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Abstract. We consider linear ill-posed problems in Hilbert spaces with noisy right
hand side and given noise level. For approximation of the solution the Tikhonov
method or the iterated variant of this method may be used. In self-adjoint problems
the Lavrentiev method or its iterated variant are used. For a posteriori choice of the
regularization parameter often quasioptimal rules are used which require computing
of additionally iterated approximations. In this paper we propose for parameter
choice alternative numerical schemes, using instead of additional iterations linear
combinations of approximations with different parameters.
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1 Introduction

We consider the operator equation

Au = f, f ∈ R(A), (1.1)

where A ∈ L(H,F ) is a linear continuous operator, and H,F are Hilbert spaces
with corresponding inner products (., .) and norms ‖.‖. We do not suppose that
rangeR(A) is closed and so in general our problem is ill-posed. The kernelN(A)
may be non-trivial. As usual in treatment of ill-posed problems, we suppose
that instead of exact right-hand side f ∈ F we have only an approximation
fδ ∈ F with given noise level δ: it holds ‖fδ − f‖ ≤ δ. Standard regularization
method for solving problem (1.1) is the Tikhonov method

uα = (αI +A∗A)−1A∗fδ. (1.2)
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The accuracy of this approximation may be increased by iteration. Let m ∈ N
be fixed and u0 = u0,α ∈ H be the initial approximation. The m-iterated
Tikhonov approximation uα = uα,m is got by iterative computation

uα,i = (αI +A∗A)−1(αuα,i−1 +A∗fδ), (i = 1, 2, . . . ,m). (1.3)

In case m = 1 and u0 = 0 we return to the Tikhonov approximation. If H = F
and A = A∗ ≥ 0 (the selfadjoint case) instead of Tikhonov method (1.2) and
m-iterated Tikhonov method (1.3) usually the Lavrentiev method

uα = (αI +A)−1fδ (1.4)

and m-iterated Lavrentiev method uα = uα,m

uα,i = (αI +A)−1(αuα,i−1 + fδ), (i = 1, 2, . . . ,m) (1.5)

are used. It is well known, that approximations (1.2), (1.3) have form

uα = u0 + gα(A∗A)A∗(fδ −Au0) (1.6)

and approximations (1.4), (1.5) have form

uα = u0 + gα(A)(fδ −Au0) (1.7)

with generating function gα(λ) = (α+λ)−1 in case of Tikhonov and Lavrentiev

method and gα(λ) = 1
λ

[
1 −

(
α

α+λ

)m]
in case of iterative variants of these

methods. Note that the function gα(λ) satisfies the conditions (1.8)–(1.10):

sup
0≤λ≤a

|
√
λgα(λ)| ≤ γ∗α

−1/2, α ≥ 0, (1.8)

sup
0≤λ≤a

λp|1 − λgα(λ)| ≤ γpα
p, α ≥ 0, 0 ≤ p ≤ p0, (1.9)

sup
0≤λ≤a

|gα(λ)| ≤ γα−1, α ≥ 0, (1.10)

where p0 = m (p0 is called the qualification of method), γ = m, γp =(
p
m

)p (
1 − p

m

)m−p
and γ∗ = 1/2 for Tikhonov method and γ∗ =

√
m in case

m ≥ 2, a ≥ ‖A∗A‖ for the approximation (1.6) and a ≥ ‖A‖ for the approxima-
tion (1.7) (see [16, 17])). For smoother solutions largerm may be recommended
(see Section 2: for larger p in (2.3) error estimate (2.4) for larger p0 = m may
be got).

In the regularization methods of the form (1.6), (1.7) the important problem
is the choice of a proper regularization parameter α. If α is too small, the
numerical implementation will be unstable and the approximation uα will be
useless; if m is small and α is too big, the approximation uα is dominated by
the initial guess u0.

This paper is devoted to several quasioptimal rules for choice of α = α(δ).
These rules require computing of additionally iterated approximations. In this
paper we propose for parameter choice alternative numerical schemes, where
instead of additional iterations linear combinations of approximations with dif-
ferent parameters are used. The paper is organized as follows. In Sections 2,
3 the quasioptimality and corresponding rules for parameter choice are consid-
ered. Section 4 contains alternative numerical schemes for these rules.
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2 Quasioptimality of the Parameter Choice Rule

In the following we introduce the property of quasioptimality to characterize the
quality of choice of the regularization parameter for concrete problem Au = f .
Consider the method P of the form (1.6) (or form (1.7) in selfadjoint case).
Let R be a rule for the choice of regularization parameter and let α(R) be the
parameter chosen by Rule R.

