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Abstract. A stationary problem with the integral boundary condition arising in the
mathematical modelling of a gyrotron is numerically investigated. The Chebyshev’s
polynomials of the second kind are used as the tool of calculations. The main result
with physical meaning is the possibility to determine the maximal value of electrons
efficiency.
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1 Introduction

Gyrotrons are microwave sources whose operation is based on the stimulated
cyclotron radiation of electrons oscillating in a static magnetic field. The main
application of powerful gyrotrons is electron cyclotron resonance plasma heat-
ing in tokamaks and stellarators and the noninductive current drive in toka-
maks. Extensive literature exists on various aspects of these devices, (see,
[4, 12, 13, 14]). In the previous papers (see, [5, 9, 10, 11]) we numerically inves-
tigated problems arising for a gyrotron operated at the fundamental cyclotron
harmonic. The present work continues these investigations in the case of the
stationary problem.

Competition between the normalized amplitude f of the high frequency
field in the resonator of gyrotron in the single mode case and the dimensionless
complex transverse orbital momentum p of electron can be described by the
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following system of two complex differential equations:















∂p

∂x
+ i

(

∆ + |p|2 − 1
)

p = if(x, t),

∂2f

∂x2
− i

∂f

∂t
+ δf = I < p > .

(1.1)

Here i is imaginary unit, x ∈ [0, L] and t ≥ 0 are the normalized axial and
time coordinates, L is the length of the interaction space, ∆ is the cyclotron
resonance mismatch (real constant), δ(x) describes the frequency mismatch,
I is the dimensionless current, θ0 ∈ [0, 2π] is the flight phase parameter and

< p >= 1
2π

∫ 2π

0
p dθ0 is an averaged value of p.

The system (1.1) is supplemented by the standard initial conditions

p(0, t, θ0) = exp(iθ0), f(x, 0) = f0(x), (1.2)

where f0(x) is the given complex function. The boundary conditions are given
for the field at the entrance and at the exit to the interaction space in the
cavity of gyrotron

f(0, t) = 0,

f(L, t) +
1√
πi

∫ t

0

1√
t − ζ

∂f(L, ζ)

∂x
dζ = 0. (1.3)

The second boundary condition is a well known impedance boundary condi-
tion which is equivalent to nonlocal transparent boundary condition. Such a
Dirichlet-to-Neumann map enables us to reduce the original half space problem
to a problem in a finite domain. Analysis of transparent boundary conditions
for general Schrodinger type equations and their numerical approximations
were considered in many papers, see e.g. [2, 8, 15].

Let us note, that

∫ t

0

1√
t − ζ

∂f(L, ζ)

∂x
dζ

=
∂f(L, t)

∂x

∫ t

0

1√
t − ζ

dζ +

∫ t

0

1√
t − ζ

(∂f(L, ζ)

∂x
− ∂f(L, t)

∂x

)

dζ

= 2
√

t
∂f(L, t)

∂x
−

∫ t

0

1√
t − ζ

(∂(f(L, t) − f(L, ζ))

∂x

)

dζ.

So we get the following boundary condition

1√
πi

(

2
√

t
∂f(L, t)

∂x
−

∫ t

0

1√
t − ζ

(

∂(f(L, t) − f(L, ζ))

∂x

)

dζ

)

+ f(L, t) = 0.

(1.4)
In [6] we have considered boundary conditions

f(0, t) = 0,
∂f(L, t)

∂x
= −iγf(L, t), (1.5)
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where γ is a positive parameter which describes the wave number at resonator
exit.The second of the boundary conditions (1.5) is a simplified version of the
transparent boundary conditions, it describes a perfect absorbation of a simple
wave.

In the case of the boundary condition (1.5) instead (1.3), we note that the
solution of the given problem highly depends on the parameter γ. It was shown
in [6] that the value of η is the increasing function of γ and its maximal value is
obtained for γ = ∞, which is not possible to realize in the real physical models.
So, as it is difficult to obtain separate wave numbers at the resonator exit, it
is more convenient to use the integral boundary condition (1.3).

