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Abstract. Two problems of approximation in Hilbert spaces are considered with
one additional equality condition: the smoothing problem with a weight and the
smoothing problem with an obstacle. This condition is a generalization of the equality,
which appears in the problem of approximation of a histogram in a natural way. We
characterize the solutions of these smoothing problems and investigate the connection
between them.
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1 Formulation of Problem of Smoothing Histopolation

The idea to use splines for solving the problem of approximation of a histogram
firstly appeared in the paper of Boneva, Kendall and Stefanov ([2]). Schoenberg
investigated the solution of such problems in context of the theory of splines
([10]). During the last three decades the problem of approximation of the
density function of a random value by splines has been investigated in various
statements and under different restrictions on its solutions.

The problem of nonparametric estimation of a density function and its for-
mulation is still being topical, this fact is confirmed for example by papers
[1, 3, 6, 7, 12, 13]. Firstly for the solution of this problem interpolation splines
were used, later smoothing splines were considered to be more useful. In the
present paper smoothing splines are investigated under one additional condi-
tion, which we consider to be very important, as it corresponds to the property
of density histogram (the area under it is equal to 1). We consider the problem
of approximation of a density histogram in two different formulations: as a
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problem of smoothing histopolation with a weight parameter and as a problem
of smoothing histopolation with an obstacle, we obtain the connection between
their solutions. This connection allows us to reduce the problem with an ob-
stacle to the problem with a weight parameter, and using the algorithm for
solving the easier problem to find the solution of a problem with an obstacle.
The method of reducing one problem to another has been effectively used for
smoothing problems without additional restrictions on their solutions (see, e.g.
[8]).

Let △n = {a = t0 < t1 < . . . < tn = b} be a mesh on the interval [a, b],
and let F = {f1, . . . , fn} be a corresponding density histogram, i.e. fi is the
frequency for the interval [ti−1, ti], where i = 1, . . . , n. The mesh steps are
denoted by hi = ti − ti−1, i = 1, . . . , n.

In many practical applications it is of interest to have a function g that
satisfies the area matching histopolation conditions

∫ ti

ti−1

g(t) dt = fihi, i = 1, . . . , n.

(see, for example, [4, 5]).
The problem of histopolation is solvable, but not uniquely. We suggest to

use the following smoothing functional

∫ b

a

(g(q)(t))2 dt

as an objective function. Then we get a histopolation problem in the Sobolev
space W

q
2[a, b]:

Problem 10 (histopolation problem) Find g such, that

∫ b

a

(g(q)(t))2 dt −→ min
g ∈ W

q
2[a, b],

∫ ti

ti−1

g(t)dt = fihi, i = 1, . . . , n.

Taking into account that the information on frequencies fi, i = 1, . . . , n

is obtained in practice as a result of measuring, experiments or preliminary
calculations, it may be inexact. Thus we consider a more general case of the
problem of approximation of histogram. Depending on the known information
about the frequencies, the problem of smoothing histopolation can be consid-
ered with different types of restriction on the solution. Let us consider two
problems of smoothing histopolation for given parameters ω > 0, delta > 0.

Problem 20 (the smoothing histopolation with a weight parameter ω). Find
g such, that

∫ b

a

(g(q)(t))2 dt +
1

ω

n
∑

i=1

(

∫ ti

ti−1

g(t) dt − fihi

)2

−→ min
g ∈ W

q
2[a, b],

∫ b

a
g(t) dt = 1.
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Problem 30 (the smoothing histopolation with an obstacle) Find g such,
that

∫ b

a

(g(q)(t))2 dt −→ min
g ∈ W

q
2[a, b],

n
∑

i=1

(
∫ ti

ti−1

g(t) dt − fihi)
2 ≤ δ,

∫ b

a
g(t) dt = 1.

In the case of exact information the last condition
b
∫

a

g(t) dt = 1, describing

the conservation property of density histogram, holds unconditionally. But in
the case of inexact information this requirement is essential.

We investigate these two problems, prove the existence of their solutions
and show the connection between them in a more general case.

2 A Generalization of the Problem of Smoothing Histo-

polation

Let X , Y be Hilbert spaces and assume that a linear operator T : X → Y

and linear functionals ki : X → IR, i = 1, . . . , n, are continuous, T (X) = Y ,
dimKerT < +∞. Here and in the sequel KerT is the kernel of the operator T .
We define the operator A = (k1, . . . , kn) and suppose that Ker T ∩ Ker A={0}
and A(X) = IRn.