Definition 1 [see [13]]. Rule R for the a posteriori choice of the regularization
parameter α = α(R) is weakly quasioptimal (or quasioptimal), if there exists a
constant C (which depends not on A, u∗, fδ) such that for each fδ, ‖fδ−f‖ ≤ δ
it holds the error estimate

‖uα(R) − u∗‖ ≤ C inf
α≥0

ψ(α) +O(δ),

ψ(α) :=

{
‖(I −A∗Agα(A∗A))(u0 − u∗)‖ + γ∗α

−1/2δ, if A∗ 6= A,

‖(I −Agα(A))(u0 − u∗)‖ + γα−1δ if A∗ = A ≥ 0.

Here u∗ is solution of problem (1.1), nearest to the initial approximation u0.
The constant C is called the coefficient of quasioptimality.

Let us motivate Definition 1. The error of the approximation (1.6) may be
presented in the form

uα − u∗ = (I −A∗Agα(A∗A))(u0 − u∗) + gα(A∗A)A∗(fδ − f),

from which by using ‖fδ − f‖ ≤ δ and (1.8) we get

‖uα − u∗‖ ≤ ‖(I −A∗Agα(A∗A))(u0 − u∗)‖ + γ∗α
−1/2δ. (2.1)

Hence, the weak quasioptimality means that the error of approximate solution
is less than the infimum of the upper bound (2.1), multiplied with constant
C. A usual way to characterize the quality of the parameter choice rule for
method P0 is to prove the order-optimality of the method P0 on the different
sets of solutions. The method P0 is order-optimal on the set M , if

ϕ(δ,M, P0) ≤ c inf
P
ϕ(δ,M, P ), ϕ(δ,M, P ) := sup

fδ∈F,u∈M,‖fδ−Au‖≤δ

‖Pfδ − u‖.

For methods of the form (1.6) the usual way (see, for example, [4, 5, 7, 8, 14])
to prove the order-optimality of the method with a priori parameter choice
α = α(δ,M) is to use the error estimate (2.1) and to prove that

sup
u∗∈M

{‖(I−A∗Agα(δ,M)(A
∗A))(u0−u∗)‖+γ∗α(δ,M)−1/2δ} ≤ c inf

P
ϕ(δ,M, P ).

(2.2)
These considerations about the connection between the quasioptimality of rule
R and the order-optimality of method P with parameter choice by rule R may
be formulated as the following theorem.

Theorem 1 [13]. Let (2.2) holds. Let the parameter choice rule R be weakly
quasioptimal. Then the method P with parameter choice by rule R is order
optimal on the set M .

Math. Model. Anal., 14(1):99–108, 2009.
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For example, if

u∗ − u0 = (A∗A)p/2v, ‖v‖ ≤ ̺, p > 0 (2.3)

and the rule R is weakly quasioptimal then by Theorem 1 it holds

‖uα(R) − u∗‖ ≤ C̺
1

p+1 δ
p

p+1 , 0 < p ≤ 2p0 (2.4)

and the regularization method with parameter choice by rule R is order optimal
for the full range p ∈ (0, 2p0]. Various other sets of solutions and corresponding
order optimal error estimates may be found in [4, 5, 7, 8, 14].

3 Quasioptimal Rules for Parameter Choice

In the following we consider the quasioptimality properties of several a poste-
riori parameter choice rules.

Discrepancy principle [6, 16, 17]. Let b2 ≥ b1 ≥ 1. If ‖Au0 − fδ‖ ≤ b2δ,
choose α = 0. Otherwise choose α for which b1δ ≤ ‖Auα − fδ‖ ≤ b2δ.

The discrepancy principle for methods (1.2)–(1.5) is not weakly quasiopti-
mal and leads to divergence of approximations (1.4). For these methods we
consider the following weakly quasioptimal modification [1, 9, 10] of the dis-
crepancy principle. Define function

dMD(α) := ‖Bα(Auα − fδ)‖, Bα :=

{
α1/2(αI +AA∗)−1/2, if A∗ 6= A,

α(αI +A)−1, if A∗ = A ≥ 0.

