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Abstract. This report treats numerical methods for highly nonlinear least squares
problems for which procedural and rounding errors are unavoidable, e.g. those arising
in the development of various nonlinear system identification techniques based on
input-output representation of the model such as training of artificial neural networks.
Let F be a Frechet-differentiable operator acting between Hilbert spaces H1 and H2

and such that the range of its first derivative is not necessarily closed. For solving
the equation F (x) = 0 or minimizing the functional f(x) = 1

2
‖F (x)‖2

, x ∈ H1,

two-parameter iterative regularization methods based on the Gauss-Newton method
under certain condition on a test function and the required solution are developed,
their computational aspects are discussed and a local convergence theorem is proved.

Key words: nonlinear least squares, parameter identification, artificial neural net-
works, iterative regularization, Gauss-Newton type methods.

1 Introduction

To translate a problem into a mathematical model is a typical task for opera-
tional and management science and scientific computing. Provided, that model
formulation is successful there is a strong requirement for effective numerical
techniques. Industrial and scientific problems lead frequently to complicated
non-linear optimization problems that can be formulated as one of the mathe-
matical programming:

min {f(x) : x ∈ Q} , (1.1)

where Q is a closed subset of Hilbert space H1. It also contains the problem
of computing a solution of the equation

F (x) = 0 (1.2)

∗ This work was partly supported by Estonian Scientific Competence Council targeted fi-
nancing grant no. 0140083s08

http://dx.doi.org/10.3846/1392-6292.2009.14.179-186
http://www.vgtu.lt/mma/
mailto:inga@cs.ioc.ee
mailto:vaarmann@staff.ttu.ee


180 I. Kangro and O. Vaarmann

with

f(x) =
1

2
‖F (x)‖2 , Q = H1, (1.3)

where F is a nonlinear operator from a Hilbert space H1 into another space H2.
For a differentiable operator F , depending on the properties of F ′, the problems
under consideration may have a unique solution or infinitely many solutions or
no solution in a classical sense. Real-life problems, which rest on mathematical
modelling and simulation are frequently ill-posed. For instance, those arise
in inverse problems because they typically involve the estimation of certain
quantities based on indirect measurements. A well known example of great
practical interest of an application of an inverse problem is that of computerized
tomography (see e.g. [12]). The problem of the determination of the heat
conductivity coefficient from available measurement data is also extensively
studied (see e.g. [7, 13]). The important practical problem of determination
of the heat conductivity coefficient of electrical cables is considered in [5, 4].
Since for ill-posed problems we cannot assume the existence of (F ′)−1 or its
uniform boundedness then some kind of regularization is needed. Ill-posedness
is an important aspect of computation that is expressed in instability of the
solution process (solution is unstable under data perturbations), thus the usage
of non-regularized methods can produce uncontrollable and unacceptable error
propagation.

Multilayer feed-forward network can easily cope with many complicated
problems such as predicting fluctuations of stock market, energy planning,
parameter identification etc., provided there are enough hidden layers in the
network [10, 15, 18, 19]. For predicting fluctuations of stock market neural
networks are useful and can serve as good financial advisors, in particular, as
a tool to classify the alternatives into prescribed groups. The problem is then
to find the “best weights” for the network, i.e., the weights that give the “best
fit” for a given set of output vectors and given set of “target” output vectors.
Similar problems arise in energy planning and in other fields of electrical engi-
neering when we use neural networks. For short-time forecasting of the power
load of a electric system a corresponding mathematical model can be given in
the form of a three layered feed-forward neural network, where the activation
(or transfer) function is, in general, a sigmoid function in respect of each pre-
dicted load [10]. Neural networks are intrinsically function approximators. In
most applications activation function is a sigmoidal one, typically of the form
1/(1 − e−x), which leads to highly nonlinear least squares problems.

For solving those problems, regularizing algorithms containing several reg-
ularization parameters may be fruitful, because a proper choice of additional
parameters enables to improve the convergence rate properties and to reduce
the amount of computation.

Many problems in science and engineering can be formulated as an inverse
problem. The field of inverse problems has experienced a rapid progress in the
last few decades. Recently, many monographs, e.g., [1, 3, 9], and a big number
of papers, e.g., [8, 16, 17, 26], are devoted to this topic. In the works mentioned
above , as a rule, problems with the inaccurate data are considered and the
convergence of the Gauss-Newton method is proved under the assumption on
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source-like representation of the exact solution x∗:

x∗ − u0 = (F ′∗(x∗)F ′(x∗))pν, 0 < p ≤ 1.

In order to obtain simple estimates of the terms including approximations to
the inverse operators, here we use the value p = 1. This paper is a continuation
of papers [11, 14, 21, 22] and it treats approximate Gauss-Newton type methods
for solving problems for which procedural and rounding errors are unavoidable,
e.g, those arising in mathematical modelling and in the development of various
system identification techniques based on input-output representation of the
model. The purpose of this paper is to discuss basic concepts of approach
and therefore the emphasis is on the theoretical background rather than the
practical solution.

