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Abstract. We deal with the numerical scheme for the Liouville Master Equation
(LME) of a kind of Piecewise Deterministic Processes (PDP) with memory, analysed
in [2]. The LME is a linear system of hyperbolic PDEs, written in non-conservative
form, with non-local boundary conditions. The solutions of that equation are time
dependent marginal distribution functions whose sum satisfies the total probabil-
ity conservation law. In [2] the convergence of the numerical scheme, based on the
Courant-Isaacson-Rees jointly with a direct quadrature, has been proved under a
Courant-Friedrichs-Lewy like (CFL) condition. Here we show that the numerical
solution is monotonic under a similar CFL condition. Moreover, we evaluate the
conservativity of the total probability for the calculated solution. Finally, an im-
plementation of a parallel algorithm by using the MPI library is described and the
results of some performance tests are presented.
Key words: Monotonicity, upwind, non-local boundary conditions,memory, semi-
Markov,piecewise deterministic.

1 Introduction

Due to the success of stochastic differential equations (SDEs) in modelling
many non-deterministic systems, interest is growing in numerical methods for
solving them. Usually, stochastic equations include the Wiener process, named
also Gaussian white noise, as a source of randomness. This process is a math-
ematical abstraction provoking some changes in the ordinary differentiation
rules, as it was formalized by Itô and Stratonovich [14]. So that, when solving
these stochastic equations in the strict sense (or path-wise), numerical meth-
ods and concepts for ordinary differential equations, have to be changed, for
example, according to the Itô rules (e.g. see [5, 22]). On the other hand, the
solution of SDEs can be expressed in statistical sense, by drawing the proba-
bility density function (PDF) from a Fokker-Planck (and its generalizations)
equation, so that the standard methods for the numerical solution of PDEs can
be applied. By following these remarks, in this paper we deal with piecewise
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deterministic processes (PDPs) [11, 26], as an alternative framework for mod-
elling non-determinism, and continue the analysis of paper [2] on the numerical
solution of a Liouville-Master Equation1 for the distribution function.

Let us give a brief summary of the PDPs under consideration.

Definition 1. We name X(t), X : [t0,∞[→ Ω, Ω := [Ωa, Ωb] ⊂ R, be a
continuous PDP if:

(a) X(t) satisfies the equation:

Ẋ(t) = AS(t)(X), (1.1)

where S(t) is a discrete stochastic process 2 with state space {1, . . . , S}.
Correspondingly, given s = S(t), s ∈ {1, . . . , S}, we say that the dynamics
is in the (deterministic) state s, driven by function As : Ω → R of the
set {A1, . . . , AS} of the known functions (or controllers). We require that
As(x) be Lipschitz continuous, so that, for fixed s, X(t) exists, is unique
and non-explosive solution.

(b) The initial condition for the problem is defined by the Cauchy problem
to Eq. (1.1), i.e. X(t0) = X0, and by the initial state s = s0 of the same
equation.

(c) Each state s is characterized by a probability density function (PDF)
ψs : R

+ → R
+, of transition events with

∫ ∞

0

ψs(t) dt = 1. (1.2)

(d) If the dynamics is in the state j, when a transition event occurs, it
switches instantaneously from the state j (Aj) to a new state i (Ai),
given randomly according to the transition probability matrix (or transi-
tion measure) qij :

0 ≤ qij ≤ 1,

S
∑

i=1

qij = 1 ∀i, j = 1, . . . , S. (1.3)

The position X(t) of the process is not affected when the state switches.

Assumptions (1.1), (1.2) and (1.3) define the three local characteristics of the
PDP. Equation (1.1) can be integrated as an ordinary differential equation until
a transition event happens. At this point of time the integration starts to be
driven by another controller, and so on. We note that the noise is introduced as
a point event, differently from Wiener approach that affects every infinitesimal
time scale inducing the changes of differentiation rules. Indeed, X(t) is the
result of the action of a semi-Markov process [21, 36], defined by (1.2), (1.3)
and the discrete states 1, . . . , S, on the differential equation (1.1).

1 That is the analogue of the Fokker-Plank equation for this kind of processes.
2 In Ref. [2] the notation has no explicit time dependency.
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The mathematical definition of PDP is well-known by researchers working
in probability calculus, operation research (e.g. see [10]) and stochastic hybrid
systems (SHS), but it is not very popular between those working in applied
sciences, nevertheless they use it, at least in a simplified form. This kind of
modelling can be used for phenomenas where a deterministic motion is inter-
rupted by a fast interaction that tends to randomize the motion for a small
amount of time. We refer to models including the ‘dichotomic noise’, ‘random
telegraph process’, ‘binary noise’, and so on, as driving terms for deterministic
equations. As examples of such models, we quote: reacting-diffusing systems
[17], biological dispersal [16], scattering of radiation [19], non-Maxwellian equi-
libriums [1, 4, 6, 12, 35], filtered telegraph signals [20, 32], ecological systems
[24], harmonic oscillators [25].

From its definition we can understand that PDP, i.e. X(t), is mostly locally
deterministic, but the whole trajectory is not: it represents a random path
and the meaningful informations can be represented by statistical functions.
Formally we write:

Fs(x, y, t) := P(X(t) ≤ x, y ≤ Y < y + dy, state = s) (1.4)

as the probability to find at time t the process X(t) being in the state s, in a
position less than x, and being past the time Y ∈ [y, y+dy] for an infinitesimal
time dy, since the last switching event.