The modification of the discrepancy principle (MD rule). Let b2 ≥
b1 > 1. If dMD(0) ≤ b2δ, choose α = 0. Otherwise choose the parameter
αMD = α for which b1δ ≤ dMD(α) ≤ b2δ.

Note, that for Tikhonov method (m = 1) and its iterated approximation
uα,m it holds dMD(α) = (Auα,m+1 − fδ, Auα,m − fδ)

1/2 and for Lavrentiev
method and its iterative variant it holds dMD(α) = ‖Auα,m+1 − fδ‖.

The property of weak quasioptimality holds if we apply to the modified
discrepancy the operators Dα,k, where

Dα,k =

{
α−k(A∗A)k−1/2A∗B2k

α , if k = 1/2, 3/2, 5/2, . . .

α−k(AA∗)kB2k
α , if k = 1, 2, . . .

in general case and Dα,k = α−kAkBk
α, k = 1/2, 1, 3/2, 2, . . . in selfadjoint case.

Denote ϕk(α) = ‖Dα,kBα(Auα − fδ)‖ and consider the following rule.

Rule R1 [11, 12, 13]. Let b1, b2 be the constants such that b2 ≥ b1 > γ̃
h(k)
k ,

where γ̃s
k = (γk/τ(s))

τ(s), τ(s) = 1+ (s+1)/m and h(k) = k in selfadjoint case,
h(k) = k − 1/2 in general case. Choose α(δ) for which ϕk(α(δ)) ≥ b1δ, but
ϕk(α) ≤ b2δ for each α ≤ α(δ).
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The monotone error rule (ME rule) [15]. Choose in methods (1.2),
(1.3) the parameter αME = α(δ) for which

dME(α) :=
‖Bα(Auα − fδ)‖2

‖B2
α(Auα − fδ)‖

=
(Auα,m − fδ, Auα,m+1 − fδ)

‖Auα,m+1 − fδ‖
= δ. (3.1)

In [15], it was proved that ‖uαME
− u∗‖ ≤ ‖uαMD

− u∗‖, so the ME rule is
weakly quasioptimal. The ME rule has the property d

dα‖uα − u∗‖ ≥ 0 for all
α ∈ (αME ,∞), therefore αME ≥ αopt := arg min{‖uα − u∗‖, α > 0}. Usually
αME < 1 and αopt = αc

ME with some constant c ≥ 1. Our extensive numerical
experiments suggest to use a not quasioptimal parameter α1.1

ME instead of αME .
In paper [3] for self-adjoint problems the analog of the ME rule was pro-

posed, choosing in methods (1.4), (1.5) parameter α from equation

dME(α) :=
‖Bα(Auα − fδ)‖2

‖B2
α(Auα − fδ)‖

=
‖Auα,m+1 − fδ‖2

‖Auα,m+2 − fδ‖
= bδ, b > 1. (3.2)

In numerical experiments presented in [3], this rule gave for methods (1.4),
(1.5) better results than MD and R1 rules. The following Theorems 2, 3 are
proved in [13].

Theorem 2. Let f ∈ R(A), H = F , A = A∗ ≥ 0, ‖fδ − f‖ ≤ δ. Let the
parameter α(δ) in (iterated) Lavrentiev method be chosen according to the MD
and R1 rules. Then the error estimate

‖uα(δ) − u∗‖ ≤ max
(
C1(b1), C2(b2)

)
inf
α≥0

ψ(α)

with certain constants C1(b1), C2(b2) holds.

Under some mild condition (see [3]) the last error estimate holds also, if we use
in methods (1.4), (1.5) the ME rule, but in the general case the quasioptimality
of the ME rule for these methods is still an open problem.

Theorem 3. Let ‖fδ − f‖ ≤ δ. Let the parameter α(δ) in methods (1.2), (1.3)
be chosen in case f ∈ R(A) according to the MD or ME rule and in case
Qf ∈ R(A) according to the R1 rule. Then the error estimate

‖uα(δ) − u∗‖ ≤ max(C1(b1), C2(b2)) inf
α≥0

ψ(α)

holds, where b1 = b2 = 1 in case of rule (3.1) and b1 = b2 = b in case of rule
(3.2).