2 Methods and Convergence Theorem

A necessary condition for x to be a local minimum point of (1.3) is given by
the equation

[F ′(x)]
∗

F (x) = 0, (2.1)

where [ · ]
∗

denotes the dual mapping.
If the operator F is highly nonlinear, then one possibility to handle nonlinear

least squares (NLSQ) problems with small residual more safely is to use damped
Gauss-Newton type methods. On the other hand, in the case of ill-conditioned
F ′, acceptable values for the relaxation parameter ε can be extremely small
what, in turn, means that the convergence speed may be drastically slowed
down. The use of some iterative schemes which exploit the variable regular-
ization parameter α and the variable relaxation parameter ε at each iteration
step may be fruitful because that allows a wider choice of initial guesses x0.

We shall consider the case when the range of F ′ is not necessarily closed
and the product operator [F ′]∗F ′ may not have a bounded inverse operator.
The Gauss-Newton method

xk+1 = xk − [B(xk)]
−1

[F ′(xk)]
∗

F (xk),

B(xk) = [F ′(xk)]
∗

F ′(xk), k = 0, 1, . . . ,
(2.2)

is equivalent to minimizing the linearized functional

gk(h) =
1

2
‖F (xk) + F ′(xk)h‖

2
(2.3)

at every iteration point xk for the correction term h. In order to cope with
problems with the unbounded pseudoinverse of F ′ it is desirable to develop
algorithms based on the Tikhonov functional

Φk(h) =
1

2

(

‖F (xk) + F ′(xk)h‖
2

+ α ‖x̄k − u0‖
2
)

,

where α > 0, x̄k = xk + h, and u0 is an element of H1, the so-called test
function.
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Following the idea of iterative regularization [2, 23, 25], we suppose that α
is a sequence {αk} of properly chosen positive numbers. From the stationarity
condition for the Tikhonov functional we obtain an one-parameter iterative
Gauss-Newton method

xk+1 = xk − M−1

k [F ′∗(xk)F (xk) + αk(xk − u0)] , (2.4)

where Mk = B(xk)+αkI, I denotes the identity mapping, and hk = xk+1−xk.
In this report we shall study a class of two-parameter regularized Gauss-

Newton type methods

xk+1 = xk − εkDk [F ′∗(xk)F (xk) + αk(xk − u0)] , (2.5)

where 0 < εk ≤ 1 and Dk is an approximation to M−1

k satisfying the condition

‖I − Dk (B (xk) + αkI)‖ ≤ µk ≤ µ0 < 1, k = 1, 2, . . . .

The study of methods with approximate operators may give more realis-
tic impression of the methods under discussion. Frequently, the use of finite-
difference approximations to the derivatives gives rise to an inexact method.
Approximation may be also regarded as a result of inevitable inaccuracy of
computation or they are due to the strategy used for solving linear problems
at each iteration, i.e. associated linear equations are solved intentionally ap-
proximately taking finitely many steps of an iterative procedure.

To get convergence results for the method (2.5), let us suppose that the
operator F is twice Frechet-differentiable in the region under consideration
with

‖F ′(x)‖ ≤ K1, ‖F ′′(x)‖ ≤ K2, K1, K2 > 0, (2.6)

the equation (1.2) has a solution x∗ with the representation

x∗ − u0 = F ′∗(x∗)F ′(x∗) v (2.7)

holding for an element v ∈ H1 and a test function u0, and the inequality

‖F ′∗(x∗)F ′(x∗) − F ′∗(xk)F ′(xk)‖ ≤ C0 ‖x
∗ − xk‖ , k = 1, 2, . . . (2.8)

is valid for some constant C0.
We shall show that the sequence {xk} defined by (2.5) converges to a solu-

tion x∗ of (1.2) provided ‖v‖ and µk are sufficiently small, i.e.

µk ≤ µ0 ≤ ‖v‖ , k = 1, 2, . . . , (2.9)

2ε0 (K1K2 ‖v‖)
1/2 (1 + µ0) + [1 + ε0(1 + µ0)C0] ‖v‖ = q < 1, (2.10)

and the parameter αk is chosen as

αk =
1

2

[

K1K2

‖v‖

]1/2

qkτ0, (2.11)

where τ0 ≥ ‖x0 − x∗‖ .
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Theorem 1. Let F be twice Frechet-differentiable operator and the relations

(2.6) – (2.11) hold. If 1 − εk(1 − µk) ≤ ‖v‖ then the sequence {xk} defined by

(2.5) converges to the solution x∗ with

‖xk − x∗‖ ≤ qkτ0, k = 1, 2, . . .

where ‖x0 − x∗‖ ≤ τ0.

Proof. Denote τk = qkτ0. Assume that ‖xk − x∗‖ ≤ τk for some k ≥ 0 and
show that then

‖xk+1 − x∗‖ ≤ τk+1.

