process noise Q: RMS error measure erms for HEAD data set. Similar results are
obtained for HAND data set; b) Performance of PV-KF and αP-FKF in predicting real hand
motion (straight line corresponds to PV-FKF).

of FKF have been implemented and compared to conventional KF implementa-
tions (P-KF, PV-KF, IMM-KF). The paper shows feasibility of such a construc-
tion for real-life limb tracking application. FD-based filters showed improved
performance compared to fixed IO versions, although being slightly inferior to
the adaptive scheme of an IMM-KF. Further research is required for efficient
approximations, nonlinear models, adaptive fractional filtering schemes and ap-
plicability of FC as a solution for advanced noise models in fusion algorithms.
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