4 Numerical Realization of Rules

Let us assume that q < 1. Often for numerical realization of rules MD, ME,
the regularization parameter α(δ) = αi is chosen from decreasing sequence
αi = mqi, i = 0, 1, 2, . . ., where i is the smallest index with dMD(αi) ≤ bδ
(b > 1), dME(αi) ≤ bδ (b > 1), respectively. For realization of rule R1 from
increasing sequence αi = ai−1/q regularization parameter α(δ) is chosen as

Math. Model. Anal., 14(1):99–108, 2009.
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ai0 , where i0 + 1 is the smallest index with ϕk(αi) ≥ bδ, b > γ̃
h(k)
k . We

call these analogs of rules MD, ME, R1 as rules MDa, MEa and R1a. For
avoiding instability of computing ϕk(α) for small α another analog of rule R1
may be used, which we call rule R1b. Here from decreasing sequence αi = mqi

(i = 0, 1, . . .) at first i0 as the smallest index with dMD(αi) ≤ bδ is chosen and
for the regularization parameter αj0 is taken, were j0 ≥ i0 is the smallest index
with ϕk(αj0 ) ≤ b δ. It can be shown that for these rules the error estimate

‖uα(δ) − u∗‖ ≤ max(q−sC1(b), C2(b)) inf
α≥0

ψ(α) + δ

holds, where s = 1/2 in case of nonselfadjoint problems and s = 1 in case of
selfadjoint problems.

Considered variants of quasioptimal rules require computing of additionally
iterated approximate solutions. Namely, number of required iterations in meth-
ods (1.3), (1.5) is m + 1 for MD rule, m + int(k − 1/2) + 1 (for (1.3)) or
m + int(k) + 1 (for (1.5)) for R1 rule (where int(k) is integer part of k) and
m+ 1 (for (1.3)) or m+ 2 (for (1.5)) for ME rule.

In the following we present formulas for approximate realization of these
rules, where some linear combinations of consecutive approximate solutions
uαi,m are used instead of additional iterations. For approximation of function
ϕk(α) we note that generating function gα(λ) in methods (1.3), (1.5) satisfies
the equality

dk

d(α−1)k
gα(λ) = (−1)k+1 (m+ k − 1)!

(m− 1)!
λk−1βk

α(λ)(1 − λgα(λ)),

where βα(λ) = α(α+ λ)−1. In method (1.3) due to equalities (1.6) and

Auα − fδ = −(I −AA∗gα(AA∗))(fδ −Au0) (4.1)

we get

dk

d(α−1)k
uα = (−1)k+1 (m+ k − 1)!

(m− 1)!
A∗(AA∗)k−1B2k

α (Auα − fδ)

= (−1)k+1 (m+ k − 1)!

(m− 1)!
αk−1/2Dα,k−1/2Bα(Auα − fδ),

therefore

ϕk(α) =





Cm,k−1/2α
−k

∥∥∥∥
dk+1/2uα

d(α−1)k+1/2

∥∥∥∥ , if k =
1

2
,
3

2
,
5

2
, . . . ,

Cm,k−1

(m+ k)1/2αk

(
dkuα

d(α−1)k
,
dk+1uα

d(α−1)k+1

)1/2

, if k = 1, 2, . . . ,

where Cm,k = (m− 1)!/(m+ k)!. Analogously we get for method (1.5)

dk

d(α−1)k
uα = (−1)k+1 (m+ k − 1)!

(m− 1)!
Ak−1Bk

α(Auα − fδ)

= (−1)k+1 (m+ k − 1)!

(m− 1)!
αk−1Dα,k−1Bα(Auα − fδ),
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therefore

ϕk(α) =





Cm,kα
−k

∥∥∥∥
dk+1uα

d(α−1)k+1

∥∥∥∥ , if k = 0, 1, 2, . . .

Cm,k−1/2

(m+ k − 1/2)1/2αk

(
dk+1/2uα

d(α−1)k+1/2
,
dk+3/2uα

d(α−1)k+3/2

)1/2

,

if k =
1

2
,
3

2
,
5

2
, . . . .