The unknown functions Fs(x, y, t), s = 1, . . . , S can be determined by a
system of the Liouville-Master equations [2]:

∂tFs(x, y, t) +As(x) ∂xFs(x, y, t) + ∂yFs(x, y, t) = −λs(y)Fs(x, y, t), (1.5)

subject to the non-local boundary conditions:

Fs(x, 0, t) =

S
∑

j=1

qsj

∫ t

0

Fj(x, y, t)λj(y) dy, (1.6)

for Fs : D → R
+ and (x, y, t) ∈ D := (Ω × [0, T ] × [0, T ]) ⊂ R

3. At the initial
time moment t0 = 0 the Cauchy initial conditions are settled by:

Fs(x, y, 0) = F0,s(x)δ(y), (1.7)

where δ(y) is the δ-Dirac function, and functions F0,s(x) are the known initial
marginal distribution functions of the processes subject to the conditions:

F0,s(Ωa) = 0 ∀s = 1, . . . , S, (1.8)

S
∑

s=1

F0,s(Ωb) = 1. (1.9)

Here, δ(y) has only a symbolic validity, with the aim to point out that the
process starts without memory. Moreover, we assume that functions Fs(x, y, t)
are enough regular, and do not specify exactly the spaces of functions to which
they belong, even if they are defined via (1.4).

Math. Model. Anal., 14(2):139–158, 2009.
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The assumption X(t) ∈ Ω corresponds to

∂xFs(x, y, t)|x=∂Ω = 0, (1.10)

since we are requiring that the probability for the process to be outside the
interval Ω is zero. The main difficulty of this formulation deals with the non-
local boundary condition (1.6), i.e. the value of the unknown function at the
boundary y = 0 depends on the integral of this function over the interior of the
definition domain.

The functions λs(y) ≥ 0 are the hazard rates3 [14, 29] defined as the ratio
between the probability function ψ(τ) and its survival function:

λs(y) :=
ψs(y)

∫ ∞

y
ψs(t) dt

, y ≥ 0.

It relates the statistics of the PDF switching times (1.2) to the probability
per unit of time that a transition event will occur, i.e. a transition rate, after
the process has spent the time y since the last event. Therefore, y plays the
role of memory because it represents the time from the last switch (see [3]
for memoryless processes). The explicit dependence of λ on y makes both the
statistics of the switching events and X(t) be non-Markovian.

Eq. (1.5) represents the amount of probability change under the determi-
nistic motion: if no transition event occurs in a small interval ∆t, then we get
Fs(x, y, t+∆t) ≃ (1−λ(y−∆t)∆t)Fs(x−∆x, y−∆t, t), with ∆x ≈ As(x)∆t.
Eq. (1.6) evaluates the amount of process incoming into a new state just after
a switching event, that is at y = 0, as a sum of the time spent in the previous
states, weighted by the stochastic transition matrix {qij}.

The system of Eq. (1.5) consists of non-conservative hyperbolic PDEs,
nevertheless, the solutions are subject to the total probability conservation
law. We first define the distribution function regardless the memory state y as:

Fs(x, t) :=

∫ t

0

Fs(x, y, t) dy, (1.11)

then the following total probability (norm) conservations are valid for t ∈ R
+:

lim
x→Ωb

S
∑

s=1

Fs(x, t) = 1, lim
x→Ωa

S
∑

s=1

Fs(x, t) = 0. (1.12)

We verify these equations by integrating Eq. (1.5) over y, as follows:

∫ t

0

(∂tFs +As(x)∂xFs + ∂yFs) dy = −

∫ t

0

λs(y)Fs dy

that is:

∂tFs − Fs(x, t, t) + As(x)∂xFs + Fs(x, t, t) − Fs(x, 0, t) = −

∫ t

0

λs(y)Fs dy

3 Also named as hazard function, failure rate, force of mortality.
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and inserting Eq. (1.6), we get:

∂tFs(x, t) +As(x)∂xFs(x, t) =

S
∑

j=1

(qsj − δsj)

∫ t

0

λj(y)Fj(x, y, t) dy,

where δsj is the Kronecker symbol. By summing over all states and using the
property of stochastic matrix of Eq. (1.3) we get

S
∑

s=1

(∂tFs(x, t) +As(x)∂xFs(x, t)) = 0.

If we suppose that limx→∂Ω As(x)∂xFs(x, t) = 0 then limx→∂Ω ∂t

∑S

s=1 Fs = 0.
From Eqs. (1.8) and (1.9) we get (1.12).

These conditions make the problem well-posed, and, according to the defi-
nition of Eq. (1.4), the solutions are positive:

Fs(x, y, t) ≥ 0, (1.13)

and monotonic in x:

Fs(x+∆x, y, t) ≥ Fs(x, y, t), for ∆x > 0. (1.14)

In Sect. 3 we will give an explanation of these properties.

In Ref. [2] we have analysed convergence and error bounds of the numerical
solution obtained with a first order difference method composed of the Courant-
Isaacson-Rees scheme for the PDEs and quadrature for the non-local condition.
Here, we investigate the conditions which guarantee that the numerical solution
satisfies monotonicity and conservativity properties, in the sense of Eq. (1.12).
This is a typical task of analysis for numerical methods of hyperbolic systems
of conservation laws [18]

ut + f(u)x = 0.