On the basis of the Taylor formula

F ′∗(xk) [F (xk) − F (x∗)] = F ′∗(xk)F ′(xk)(xk − x∗) + G,

where

‖G‖ ≤
K1K2

2
‖xk − x∗‖

2
. (2.12)

Taking into account that F (x∗) = 0 and the relations (2.5)–(2.12) we have

xk+1 − x∗ = xk − x∗ − εkDk [F ′∗(xk)F (xk) + αk(xk − u0)]

= xk − x∗ − εkDk

{

F ′∗(xk) [F (xk) − F (x∗)]

+αk(xk − x∗) + αk(x∗ − u0)
}

= xk − x∗ −
[

M−1

k + (εk − 1)M−1

k + εk(Dk − M−1

k )
]

× [Mk(xk − x∗) + G + αk(x∗ − u0)]

= −
[

(εk − 1)(xk − x∗) + εk(DkMk − I)(xk − x∗)

+εkDkG + εkαkDk(x∗ − u0)
]

.

On account of the relations (2.7) and (2.8) we obtain

xk+1 − x∗ = − [εk − 1 + εk(DkMk − I)] (xk − x∗)

−εkDkMkM−1

k G − εkαkDkMkM−1

k F ′∗(xk)F ′(xk)v

−εkαkDkMkM−1

k [F ′∗(x∗)F ′(x∗) − F ′∗(xk)F ′(xk)] v.

Clearly,

M−1

k F ′∗(xk)F ′(xk)v = M−1

k [F ′∗(xk)F ′(xk) + αkI − αkI] v

=
(

I − αkM−1

k

)

v

and due to the relation
∥

∥M−1

k

∥

∥ ≤ 1

αk

we get

∥

∥M−1

k F ′∗(xk)F ′(xk)v
∥

∥ ≤ 2 ‖v‖ .

Making use of the assumptions (2.8) and (2.11) and the inequalities

1 − εk(1 − µk) ≤ ‖v‖ , ‖DkMk‖ = ‖I + DkMk − I‖ ≤ 1 + µk

Math. Model. Anal., 14(2):179–186, 2009.
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we obtain

‖xk+1 − x∗‖ ≤
εkK1K2 (1 + µk)

2αk
‖xk − x∗‖2 + ‖v‖ ‖xk − x∗‖

+2εkαk (1 + µk) ‖v‖ + εk (1 + µk)C0 ‖x
∗ − xk‖ ‖v‖

≤ εk

[

K1K2 (1 + µk)

2αk
τ2
k + 2αk (1 + µk) ‖v‖

]

+ [1 + εk (1 + µk)C0] ‖v‖ τk.

Denoting ak = K1K2 (1 + µk) and bk = 1 + µk we can rewrite αk as

αk =
1

2

[

ak

bk ‖v‖

]1/2

τk.

Since
ak

[ak/bk ‖v‖]
1/2

+
a
1/2

k bk ‖v‖

(bk ‖v‖)
1/2

= 2 (akbk ‖v‖)
1/2

then ‖xk+1 − x∗‖ ≤ qkτk , where

qk = 2εk (K1K2 ‖v‖)
1/2

(1 + µk) + [1 + εk (1 + µk)C0] ‖v‖ .

Obviously, if µk ≤ µ0 < 1 and εk ≤ ε0 ≤ 1, then qk ≤ q, and hence

‖xk+1 − x∗‖ ≤ qτk = τk+1.

Thus, according to the principle of mathematical induction, the statement of
the theorem is proved. ⊓⊔

3 Concluding Remarks

The most widely used neural network activation functions are logistic func-
tion and hyperbolic tangent. The main advantage of using these functions is
that they are always differentiable and it is very easy and fast to calculate
the derivatives of these functions. To get more realistic impression of conver-
gence properties of the methods under discussion their approximate analogs
are studied here. Frequently, the use of finite difference approximations to the
derivatives gives rise to an inexact method. An approximate variant of the
method can also be obtained as a result of a strategy used for solving linear
problems at each iteration step.

Performance of methods of the type (2.5) is equivalent to either solving the
associated linear equations or computing inverses with an error at every itera-
tion step. The strategy to solve corresponding linear problems inexactly can be
used for purpose of economy. A strategy of problem solving that instead of find-
ing the exact solution of a linear equation at every step solves it intentionally
inexactly permits to save the computational work and is adaptive in the sense
that one uses low accuracy numerical solutions of linear equations when the so-
lution of primary problem is not reached yet and improves the accuracy as the
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solution is approached. In many cases iterative methods are more appropriate
and economical for linear problems than direct ones. Besides, iterative methods
are self-correcting, and hence they are not sensitive to computational errors.
But their convergence can be quite slow in the presence of ill-conditioning. In
order to improve the stability and to save thereby laborious solving of linear
auxiliary problems it might be fruitful to do some extra computational effort
and implement preconditioning techniques.

Sometimes discretization serves as a regularizer [24]. For the nonlinear
equation

F (x) = y (3.1)

with the compact operator F, a suitable precedent discretization can be ob-
tained by means of projection methods replacing the equation (3.1) by the
equation QhFPhx = Qhy, where Ph and Qh are ortoprojectors [20]. For solv-
ing (3.1) frequently Galerkin method is used which has a remarkable property:
if the formally written Galerkin approximation converges, then the limit is
necessarily an exact solution [6].
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