For approximate computing of dkuα

d(α−1)k some formula of numerical differen-

tiation may be used. For example, on the bases of the Lagrange interpolation
polynom we have

f (k)(x) ≈ P (k)(x), P (x) =
n∑

i=0

w(x)f(xi)

(x− xi)w′(xi)
, w(x) =

n∏

i=0

(x− xi).

Taking n = k and using knots αi = qi−jαj , i ∈ {j − s(k), . . . , j − s(k) + k},
where s(k) = k/2 in case of even k and s(k) = (k + 1)/2 in case of odd k, we
have

dkuα

d(α−1)k

∣∣∣
α=αj

≈ k!

−s(k)+k∑

i=−s(k)

1

w′(α−1
j+1)

uαj+i
= k!αk

j

−s(k)+k∑

i=−s(k)

1

wi,k(q)
uαj+i

,

wi,k = wi,k(q) =

−s(k)+k∏

t=−s(k),t6=i

(q−i − q−t).

It allows us to use in rule R1 for methods (1.2), (1.3) ϕ̃k(αj) instead of ϕk(αj),
where

ϕ̃k(αj) =





Cm,k−1/2(k + 1/2)!
√
αjsk,j ,

sk,j :=
∥∥

−s(k+1/2)+k+1/2∑
i=−s(k+1/2)

1

wi,k+1/2
uαj+i

∥∥, if k = 1
2 ,

3
2 ,

5
2 , . . .

Cm,k−1(m+ k)−1/2k!(k + 1)1/2√αjsk,j ,

sk,j :=
(−s(k)+k∑

i=−s(k)

1

wi,k
uαj+i

,
−s(k+1)+k+1∑

i=−s(k+1)

1

wi,k+1
uαj+i

)1/2

,

if k = 0, 1, 2, . . . .

In methods (1.4), (1.5), instead of ϕk(αj) we use

ϕ̃k(αj) =






Cm,k−1(k + 1)!αj

∥∥
−s(k+1)+k+1∑

i=−s(k+1)

1
wi,k+1

uαj+i

∥∥, if k = 0, 1, . . .

Cm,k−1(m+ k + 1/2)−1/2(k + 1/2)!(k + 3/2)1/2αjskj ,

skj :=
( −s(k+ 1

2
)+k+ 1

2∑
i=−s(k+ 1

2
)

1

w
i,k+

1

2

uαj+i
,
−s(k+ 3

2
)+k+ 3

2∑
i=−s(k+ 3

2
)

1

wi,k+ 3
2

uαj+i

)1/2

,

if k = 1
2 ,

3
2 ,

5
2 , . . . .

Math. Model. Anal., 14(1):99–108, 2009.
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For numerical realization of MD rule and ME rule in methods (1.2)–(1.5)
we use extrapolation. The extrapolated approximation is a linear combina-
tion of original approximations uαi,j with n different parameters αi and has
qualification p0 = mn, if j = 1, . . . ,m are used, and p0 = m + n − 1, if only
j = m is used (see [2]). Therefore for source-like solutions (2.3) with p > 2m
the accuracy (2.4) of extrapolated approximations is much higher than for ap-
proximations (1.2)–(1.5). However, in this paper we use extrapolation not for
construction of alternative approximate solution, but only for choice of α in
methods (1.2)–(1.5). Namely, instead of computing uα,m+1 it is sufficient to
use another approximation

vα = (1 − q−m)−1uα/q,m + (1 − qm)−1uα,m

with the same qualification m+ 1.

Proposition 1. Let q < 1. Then the following inequalities are true:

‖Auα,m+1 − fδ‖ ≤ ‖Avα − fδ‖ ≤ ‖Auα/q,m+1 − fδ‖, (4.2)

(Auα,m+1 − fδ, Auα − fδ) ≤ (Avα − fδ, Auα − fδ) (4.3)

≤ (Auα/q,m+1 − fδ, Auα − fδ).

Proof. Let Q(λ) be the spectral family of projectors of operator AA∗. Then
(4.1) gives

‖Auα,m − fδ‖2 =

‖AA∗‖∫

0

(1 − λgα(λ))2d‖Q(λ)(Au0 − fδ)‖2.