For example, upwind, Godunov, TVD and WENO are well known schemes that
preserve monotonicity and conservativity [9, 18, 23], although the discretization
of the transport operator is still an open subject of research [34]. We note, that
some research have been performed for non-conservative systems of the form

ut + a(x, t)ux = 0, ut + f(u)ux = 0,

see, e.g. [28], and for coupled systems [7], but our equation has both of these
two characteristics. Moreover, the coupling is non-local with respect to the
memory, so it is interesting to see its influence on the features of the numerical
solution.

In the next section we give a review of the numerical scheme defined in [2]. In
Sect. 3 we prove a condition for convergence, similar to Ref. [2], that guarantees
the monotonicity (non-decreasing) property of the numerical solution. The
conservativity of the solution is investigated in Sect. 4. Sect. 5 is devoted
to a brief description of a basic parallel algorithm and its scalability analysis.
Finally, in Sect. 6 we show some performance results of the MPI implementation
of the algorithm for a test problem.

Math. Model. Anal., 14(2):139–158, 2009.
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2 The Numerical Scheme

It is convenient to perform the numerical integration along the characteristic
lines ξ = t − y (see [2]). With this new variable, we define the unknowns
φs(x, y, ξ) = φs(x, y, t− y) := Fs(x, y, t), so that Eq. (1.5) turns into

As(x) ∂xφs(x, y, ξ) + ∂yφs(x, y, ξ) = −λs(y)φs(x, y, ξ), (2.1)

for 0 < ξ < t and 0 < y < t. In the same way Eq. (1.6) becomes

φs(x, 0, t) =

S
∑

l=1

qsl

∫ t

0

φl(x, y, ξ)|ξ=t−yλl(y) dy. (2.2)

The initial condition reads as

φs(x, y, ξ)|ξ=−y = F0,s(x)δ(y). (2.3)

We will assume that similar conditions to Eqs. (1.10), and (1.12) are satis-
fied for φs(x, y, ξ), i.e.:

∂xφs(x, y, ξ)|ξ=t−y = 0, x ∈ ∂Ω, (2.4)

lim
x→Ωb

S
∑

s=1

∫ t

0

φs(x, y, ξ)|ξ=t−y dy = 1, (2.5)

lim
x→Ωa

S
∑

s=1

∫ t

0

φs(x, y, ξ)|ξ=t−y dy = 0, ∀t ∈ [0, T ].

These conditions state that the probability density function of the given pro-
cess vanishes outside the interval [Ωa, Ωb], and the normalizing condition (the
second equation) is satisfied. We restrict the analysis to processes having a
finite support, in order not only to simplify the numerical treatment, but also
to get a non vanishing equilibrium solution on a finite interval, that is useful
for the validation of the numerical scheme.

On the domain D, we introduce a uniform mesh

M := {xk, yj, tn},

{

k = 0, . . . ,K,
j, n = 0, . . . , N, N = T/τ,

with step size h for the grid on x, and τ for y and t, so that we define the
discrete known functions as lAk := Al(xk) and lλj := λl(yj), and the discrete
solution

lFn
kj , n = 0, . . . , N, j ≤ n

as an approximation to Fl(xk, yj , tn) at the mesh points. The change of vari-
ables ξ = t− y corresponds to the discrete mapping on the mesh:

M̄ := (k, j, i)|i=n−j = (k, j, n), (2.6)

where the index i identifies the set of mesh points lying on the characteristics
lines. Therefore we get the following relation between the discrete solutions

Fl(xk, yj, tn) = φl(xk, yj, tn − yj) = φl(xk, yj , ξi) ⇒
lFn

kj = lφn−j
kj = lφi

kj .
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The numerical scheme is based on the discrete version of Eq. (2.1) obtained
with a first order upwind scheme of the operator ∂x [27]:

lφi
k,j+1 = lφi

kj −
lAk

τ

h

(

lφi
k+ν,j −

lφi
k+ν−1,j

)

− τ lλj
lφi

kj , i = 0, . . . , N, (2.7)

where ν = 1 if lAk < 0, ν = 0 if lAk > 0. For the Eq. (2.2), we substitute the
integral with a quadrature scheme:

sφi
k,0 = τ

S
∑

l=1

qsl

i
∑

j=0

w
(i)
j

lφi−j
k j

lλj , i > 0, (2.8)

where w
(i)
j ≥ 0 is a sequence of weights. The boundary condition (1.10) is

included by requiring that lφi
0j = lφi

1j and lφi
K−1,j = lφi

K,j .

The integration proceeds as follows (see [2] for details). Given the initial
condition lφ0

k,0 = φl(xk, 0, 0) = Fl(xk, 0, 0), we calculate all the lφi
kj from j = 1

to N with Eq. (2.7), along the characteristic line i = 0. In general for a given
solution on the boundary lφi

k,0, we can find all lφi
kj starting from j = 1 up to

N − i for a fixed characteristic line i (see curved arrows of Fig. 1).
But the starting values lφi

k,0 for upwind are unknown and have to be
estimated by using the boundary integration (2.8) (see vertical dot-dashed
arrows of Fig. 1). This is a system of equations for the unknowns lφi

k,0.