Using the method of stationarity for the system (1.1) we approximate
the derivative ∂f/∂t by the discrete difference (f (s+1) − f (s))/τ , where s =
0, 1, . . . , S is the parameter of iterations, f (0) = f0(x) is the given complex
function. We write simply f (s+1) = f , p(s+1) = p, p(0) = exp(iθ0) when no
confusion can arise. The number of iterations S is determined from the condi-
tion |f (s+1)(L)− f (s)(L)| ≤ ε, where ε > 0 is a desirable precision. In this case
for every iteration s we can rewrite the system of equations (1.1) in following
form















∂p

∂x
+ i

(

∆ + |p(s)|2 − 1
)

p = if (s)

∂2f

∂x2
− i

τ
(f − f (s)) + δf = I(ω < p > +(1 − ω) < p(s) >),

where ω is the under relaxation parameter, i.e. ω < 1.
The numerical simulation of problem (1.1)–(1.3) allows us to calculate the

optimal values of parameters ∆, I and δ in order to attain the maximal value
of the electron efficiency coefficient

η = 1 − 1

2π

∫ 2π

0

|p(L, t, θ0)|2 dθ0, (1.6)

which features the extraction of the electron orbital momentum from the beam.
Section 2 describes the finite-difference method with nonuniform grid for

this numerical simulation based on the nonsaturated approximation taking into
account the endpoints of the interval [0, L], furthermore, Section 3 demonstrates
some of obtained numerical results. The main conclusions are summarised in
the Section 4.

2 The Numerical Method

We consider the finite-difference method based on the nonsaturated approxima-
tion. The concept of nonsaturatedness for approximations of functions at first
was defined in [3]. There was shown that error of approximation decreases if
smoothness of the function increases. In [7] is proved that nonsaturated approx-
imations of functions is possible to realize by means of Lagrange interpolations,
which are the simplest global approximations of functions and simultaneously
give simple expressions also for approximation of the derivatives. Particularly, if
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derivative f (m) satisfies Holder condition in the interval [−1, 1] with γ ∈ (0, 1),
then the remainder RN−1(t) = f(t) − PN−1(t) of Lagrange interpolation with
the roots of Chebyshev polynomials of second kind

UN−1(t) =
sin(Nα)

sin(α)
, α = arccos t,

yields the asymptotic estimations

‖RN−1‖ = max
|t|≤1

|RN−1(t)| = O(N−m−γ lnN),

where PN−1(t) are Lagrange interpolation polynomials. For analytic functions
estimations are ‖RN−1‖ = O(exp(−νN)), where ν is the fixed constant.

For given boundary conditions using the roots of polynomials UN−1(t), t ∈
[−1, 1] we have the grid points

tk = − cos
(k − 1)π

N
, k = 1, . . . , N + 1

and it is possible to take as tk the roots of polynomials of N + 1 -order

ωN+1(t) =
N+1
∏

k=1

(t − tk) = 21−NUN−1(t)(t
2 − 1).

It is also easy to approximate the derivatives of the function f . The N + 1-
order Lagrange interpolation polynomials are in the following form PN+1(t) =
∑N+1

k=1 lk(t)f(tk), where

lk(t) =
ωN+1(t)

(t − tk)ω′
N+1(tk)

are the elementary Lagrange multipliers. The elements of N+1-order interpola-
tion matrix of the derivatives D̃ (P ′ = D̃P , where P, P ′ are the vector-columns
of the corresponding values of PN+1(tk), P ′

N+1(tk), k = 1, . . . , N + 1) have fol-
lowing expressions

dj,k =
ω′

N+1(tj)

(tj − tk)ω′
N+1(tk)

, j 6= k, dk,k =
ω′′

N+1(tk)

2ω′
N+1(tk)

.

For calculations we use following representations

dj,k =
(−1)j+kcj

ck(tj − tk)
, j 6= k, dk,k = −

N+1
∑

j 6=k

dj,k,

where c1 = cN+1 = 2, otherwise cj = 1.
Using the transformation x = 0.5L(1 + t), t ∈ [−1, 1] we obtain that the

grid points of nonuniform grid are

xk = 0.5L

(

1 − cos
π(k − 1)

N

)

, (2.1)

and the matrix of first order derivative in the interval [0, L] is D = 2
L
D̃.
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Remark 1. We note that in [16] the optimal approximation on the uniform grid
is used for numerical solution of similar problems, but the approach of this
paper is more useful in the case of our investigation.

Using the grid (2.1) we approximate the derivatives ∂/∂x, ∂2/∂x2 in the
equations (1.1) with matrixes D, D2 as

f ′
h = Dfh, f ′′

h = D2fh, p′h = Dpu,

where fh = (f1, f2, . . . , fN+1), f ′
h = (f ′

1, f
′
2, . . . , f

′
N+1) are the vector-columns

of the corresponding values of the grid functions,

fj ≈ f(xj), pj ≈ p(xj , θ0), f ′
j ≈ ∂f(xj)

∂x
, f ′′

j ≈ ∂2f(xj)

∂x2
.