For a given vector r = (r1, . . . , rn) and parameters δ, ω > 0 we consider the
following minimization problems:

Problem 1 (the interpolation problem)

min
{

‖Tg‖2 : kig = ri, i = 1, . . . , n, g ∈ X
}

,

Problem 2 (the smoothing problem with a weight)

min
{

‖Tg‖2 +
1

ω
‖Ag − r‖2 :

n
∑

i=1

kig =
n

∑

i=1

ri, g ∈ X
}

,

Problem 3 (the smoothing problem with an obstacle)

min
{

‖Tg‖ :
n

∑

i=1

(kig − ri)
2 ≤ δ,

n
∑

i=1

kig =
n

∑

i=1

ri, g ∈ X
}

.

It is easy to see that Problem 10, Problem 20 and Problem 30 are a particular
cases of Problem 1, Problem 2 and Problem 3 respectively, if

1. X = W
q
2[a, b], Y = L2[a, b],

2. the operator T : W
q
2[a, b] → L2[a, b] is the operator of differentiation

Tg = g(q),
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3. kig =
∫ ti

ti−1

g(t) dt, i = 1, . . . , n, A = (k1, . . . , kn),

4. r = (r1, . . . , rn),
n
∑

i=1

ri = 1, where ri = fihi, i = 1, . . . , n.

It is known that the solution of the interpolating problem is a spline from the
space

S(T, A) = {s ∈ X : < Ts, Tx >= 0 for all x ∈ KerA},

corresponding to the operators T and A. This spline is called an interpolating

spline for a vector r.

Under our assumptions the following theorem of existence and uniqueness
of an interpolating spline is true.

Theorem 1. ([3], [8]). For each vector r ∈ IRn there exists an unique interpo-

lating spline.

Concerning splines from the space S(T, A) the following result is known.

Theorem 2. ([3], [8]). An element s ∈ X is a spline of S(T, A) if and only if

there exists a vector λ ∈ IRn such that T ∗Ts = A∗
λ.

It allows us to state that an element s ∈ X belongs to S(T, A) if and only if
there exist vectors a ∈ IRq and λ ∈ IRn such that s can be written as

s =

q
∑

j=1

ajpj +
n

∑

i=1

λiui,

n
∑

i=1

λikipj = 0, j = 1, . . . , q,

where

q = dimKerT, p1, . . . , pq is a basis of KerT, (2.1)

ui = (T ∗T )−1A∗
ei, i = 1, . . . , n, e1, . . . , en is a basis of IRn. (2.2)

It is known (e.g. [3], [8]) that the solutions of smoothing problems 2 and 3 with-

out the additional condition
n
∑

i=1

kig =
n
∑

i=1

ri belong to space S(T, A) also. Such

splines are called smoothing splines. The main aim of this paper is to investigate

the smoothing problems with the additional restriction
n
∑

i=1

kig =
n
∑

i=1

ri.

3 Analysis of the Smoothing Problem with a Weight

Let us denote

Zr = {z ∈ IRn :

n
∑

i=1

zi =

n
∑

i=1

ri}, Xr = A−1(Zr),

Zr,δ = {z ∈ IRn :

n
∑

i=1

(zi − ri)
2 ≤ δ}, Xr,δ = A−1(Zr,δ).
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Theorem 3. There exists a unique solution of Problem 2. An element s ∈ Xr

is a solution of this problem if and only if there is a number γ ∈ IR such that

T ∗Ts = A∗(γe +
1

ω
(r − As)), (3.1)

where e = (1, . . . , 1) ∈ IRn.

Proof. Taking the pair of operators T and A we introduce the operator L

Lg = (Tg, Ag), g ∈ X.

Its values are in the space V = Y × IRn and the scalar product is defined as

< (y1, z1), (y2, z2) >V =< y1, y2 >Y +
1

ω
< z

1, z2 >IRn .

We introduce the vector w = (0, r) ∈ V and rewrite Problem 2 in the form

‖‖Lg − w‖‖V −→ min
g∈Xr

.

By using the interpolating spline sr for the vector r we rewrite

Xr = X0 + sr,

and therefore
L(Xr) = L(X0) + wr,

where wr = L(sr) = (Tsr, r). To prove the existence of a unique solution of
Problem 2 we show that L(X0) is closed. It is clear that Z0 is a closed subspace
of IRn, which implies that X0 = A−1(Z0) is closed too. The closedness of L(X0)
for a closed subspace X0 ⊂ X is proved in [5], p.13.

Now an element s ∈ Xr is an element with the minimal norm ‖‖Ls−w‖‖V

(i.e. a solution of Problem 2) if and only if

Ls − w ⊥ Lg for any g ∈ X0.

This means that

L∗(Ls − w) ⊥ X0 or L∗(Ls − w) ⊥ KerB,

where

Bg =
n

∑

i=1

kig for any g ∈ X.