When all lφi
kj are known, the discrete distribution function can be retrieved

by lFn
k,j = lφi

kj |i=n−j . A quadrature formula for Eq. (1.11) gives us the
memoryless distribution. The convergence of the numerical solution is ensured
by the CFL-like condition studied in [2]:

τ
(maxl ‖Al(x)‖∞

h
+ max

l
‖λl(y)‖∞

)

< 1. (2.9)

3 Monotonicity (Positivity) Analysis

Each function Fs(x, y, t) represents a marginal probability density for y and
distribution for x, this means that it is positive and monotone, as mentioned
in (1.13) and (1.14). The validity of such properties can be shown from the
following Theorem 1, jointly to the convergence theorem of [2], given for the
numerical solution. In fact, by assuming that the analytical solution exists and
is unique, from the cited theorems and for the vanishing limit of the step mesh
size h, we prove that the solution is positive and monotone.

An alternative argument is given directly by the LME. Eq. (1.14) is equiv-
alent to requirement that densities are positive, i.e. ∂xFs(x, y, t) ≥ 0. If we
derive Eq. (1.5) with respect to x, we obtain a totally hyperbolic [13] sys-
tem for densities. This means that the characteristic curves of the system
exist for all points of the domain. Therefore, if the initial condition is non-
negative, the characteristic curves propagate non-negative functions into the
solution domain. Also, the solution on the boundary y = 0, defined by the
partial derivative with respect to x of Eq. (1.6), is positive being the integral
of non-negative functions.

Math. Model. Anal., 14(2):139–158, 2009.
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We wish that the same properties should be valid for the discrete solutions
lFn

k,j or lφi
k,j , otherwise the numerical solution could not be meaningful. It is

known that [18, 23] for hyperbolic partial differential equations, the first order
upwind scheme preserves the solution from oscillations, i.e. the positivity. Here
we show that a similar result holds for the numerical scheme (2.7) – (2.8), i.e.
that there exists a CFL-like condition that ensures the discrete solution are
non-decreasing (monotone) in k (i.e. in x).

Theorem 1. Let lφi
k,j be the solution of (2.7) – (2.8) on the mesh M̄, for the

Cauchy problem lφ0
k,0 with lφ0

k+1,0 ≥ lφ0
k,0 ≥ 0, furthermore let As(x) and

λs(x) be regular enough functions ∀s. If conditions

τ(2 max
l

‖Al(x)‖∞/h+ max
l

‖λl(y)‖∞) < 1, (3.1)

(max
i
w

(i)
0 max

l

lλ0)τ < 1, (3.2)

are satisfied, then lφi
k+1,j ≥ lφi

k,j ≥ 0, ∀i, j ≥ 0, k, l.

Proof. Let α = τ/h and define lpi
k,j := ( lφi

k+1,j − lφi
k,j)/h, by subtracting

Eq. (2.7) evaluated at k and k + 1, we get:

lpi
k,j+1 = (1 − τλj)

lpi
k,j + α(−Ak+1

lpi
k+ν̄,j +Ak

lpi
k+ν−1,j), (3.3)

where ν = 0 if Ak > 0, ν = 1 if Ak < 0, ν̄ = 0 if Ak+1 > 0 and ν̄ = 1 if
Ak+1 < 0. The aim is to find inequalities of the form lpi

k,j+1 ≥ β lpi
k,j with

0 < β < 1. We suppose that lpi
k,j ≥ 0 for all k, then from Eq. (3.3) four cases

have to be considered.
Case (i), Ak+1 and Ak ≥ 0:

lpi
k,j+1 = (1 − τλj)

lpi
k,j + α(Ak

lpi
k−1,j −Ak+1

lpi
k,j).

Then since Ak ≥ 0 we get:

lpi
k,j+1 ≥ (1 − τ(Ak+1/h+ λj))

lpi
k,j .

The condition (3.1) ensures that there exists β ∈]0, 1[ such that: lpi
k,j+1 ≥

β lpi
k,j .
Case (ii), Ak+1 and Ak ≤ 0:

lpi
k,j+1 = (1 − τλj)

lpi
k,j + α(|Ak+1|

lpi
k+1,j − |Ak|

lpi
k,j),

so that
lpi

k,j+1 ≥ (1 − τ(|Ak|/h+ λj))
lpi

k,j

and as above lpi
k,j+1 ≥ β lpi

k,j .
Case (iii), Ak+1 ≤ 0, Ak ≥ 0, ν̄ = 1, ν = 0:

lpi
k,j+1 = (1 − τλj)

lpi
k,j + α(|Ak+1|

lpi
k+1,j +Ak

lpi
k−1,j),

so we get that lpi
k,j+1 ≥ (1 − τ lλj)

lpi
k,j and therefore lpi

k,j+1 ≥ β lpi
k,j , for

β ∈]0, 1[.
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Case (iv), Ak+1 > 0, Ak < 0, ν̄ = 0, ν = 1:

lpi
k,j+1 = (1 − τ((Ak+1 + |Ak|)/h+ λj))

lpi
k,j

and lpi
k,j+1 ≥ β lpi

k,j is valid from (3.1).

We conclude that there exists such a β ∈]0, 1[ that lpi
k,j+1 ≥ β lpi

k,j , so that
lpi

k,0 ≥ 0 implies lpi
k,j ≥ 0, j > 0, that is:

lφi
k+1,0 ≥ lφi

k,0, then lφi
k+1,j ≥ lφi

k,j , for all i ≥ 0, j > 0. (3.4)

Now we show that if

lφi−j
k+1,j ≥ lφi−j

k,j for j > 0, i ≥ j, then lφi
k+1,0 ≥ lφi

k,0. (3.5)

We subtract side by side Eq. (2.8) for k + 1 and k:

spi
k,0 = τ

S
∑

l=1

qsl

i
∑

j=0

w
(i)
j

lpi−j
kj

lλj , for i > 0.