From the Lagrange interpolation follows, that elements dj,k of matrix D are
given in the form

dj,k =
dlk(xj)

dx
, j, k = 1, 2, . . . , N + 1,

where lk(x) are the elementary Lagrange multipliers.
The approximation of the first equation (1.1) on the grid xj , j = 2, . . . , N+1

is defined in following form:

N+1
∑

k=1

dj,kpk + i(∆ + |p(s)
j |2 − 1)pj = ifj. (2.2)

Using the initial condition (1.2) we rewrite equation (2.2) in the matrix form

B(1)ph = g
(1)
h , (2.3)

where B(1) = D(1) + i(∆ − 1)E + iP (p) is the matrix of order N , g
(1)
h is the

vector-column of order N with elements

g
(1)
j = ifj − dj,1 exp(iθ0), j = 2, 3, . . . , N + 1,

E is the unit matrix of order N . Matrix P (p) is a diagonal matrix with non-

linear elements |p(s)
j |2.

Similarly, the approximation of the second equation (1.1) in the inner grid
points xj , j = 2, 3, . . . , N has the form

N+1
∑

k=1

d̃j,kfk − ifj/τ + δjfj = Ipav
j − if

(s)
j /τ, (2.4)

where d̃j,k are elements of matrix D2, δj and pav
j are the values of grid functions

(vectors-columns) δ and pav =< p >.
Let t = sτ . Using the mean rectangle formula by calculating the boundary

integral (1.4) we get

fs +
1√
πi

(

2F s
√

nτ −
s−1
∑

j=0

F s − F j

√
s − j

√
τ
)

= 0,
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where fs = f(ts, L), F s =
∂f(ts, L)

∂x
, F j =

∂f(tj , L)

∂x
, tj = jτ . Then

√
πi√
τ

fs
N+1 +

(

2
√

s −
s−1
∑

j=0

1√
s − j

)

F s
N+1 +

s−1
∑

j=0

F j
N+1√
s − j

= 0,

where fs
N+1 = f(ts, xN+1), F s

N+1 =
∂f(ts, xN+1)

∂x
, F j

N+1 =
∂f(tj , xN+1)

∂x
and

xN+1 = L.
Let us denote by

S1s = 2
√

s −
s−1
∑

j=0

1√
s − j

, S2s =

s−1
∑

j=0

F j
N+1√
s − j

.

Then

F s
N+1 = dN+1,N+1f

s
N+1 +

N
∑

k=2

dN+1,kfs
k

yields

fs
N+1 = − 1

S1sdN+1,N+1 +
√

πi/τ

(

S2s + S1s

N
∑

k=2

dN+1,kfs
k

)

= − 1

dN+1,N+1 + S−1
1s

√

πi/τ

N
∑

k=2

dN+1,kfs
k − S2s

S1sdN+1,N+1 +
√

πi/τ
. (2.5)

From (2.4) it follows that

N+1
∑

k=1

d̃j,kfs
k =

N
∑

k=2

d̃j,kfs
k + d̃j,N+1f

s
N+1

=

N
∑

k=2

d̃j,kfs
k − d̃j,N+1

Ss1dN+1,N+1 +
√

πi/τ

(

S2s + S1s

N
∑

k=2

dN+1,kfs
k

)

=
N

∑

k=2

bj,kfs
k − S2s

S1sdN+1,N+1 +
√

πi/τ
d̃j,N+1,

where

bj,k = d̃j,k − dN+1,kd̃j,N+1

dN+1,N+1 + S−1
1s

√

πi/τ
, j = 2, 3, . . . , N.

Let B be the matrix with elements bj,k. We can rewrite (2.4) in the matrix
form

B(2)fh = g
(2)
h , (2.6)

where B(2) = B + D0 is the matrix of order N − 1 (matrix D0 is a diagonal

matrix with elements δj − i/τ), g
(2)
h is the vector-column with components

g
(2)
j = Ipav

j − if∗
j /τ +

S2s

S1sdN+1,N+1 +
√

πi/τ
d̃j,N+1, j = 2, 3, . . . , N.
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We use discrete values of the parameter θ0 in the form θm = m 2π
M

, m =
1, 2, . . . , M where M is the number of angular grid points. Let us denote
pj(θm) = p(xj , θm). Using the trapezoid rule of the quadrature formula for

calculation of the integral g
(2)
j in (2.6), we obtain the following expression

pav
j =

1

M

M
∑

m=1

pj(θm), j = 1, 2, . . . , N. (2.7)

The approximation error is defined as rj =
π2

3M3

d2pj(ξ)

dθ2
0

, where ξ ∈ (0, 2π).

Similarly, from (1.6) we can calculate

η = 1 − 1

M

M
∑

m=1

∣

∣pN+1(θm)
∣

∣

2
.

Therefore from (2.3) for a fixed value θm we can calculate the vector-column
ph(θm), m = 1, 2, . . . , M and obtain a rectangular matrix W with N−columns
and M−rows (in the m-row is the transposed vector ph(θm)).