Since (KerB)⊥ = Im(B∗) there exists a number γ ∈ IR such that

L∗(Ls − w) = B∗γ.

The conjugate operator L∗ can be written as

L∗v = T ∗y +
1

ω
A∗

z, v = (y, z) ∈ V.

Math. Model. Anal., 14(2):159–168, 2009.
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Taking into account also that B∗γ = γA∗
e, we obtain the equivalent form of

the equality (3.1)

T ∗Ts +
1

ω
A∗(As − r) = γA∗

e,

which proves the theorem. ⊓⊔

Corollary 1. The unique solution of Problem 2 is a spline s ∈ S(T, A), which
satisfies the conditions

T ∗Ts = A∗
λ,

ω
(

λ −
1

n
< λ, e > e

)

+ As = r. (3.2)

Proof. According to Theorem 3 there exists the vector

λ = γe +
1

ω
(r − As),

such that T ∗Ts = A∗
λ. This means that the solution s belongs to the space

S(T, A) (see Theorem 2). Now taking into account the condition

< As, e >=< r, e >,

we get the equality
< λ, e >= γn.

We put this γ into λ = γe + 1
ω
(r − As), and obtain (3.2). ⊓⊔

4 Equivalence of Two Smoothing Problems

We denote
ϕ(ω) = ‖As(ω) − r‖2,

where s(ω) is the solution of Problem 2.

Theorem 4. If the parameters ω and δ are connected by the equation

ϕ(ω) = δ,

then the spline s(ω), i.e. the solution of Problem 2, gives the unique solution

of Problem 3.

Proof. Let σ be a solution of Problem 3. Note that the spline s(ω) satisfies
also the condition s(ω) ∈ Xr,δ ∩ Xr. Therefore

‖Tσ‖ ≤ ‖Ts(ω)‖.

Let us compare the values

‖Tσ‖2 +
1

ω
‖Aσ − r‖2 ≤ ‖Ts(ω)‖2 +

1

ω
δ = ‖Ts(ω)‖2 +

1

ω
‖As(ω) − r‖2.
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This means that σ gives a solution of Problem 2 also. Taking into account the
uniqueness of the solution of Problem 2, we obtain that s(ω) = σ. ⊓⊔

Let us suppose KerT 6⊂ X0 and denote

δ∗ = inf{‖Ap− r‖2 : p ∈ KerT ∩ Xr}.

This value δ∗ will be called the critical value of the smoothing parameter δ. In
the case δ ≥ δ∗ any p ∈ KerT ∩ Xr is the solution of Problem 2.

Now consider the equation ϕ(ω) = δ in the case 0 < δ < δ∗.

Theorem 5. The function ϕ is differentiable, strictly increasing on the interval

(0, +∞) and

lim
ω→+0

ϕ(ω) = 0, lim
ω→+∞

ϕ(ω) ≥ δ∗.

Proof. According to (2.1), (2.2) the spline s(ω) can be written as

s(ω) =

q
∑

j=1

aj(ω)pj +

n
∑

i=1

λi(ω)ui,

n
∑

i=1

λi(ω) kipj = 0, j = 1, . . . , q.

Its coefficients depend on ω. The coefficients a(ω), λ(ω) of the spline s(ω) are
differentiable as the solution of the following system of the algebraic equations















ω(λi(ω) − 1
n

n
∑

l=1

λl(ω)) + kis(ω) = ri, i = 1, . . . , n,

n
∑

i=1

λi(ω) kipj = 0, j = 1, . . . , q.
(4.1)

If the coefficients are differentiable with respect to ω, then the function ϕ is
continuously differentiable with respect to ω also. It is easy to see that

ϕ′(ω) = 2 < As′(ω), As(ω) − r > .

By differentiating we obtain that s′(ω) is a spline of S(T, A) with the coef-
ficients a

′(ω), λ′(ω):

s′(ω) =

q
∑

j=1

a′
j(ω)pj +

n
∑

i=1

λ′
i(ω)ui,

n
∑

i=1

λ′
i(ω) kipj = 0, j = 1, . . . , q.

It means that
T ∗Ts′(ω) = A∗

λ
′(ω).

Thus
‖Ts′(ω)‖2 =< As′(ω), λ′(ω) > .

Math. Model. Anal., 14(2):159–168, 2009.
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In order to obtain λ
′(ω), let us differentiate the system (4.1)

λ(ω) − γ(ω)e + ω(λ′(ω) − γ′(ω)e) + As′(ω) = 0,

where γ(ω) = 1
n

n
∑

i=1

λi(ω). Therefore

λ(ω) − γ(ω)e = −ω(λ′(ω) − γ′(ω)e) − As′(ω).