By moving the term with j = 0 to the left hand side, we get

S
∑

l=1

(

δsl − qslw
(i)
0

lλ0τ
)

lpi
k0 = τ

S
∑

l=1

qsl

i
∑

j=1

w
(i)
j

lpi−j
kj

lλj , (3.6)

this is a system of equations for l = 1, · · ·S unknowns lpi
k0, for fixed i and k.

Let us write it as
Qp = b,

where p is lpi
k0. We are searching for a condition on Q, that is a Z-matrix,

such that all components of p would be non-negative. Solutions can be found
by the Jacobi method, i.e. we split Q = D − G so that for the r-th iteration
step:

p
(r+1) = (D−1G)p(r) +D−1b,

where D = diag(Q) and G ≥ 0. The hypothesis (3.2) has two consequences.
First D > 0, so that, b being non-negative, if p

(r) ≥ 0 for some r, all following
p

(r+r̄), r̄ > 0 will be non-negative. Second the matrix Q is strictly diagonal
dominant by column, in fact by summing over s, for the coefficients of (3.6)

we get (1 − τ maxiw
(i)
0 maxl

lλ0) > 0. Therefore the sequence of non-negative
p

(r+r̄) converges to the solution lpi
k0, which exists by hypothesis.

Finally, starting from the Cauchy initial condition lφ0
k,0 ≥ 0, and applying

(3.4) and (3.5) alternately, according to the scheme Fig. 1, the non-decreasing
property for lφi

kj holds for the whole definition domain. ⊓⊔

Remark 1. If in Theorem 1 maxiw
(i)
0 ≤ 1 then (maxiw

(i)
0 maxl

lλ0)τ < 1 and
only the CFL-like condition (3.1) implies monotonicity.

Remark 2. If A′

l(x̄) ≤ 0, where Al(x̄) = 0 for x̄ ∈ Ω and l = 1, . . . S, i.e. there
are no repulsive fixed points, then the case (iv) never happens and the condition
(2.9), rather than (3.1), is enough for ensuring the statement of the theorem.

Math. Model. Anal., 14(2):139–158, 2009.
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4 Conservation Law for the Discrete Scheme

The evolution solution φs(x, y, ξ) is a subject to the total conservation law
stated by (2.5). In terms of discrete solution, it is mimicked by the following
discrete conservation law:

τ
∑

l

i
∑

j=0

v
(i)
j

lφi−j
K,j = τ

∑

l

i+1
∑

j=0

v
(i+1)
j

lφi+1−j
K,j + E(i)

c . (4.1)

Here v
(i)
j and v

(i+1)
j are the weights of the quadrature formulas at time ti and

ti+1 of (2.5), and E
(i)
c is the conservation error committed by the numerical

scheme between two time steps. For conservative numerical scheme E
(i)
c =

0, and the discrete total probability is equal to 1 for all i. For hyperbolic
PDE’s there is a lot of literature [18] on conservative numerical schemes. If we
would have to solve the PDE equation (2.1), then we could apply one of the
well known conservative schemes. But our mathematical model has two non-
standard equations: the non-local boundary condition (2.2) and conservation
equation (2.5). We will see that the proposed numerical scheme does not satisfy
(4.1) exactly, in general, but under certain conditions we get a satisfactory
approximation order of the conservation law. For the sake of simplicity, in
what follows we assume that the same scheme is used for quadrature of (1.6)

and (1.11), i.e. the equalities v
(i)
j = w

(i)
j hold.

Theorem 2. Assume φl(x, y, ξ) is a sufficiently regular solution of (2.1) on

D, under the boundary conditions (2.2), (2.4) and initial condition (2.3), and

λl(y) ∈ C1([0, T ]). Assume that the hypothesis of Thm. 1 are satisfied. Let
lφi

k,j denote the numerical solution of Eqs. (2.7) and (2.8) on the mesh M̄ at

the time moment ti, and assume the same sequence of weights for quadrature

of (1.6) and (1.11):

{

w
(i+1)
0 , w

(i+1)
1 = w

(i)
0 + d1,

w
(i+1)
j = w

(i)
j−1, j ≥ 2.

(4.2)

Then there exist constants Ci, ai > 0, such that the conservation error E
(i)
c of

(4.1) is given by

E(i)
c = τ(1 − w

(i+1)
0 a−1

i − d1)
∑

l

lφi
K,0

+d1τ
2(1 − w

(i+1)
0 a−1

i )
∑

l

lλ0
lφi

K,0 − w
(i+1)
0 (τ2a−1

i Ci + o(τ2)). (4.3)