Taking into account the equality 1 − λgα/q(λ) = (1 + µ)−m with µ = λ/(αq),
for proving (4.2) it is sufficient to show that for all µ > 0

(1+µ/q)−m−1 ≤ (1−q−m)−1(1+µ)−m+(1−qm)−1(1+µ/q)−m ≤ (1+µ)−m−1

i.e.
(

1+µ
q+µ

)m+1

qm+1 ≤ 1+µ
q−m−1

[(
1+µ
q+µ

)m

− 1
]
≤ 1. Denoting x := (1 + µ)/(q +

µ) (then 1 ≤ x ≤ q−1) these inequalities take form (xq)m+1 ≤ (1 − q)(q−m −
1)−1(xm + xm−1 + . . .+ x) ≤ 1. It is easy to check that these inequalities hold.
Thus inequality (4.2) is proved. The proof for inequality (4.3) is similar. ⊓⊔

For numerical realization of MD and ME rules in methods (1.2), (1.3) one
can use approximations

dMD(α) := ‖Bα(Auα − fδ)‖ ≈ (Auα − fδ, Avα − fδ)
1/2 =: d̃MD(α),

d̃ME(α) := (Auα − fδ, Avα − fδ)/‖Avα − fδ‖,

respectively. Next, we take into account that in methods (1.4), (1.5)

dMD(α) = ϕ0(α) =
1

m

∥∥∥∥
duα

d(α−1)

∥∥∥∥ ,
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and in method (1.4) ‖B2
α(Auα − fδ)‖ can be approximated by

‖BqαBα/q(Auα − fδ)‖ =
1

(1/q − 1)(1 − q2)

∥∥quα/q − (1 + q)uα + uqα

∥∥ .

Then for MD and for ME rules instead of functions dMD(α) and dME(α) their
approximations

d̃MD(α) := ϕ̃0(α) =
α‖uα − uα/q‖
m · (1 − q)

, d̃ME(α) :=
α(1 + q)‖uα − uα/q‖2

q
∥∥quα/q − (1 + q)uα + uqα

∥∥

may be used. For proving the quasioptimality of rules MDa, MEa and R1a,
the following result is useful.

Theorem 4. Let for parameter choice rules MD, ME or R1 from condition
b1δ ≤ d(α) ≤ b2δ the error estimate

‖uα(δ) − u∗‖ ≤ max(C1(b1), C2(b2)) inf
α≥0

ψ(α)

hold. Let αj = qαj−1, q < 1, j = 1, 2, . . . and the inequalities

c0d(αs+1) ≤ d̃(αs) ≤ d(αs+j), i ≥ j

hold. If for regularization parameter α(δ) = αs+i is taken, where s is the

smallest index with inequality d̃(αs) ≤ bδ, b ≥ b1, then the error estimate

‖uα(δ) − u∗‖ ≤ max(q−(i−j+1)tC1(b), C2(bc
−1
0 )) inf

α≥0
ψ(α) + q−itγα−t

0 δ

holds with t = 1 for methods (1.4), (1.5) and with t = 1/2 for methods (1.2),
(1.3).

The proof of this theorem is analogous to the proof of Theorem 5 in [13].
Using inequalities (4.3) one can show, that in methods (1.2)–(1.5) the in-

equalities dMD(αs) ≤ d̃MD(αs) ≤ dMD(αs+1) hold. Therefore according to

Theorem 3 the MDa rule with function d̃MD(α) is quasioptimal. Note also

that in methods (1.2), (1.4) the function d̃MD(α) has the form d̃MD(α) =
‖Bα/q(Auα − fδ‖.

Note that rule R1a with function ϕ̃1/2(α) in methods (1.2), (1.3) and rule

MDa with function d̃MD(α) in methods (1.4), (1.5) are close to the balancing
principle (see [2, 5, 8, 13]), where for regularization parameter αk = q−kα0

(q < 1) is taken with smallest k, for which the condition

m−1(1 − q)−1αs
k‖uαk

− uαk+1
‖ ≥ const δ

holds. Here s = 1/2 for methods (1.2), (1.3) and s = 1 for methods (1.4), (1.5).
The only difference is that in rules R1a and MDa for regularization parameter
αk−1 is taken. In paper [13], it is shown that by choice α(δ) = αk−1 rules R1a
(k = 1/2) and MDa are quasioptimal.
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