By the equality

λ(ω) − γ(ω)e =
1

ω
(r − As(ω))

we get

As(ω) − r = ω2(λ′(ω) − γ′(ω)e) + ωAs′(ω).

Therefore

ϕ′(ω) = 2ω2 < As′(ω), λ′(ω) > −2ω2 < As′(ω), γ′(ω)e > +2ω‖As′(ω)‖2.

Now taking into account that

< As′(ω), γ′(ω)e >= γ′(ω)(< As(ω), e >)′ = γ′(ω)(< r, e >)′ = 0,

we obtain

ϕ′(ω) = 2ω2‖Ts′(ω)‖2 + 2ω‖As′(ω)‖2.

It means that ϕ′(ω) > 0 for positive ω, and hence the function ϕ is strictly
increasing on the interval (0, +∞).

We denote the interpolating spline for the vector r by sr. From

‖Ts(ω)‖2 +
1

ω
‖As(ω) − r‖2 ≤ ‖Tsr‖

2 +
1

ω
‖Asr − r‖2 = ‖Tsr‖

2

it follows that 1
ω
‖As(ω) − r‖2 is bounded and lim

ω→+0
As(ω) = r. Therefore we

get

lim
ω→+0

ϕ(ω) = 0.

To prove the inequality lim
ω→+∞

ϕ(ω) ≥ δ∗ it is enough to consider the case,

when the function ϕ(ω) is bounded. If the strictly increasing function function
ϕ(ω) is unbounded, then this inequality holds automatically.

In case of bounded function ϕ(ω), the functions kis(ω), i = 1, . . . , n, are
limited and if ω → +∞ then from the first equation of the system (4.1) we get

lim
ω→+∞

(λi(ω)−
1

n

n
∑

j=1

λj(ω)) = 0, or lim
ω→+∞

(λi(ω)−γ(ω)) = 0, i = 1, . . . , n.

Therefore we can write

λi(ω) = γ(ω) + βi(ω), i = 1, . . . , n,
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where lim
ω→+∞

βi(ω) = 0. So from the second equation of (4.1) we have

lim
ω→+∞

n
∑

i=1

(γ(ω) + βi(ω)) kipj = 0, j = 1, . . . , q.

The conditions lim
ω→+∞

βi(ω) = 0, i = 1, . . . , n imply

lim
ω→+∞

γ(ω)

n
∑

i=1

kipj = 0, j = 1, . . . , q.

Taking into account that KerT 6⊂ X0 we get lim
ω→+∞

γ(ω) = 0. It means that

for all coefficients λi(ω), i = 1, . . . , n,

lim
ω→+∞

λi(ω) = 0. (4.2)

To prove the inequality
lim

ω→+∞
ϕ(ω) ≥ δ∗,

we will show that there exists such a sequence of natural numbers (ωm)m∈IN

that
lim

m→+∞
ωm = +∞ and lim

m→+∞
a(ωm) ∈ IRq. (4.3)

Let us denote a
∗ = lim

m→+∞
a(ωm) and consider p∗ =

q
∑

j=1

a∗
jpj . It is easy to see

that p∗ ∈ Xr because of

n
∑

i=1

ki

q
∑

j=1

a∗
jpj = lim

m→+∞

n
∑

i=1

ki

q
∑

j=1

aj(ωm)pj

= lim
m→+∞

(
n

∑

i=1

kis(ωm) −
n

∑

i=1

ki

n
∑

j=1

λi(ωm)uj) =
n

∑

i=1

ri.

Therefore
lim

m→+∞
ϕ(ωm) = ‖Ap∗ − r‖2 ≥ δ∗.

To prove the existence of sequence (4.3) we will show that sequence (a(m))m∈IN

is bounded (in this case it has a convergent subsequence). Taking into account
that kis(m), i = 1, . . . , n are bounded, we obtain that

ki

(

q
∑

j=1

aj(m)pj

)

=

q
∑

j=1

aj(m)kipj , i = 1, . . . , n (4.4)

are bounded too. By using the matrix V = (kipj)i=1,...,n, j=1,...,q we rewrite
the vector with the coordinates (4.4) as V a(m). The boundedness of V a(m)
implies the boundedness of V T V a(m). To prove the boundedness of the vector
a(m) it is enough to note that the matrix V T V is invertible as Gram’s matrix,
which corresponds to the linearly independent vectors Apj , j = 1, . . . , q. These
vectors are linearly independent because of Ker T ∩ Ker A = {0}. ⊓⊔

Math. Model. Anal., 14(2):159–168, 2009.
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Corollary 2. For δ ∈ (0, δ∗) the connection equation ϕ(ω) = δ has a unique
solution.

Corollary 3. For any values δ ∈ (0, +∞) Problem 3 has the solution and this
solution is the spline from the space S(T, A).
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