Proof. The hypothesis of Theorem 1 ensures that functions lφi
k,j own mono-

tonicity and positivity, so that the probabilistic meaning is preserved and the
calculation of the total probability (4.1) is meaningful. The CFL-like condition
(3.1) ensures that the numerical solution approximates the analytical solution,
so the discrete version of (2.4) can be applied.
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We start from the left hand side of (4.1) and obtain an equivalence with the
right hand side. By using the discrete Eq. (2.7) with i→ i− j we write:

i
∑

j=0

w
(i)
j

lφi−j
k,j =

i
∑

j=0

w
(i)
j

lφi−j
k,j+1 + τ

i
∑

j=0

w
(i)
j

lλj
lφi−j

k,j +

i
∑

j=0

w
(i)
j

lAk{...}, (4.4)

where lAk{...} is the convective upwind derivative that vanishes when k = K,
due to the above mentioned boundary condition. The first sum in the r.h.s.
can be rewritten to include the point j = 0, t = ti+1:

i+1
∑

j=1

w
(i)
j−1

lφi+1−j
k,j + d1

lφi
k,1 − d1

lφi
k,1 + w

(i+1)
0

lφi+1
k,0 − w

(i+1)
0

lφi+1
k,0

=

i+1
∑

j=0

w
(i+1)
j

lφi+1−j
k,j − d1

lφi
k,1 − w

(i+1)
0

lφi+1
k,0 ,

here we have used (4.2). From (4.1) and (4.4) we get:

E(i)
c = − d1τ

∑

l

lφi
K,1 − w

(i+1)
0 τ

∑

l

lφi+1
K,0

+ τ
∑

l

lAK

i
∑

j=0

w
(i)
j {...} + τ2

∑

l

i
∑

j=0

w
(i)
j

lλj
lφi−j

K,j . (4.5)

Now we evaluate the first two summations of the r.h.s. at the point k = K.
From (2.7), in the first sum we can use the equality

lφi
K,1 = lφi

K,0 −
lλ0

lφi
K,0τ.

From (2.8) and using relation
∑

l qls = 1, the second sum of (4.5) can be written
as

∑

l

lφi+1
k,0 =τ

∑

l

∑

s

qls

i+1
∑

j=0

w
(i+1)
j

sφi+1−j
kj

sλj

=τ
∑

l

(

w
(i+1)
0

lφi+1
k0

lλ0 +

i+1
∑

j=1

w
(i+1)
j

lφi+1−j
k,j

lλj

)

, i > 0.

That is:

∑

l

lφi+1
k0 (1 − w

(i+1)
0

lλ0τ) = τ
∑

l

i+1
∑

j=1

w
(i+1)
j

lφi+1−j
k,j

lλj .

Since the hypothesis (3.2) of Thm. 1, the terms in parenthesis of the l.h.s. are
positive, so that, by applying the average theorem, there exist ai > 0 such that:

ai

∑

l

lφi+1
K,0 = τ

∑

l

i+1
∑

j=1

w
(i+1)
j

lφi+1−j
K,j

lλj .
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Therefore Eq. (4.5) becomes:

E(i)
c = − d1τ

∑

l

lφi
K0 + d1τ

2
∑

l

lλ0
lφi

K0 + τ2
∑

l

i
∑

j=0

w
(i)
j

lφi−j
k,j

lλj

− τ2w
(i+1)
0 a−1

i

∑

l

i
∑

j=0

w
(i+1)
j+1

lφi−j
K,j+1

lλj+1.

Since λl(y) is continuous and differentiable, the last term can be evaluated
by using equality lλj+1 = lλj + lλ′jτ + o(τ), where lλ′j = λ′l(yj) and o(τ)
means limt→0 o(τ)/τ = 0. Moreover, it follows from from Eq. (2.7) that
lφi−j

K,j+1 = (1− lλjτ)
lφi−j

K,j . After some algebra, by summarizing this result, we
get:

−d1τ
∑

l

lφi
K0 + τ2(1 − w

(i+1)
0 a−1

i )
∑

l

i
∑

j=0

w
(i)
j

lφi−j
K,j

lλj − d1τ
2w

(i+1)
0 a−1

i

×
∑

l

lφi
K,0

lλ0 + d1τ
2
∑

l

lλ0
lφi

K,0 − w
(i+1)
0 τ2a−1

i Ci + w
(i+1)
0 o(τ2),

where Ci = τ
∑

l

∑i
j=0 w

(i)
j

lφi−j
K,j(

lλ′j −
lλ2

j ). By using Eq. (2.8), summed over
the states s, for the double summation, we get the proof. ⊓⊔

Remark 3. For quadrature of (2.8), we adopt the rectangle scheme [2]:

w
(i)
j =

{

0 for j = 0

1 for j > 0
i > 0. (4.6)

This scheme has the first order of approximation for the integration of the
boundary condition (2.2), the same as the upwind approximation, so the overall
numerical scheme has the first approximation order.

We note that for w
(i)
0 = 0 the system of equations (2.8) becomes explicit.

If the term lφi
k,0 is bounded, the error committed by suppressing it from the

quadrature vanishes as τ → 0. We see that in Eq. (4.3) the first term is

equal to zero, because d1 = 1 and w
(i+1)
0 = 0, and it remains only E

(i)
c =

τ2
∑

l
lλ0

lφi
K,0 ≥ 0, this means also that the conservation error has constant

sign that tends to drain the total probability. Further, if lλ0 = λl(0) = 0, then

E
(i)
c = 0, and the scheme becomes conservative, despite of the rough precision

of quadrature.

Remark 4. The conservation error committed after the time step N = T/τ is

the sum of the errors E
(i)
c , for i = 0, . . .N , that is TO(τ). For the discrete

total probability conservation, we have

τ
∑

l

N
∑

j=0

w
(N)
j

lφN−j
K,j = 1 − TO(τ), O(τ) ≥ 0.
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Remark 5. The CFL condition (3.1) jointly with quadrature (4.6) is sufficient
to get a reasonable the first order approximated numerical solution. By the
way, when investigating a long time transient to the equilibrium solution, a
small time step τ can be required to reduce the conservation error. Such a
choice can alter the correctness of the approximation due to round-off errors.