From (2.6) it follows that fh = (B(2))−1g
(2)
h , where the vector g

(2)
h contains

components of (2.7). Adding to this vector component fN+1 defined by (2.5)
we obtain the vector fh of the order N for calculation of vector ph(θm). Using

(2.3) we write it in the following form ph(θm) = (B(1))−1g
(1)
h .

In the iteration process for the matrix P (p) the diagonal elements are cal-

culated by using |p(s)
j |2 from previous iterations and the new value is obtained

by using the expression

p
(s+1)
h (θm) = ωph(θm) + (1 − ω)p

(s)
h (θm).

3 Numerical Results

In [1] the maximum efficiency η = 0.75 is obtained for ∆ = 0.6, δ = 0, I = 0.01
in the case of the so-called reflectionless boundary conditions in the integral
form. In the present work we consider the boundary condition (1.3) for ∆ ∈
[0, 0.7] depending on δ = δ(x).

We consider two different initial conditions f0(x) = 0.1 sin
(

πx
L

)

and f0(x) =
0.1 exp(−(x − β)2), where β ∈ [0.7, 11]. The computations are performed by
using ”MATLAB” tool for L = 15, M = 36, N = 40, S ∈ [1000, 5000], ε =
0.001, ω = 0.5, τ ∈ [0.05, 0.1], I ∈ [0.01, 0.1].

For the function δ we investigated three cases: 1) δ = 0, 2) δ = sinh(2x −
L)/ sinh(L), 3) δ = tanh(x − L/2). Using M = 40, N = 50, S = 5000 we
proved, that the value of the electron efficiency η is accurate in average up to
4th decimal sign.

The results of calculations with δ = 0, I = 0.01, τ = 0.05, S = 2000 for the
analysis of the efficiency coefficient η and the high frequency field amplitude
at the resonator (|f(L)| for different values of ∆ are summarized in Tab. 1. If
∆ = 0.6 and S = 4000, then η = 0.7474, but for S = 5000 we get η = 0.7486.

Math. Model. Anal., 14(2):169–178, 2009.
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Table 1. The values of η and |f(L)| for δ = 0, I = 0.01.

No. ∆ η |f(L)|

1 0.5 0.4858 0.0959
2 0.6 0.7411 0.1605
3 0.7 0.0281 0.0688

Fig. 1 shows distributions of the averaged value of p and the values p(L)
in the complex plane for M = 360, and the values of the function f(x) (real,
imaginary parts and modulus with respect to x).
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Figure 1. Distributions of functions of p and f for I = 0.01, ∆ = 0.6 δ = 0.

For the varying δ = δ(x), if ∆ = 0.6, I = 0.01, τ = 0.05 we get the following
values of the electron efficiency coefficient η:

1. If δ(x) = sinh(2x − L)/ sinh(L), then η = 0.5748,

2. If δ(x) = tanh(x − L/2), then η = 0.3788, but for I = 0.1 we get η =
0.1870 (δ = 0).

In the case f0(x) = 0.1 exp(−(x − β)2) for different values of β we obtain
the following results, presented in Tab. 2.

1. If δ(x) = tanh(x − L/2), then η = 0.4429 and |f(L)| = 0.0623.

2. If δ(x) = sinh(2x − L)′ sinh(L), then η = 0.5141 and |f(L)| = 0.0785.
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Table 2. The values of η and |f(L)| for ∆ = 0.6, δ = 0, I = 0.01.

No. β η |f(L)|

1 0.75 0.4671 0.0584
2 5.5 0.5998 0.1774
3 8.5 0.7312 0.1641
4 9.0 0.7339 0.1632
5 10.5 0.7449 0.1591
6 11.0 0.7275 0.1568

The optimal case with f0(x) = 0.1 sin πx
2 was achieved with number of iterations

S = 7000.

4 Conclusions

Numerical experiments show that the electron efficiency coefficient η depends
on the complex valued function of high-frequency field in resonator.

For fixed values of this function it is possible to obtain different values
of the electron efficiency coefficient η, where the maximal value depends on
parameters of gyrotron. This maximum is increasing for high frequency field
in resonator and depends on the frequency mismatch δ. The maximal value
η = 0.7486 is obtained for I = 0.01, δ = 0, ∆ = 0.6 and corresponds to the
results of [1].

On the other hand these results differs from the results which were obtained
for local boundary conditions with parameter γ [6]. As far as the electron
efficiency coefficient η strongly depends on the parameter γ in the boundary
condition (1.3), the admissible values of this parameter must be obtained using
physical considerations. These values, of course, depend on the geometry of
gyrotron and other parameters.
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