5 The Parallel Algorithm

The parallel algorithm has been implemented as described in Sect. 2 and rep-
resented in Fig. 1. A matrix for iteration is not assembled, such as in [3]: the
numerical solution is calculated step-by-step, according to (2.7) and (2.8). The
main novelty, with respect to numerical solution of PDE’s, is the presence of a
quadrature due to the non local boundary condition (2.8). However, the vari-
able change (2.6) does not affect the possibility to distribute the computational
load between processors.

t

i=0

i=1

i=I

i=I+1

I+1
0

1

2

3

I1

j

Figure 1. Representation of the inte-
gration scheme for the regular mesh on
(t, y) plane. Full curved arrows: upwind
step of (2.7). Dot-dashed vertical ar-
rows: quadrature of (2.8).

Figure 2. Schematic representation of
the splitting of the computational load
into three stripes.

5.1 Domain decomposition and scalability analysis

A basic way consists in splitting the products on the spatial index k for each
temporal step, i.e. we use a domain decomposition with striped partitioning

(see Fig. 2). Due to upwind that involves indexes k− 1 or k+ 1 for computing
the step k, each process associated to a stripe requires communication with the
two neighbouring stripes (see dashed cells of Fig. 2).

In order to analyse the scalability of the partitioning scheme [15] we define
the following terms: p is the number of processors, tw is the time for transferring
bytes between two processors, tc is the unit computation time, M = SKN is
the mesh size, Kloc = K/p is the portion of the mesh that is distributed to
each processor (we assume Kloc to be integer for a sake of load balance). Tp(i)
and Te(i) are correspondingly the parallel and serial execution time needed to

calculate the solution lφi+1
kj at the time step i, and Tp =

∑N

i=0 Tp(i), Te =
∑N

i=0 Te(i) the total times. T0 is the total overhead due to the time spent in
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communications between processors, Sp = Te/Tp is the speed-up and Ep =
Sp/p is the efficiency.

For striping, the amount of communication required by a partition is T0 =
ts + 2twSN , where ts is the start up time, the calculation time for upwind is
tcKlocSi and quadrature tcKlocS

2i, having assumed the same time tc for both
numerical steps. The parallel run time at time i is given by:

Tp(i) = KloctcS(S + 1)i+ ts + 2twSN + C2 log(p),

where the last term results from overhead due to synchronization. The serial
time is

Te(i) = KtcS(S + 1)i.

We are interested in the total parallel computation time

Tp =

N
∑

i=1

Tp(i) = KloctcS(S + 1)
N2

2
+ tsN + 2twSN

2 + C2 log(p)N,

and the total serial time:

Te =

N
∑

i=1

Te(i) = KtcS(S + 1)
N2

2
,

valid for large N . We note that terms C2 log(p)N and tsN can be neglected in
an asymptotic analysis. So we have the speed-up:

Sp ≈
p

1 + 4ptw/Ktc(S + 1)
(5.1)

and the efficiency:

Ep ≈
1

1 + 4ptw/Ktc(S + 1)
. (5.2)

From this equations we see that the efficiency remains constant (isoefficiency)
if the number of processors p scales as the size of the space mesh K.

Here we give a sketch of the algorithm implemented by using the MPI
libraries [30].

// Finite difference method for Liouville-Master Equation

MPI_Init();

IF (Process == 0)

BEGIN

Parameters reading.

NEW phi. // allocates memory for the initial condition

END

// All processes:

MPI_Bcast( common parameters )
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NEW local_phi. // allocates memory for the solution of

the local process

// Breaks matrix phi into local matrixes for all processes

MPI_Scatter(init. cond. phi, local init. cond. loc_phi)

// main time cycle:

WHILE ( n < N )

BEGIN

// Communicate spatial boundaries between submatrixes:

COMM_BOUND( proc,loc_phi[end] -> proc+1,loc_phi[-1] )

COMM_BOUND( proc+1,loc_phi[0] -> proc,loc_phi[end+1] )

IF (Process == 0) // save data on the main process.

BEGIN

SAVE_DATAS

END

FOR s:=1 TO S // states cycle

BEGIN

FOR j:=0 TO jMAX // memory cycle:

BEGIN

FOR k:=0 TO kMAX // spatial cycle:

BEGIN

// Updates loc_phi to new time step

UPWIND(loc_phi)

END

END

END

// Calculates boundary for j=0

BOUNDARY_INTEGRATION(loc_phi)

n=n+1

END

MPI_Finalize();

First, process 0 reads the parameters and prepares the initial condition, then
common parameters are broadcasted to all processes. Each process allocates
memory for the matrix that will contain the solution, an MPI_Scatter dis-
tribute the initial condition to all processes.

Then the main temporal cycle starts. The function COMM_BOUND im-
plements the exchange of the boundary of the matrix, by using a task with
a pair of MPI_Send and MPI_Recv functions. SAVE_DATAS takes care of
saving partial computation on permanent memory. UPWIND and BOUND-
ARY_INTEGRATION, implementing Eqs. (2.7) and (2.8), are executed until
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the end of the integration (see Fig. 3).

Figure 3. Schematic representation of
the computing load of the numerical al-
gorithm.
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Figure 4. Results of the efficiency test
for the McFadden problem. Data are
grouped in five histograms. Each one
represents the efficiency vs. the num-
ber of processes involved in the compu-
tation, for a fixed K.

6 Performance Tests

Tests for the parallel algorithm have been executed on the IBM BCX/5120
Cluster located at CINECA Supercomputing Centre in Italy. BCX is an IBM
BladeCenter LS21 Cluster, made 1280 4-way nodes (blades). Each computing
node contains 2 Opteron dual-core processors, with a clock of 2.4 GHz. All the
nodes are interconnected to each other through a Infiniband network, capable
of a maximum bandwidth of 10 Gbit/s between each pair of nodes. The global
peak performance of BCX is of 26.6 TFlops. The code has been compiled with
the Intel icc compiler, with optimization option -O3, and by including the
OpenMPI-1.2.5 libraries.

As above described, the finite difference scheme (2.7) – (2.8) has been ap-
plied, with quadrature weights (4.6), to solve the problem of filtering of di-
chotomous noise with McFadden [31] interval PDF treated in [2]. The Cauchy
problem for starting the numerical integration has been set according to (1.7):

sF 0
k0 =







0, k < 0,
0.5/(2τ), k = 0,
1/(2τ), k > 0,

sF 0
kj = 0, j > 0

for all s = 1, 2. This choice approximates (1.7) with F0,s(x) = H(x), where
H(x) is the Heaviside function: H(x) = 0 if x < 0, H(x) = 0.5 if x = 0 and
H(x) = 1 if x > 0. Such Cauchy condition for the Liouville-Master Equation,
also named the Riemann problem, corresponds to having placed the process
X(t) at the initial position X0 = 0, to an equiprobable random initial state,
s = 1 or s = 2, and having spent a vanishing time in it (i.e. δ(y) in (1.7)). The
other parameters are:

q11 = q22 = 0, q12 = q21 = 1, γ1 = γ2 = 1, W1 = −W2 = 1.
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Figure 5. Results of the speed-up test
for the McFadden problem. Data are
grouped in five histograms. Each one
represents the speed-up vs. the num-
ber of processes involved in the compu-
tation, for a fixed K.
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Figure 6. Results of the efficiency
test for the McFadden problem with
900 spatial mesh points.

Then the numerical integration proceeds as discussed at the end of Sect. 2
until T .

The CPU time for solving the McFadden problem till T = 3.249 with a fixed
temporal step τ = 0.0015 has been measured. In order to reduce fluctuations in
computation time, caused by other concurrent processes running on the cluster,
each test was repeated eight times, then averaged. We note that averaged
results were affected by 2 ÷ 5% standard deviation error. Moreover, in order
to do tests on an uniform communication network, only one process on a node
was used. Up to four processes could run on a node, causing a mismatch
with the theoretical analysis due to the wider intra-node (and intra-core) than
node-node communication bandwidth, and, due to the concurrency in using
global memory on multi-core nodes (the well-known botle-neck of such type
architeture) efficiency of the parallel can degrade if 2-4 processes are run on
one node [8, 33].

Speed-up, Sp and Efficiency, Ep, have been calculated by different combi-
nations of K and p.

Fig. 4 shows the efficiency versus the number of processors p = {1, 2, 4,
8, 12, 16}, for five groups of spatial mesh size: K = {48, 144, 240, 336, 480}.
The same scheme is used for the representation of the speed-up of Fig. 5. In
Figs. 6, 7 and 8 we show similar tests for K = 900, T = 3.25, τ = 0.001. All
plots follow the expected behaviour of Eqs. (5.1) and (5.2), i.e. the efficiency
decreases when the number of processes increases and the speed-up decrease
is less enhanced for small size problems. Also, the efficiency degrades faster
for small size problems (see Fig. 4 with K = 48). Isoefficiency result test
(τ = 0.0015, T = 3.249) is reported in Fig. 9 as the efficiency versus the
number of processes, when Kloc = K/p is kept fixed. The three lines, related
to Kloc = {9, 12, 15}, confirm that the efficiency improves when K/p increases
according to Eq. (5.2), with a slight decrement for increasing p.
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Figure 7. Results for the speed-up test
for the McFadden problem with 900 spa-
tial mesh points.
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Figure 8. Computation time, in sec-
onds, vs. the number of processes, for the
McFadden problem with 900 spatial mesh
points.
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Figure 9. Efficiency vs. number of processes, when the fixed ratio of K/p equals to 9, 12, 15.

7 Summary and Conclusions

In this paper we have completed the basic analysis, started in [2], on the prop-
erties of the numerical solution of the Liouville Master Equation for a class
piecewise deterministic process. We have found that the CFL-like condition
(3.1) and the sequence of weights (4.6), plus some other conditions, are able to
guarantee the monotonicity and the total conservativity of the solution of the
first order numerical scheme, which is derived by using the Courant-Isaacson-
Rees scheme and a direct quadrature. We note that the system of equations
under consideration is non-standard due to the non-locality of the boundary
condition. By using the proposed numerical scheme we can get one of the
first algorithms for the calculation of the statistical properties of this kind of
stochastic processes, directly from a LME. Moreover, this scheme has given us a
possibility to study the effects on the numerical solution of the well-known dis-
cretization schemes in the case of this not so well-known problem. Future work
will be done to get high order numerical approximations, better conservation
discrete properties, and extension to higher dimensional space problems. Fi-
nally, we have shown some tests on a parallel implementation of the associated
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numerical algorithm.
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