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Abstract. The paper considers, for a given closed bounded set M ⊂ R
m and K =

(0, 1)n ⊂ R
n, the set M = {h ∈ L2(K; R

m) | h(x) ∈ M a.e. x ∈ K} and its subsets

M(ĥ) =
n

h ∈ M |

Z

K

h(x)dx = ĥ
o

.

It is shown that, if a sequence {ĥk} ⊂ coM converges to an element hk ∈ M(ĥk)

there is h
′

k ∈ M(ĥ0) such that h
′

k − hk → 0 as k → ∞. If, in addition, the set M is
finite or M is the convex hull of a finite set of elements, then the multivalued mapping
ĥ → M(ĥ) is lower semicontinuous on coM .

Key words: multivalued mapping, subsets of functions with fixed mean value,

continuous dependence.

1 Introduction

Most sets of admissible control functions in the theory of optimal control are
given as sets of measurable functions with values from a given set: for a given
reference domain Q ⊂ R

n and a given set M ⊂ R
m the set of admissible

controls is defined as

M =
{

h is measurable in Q | h(x) ∈ M a.e. x ∈ Q
}

.

Here n and m are arbitrary fixed positive integers.
Provided that Q is a bounded domain and M is a bounded and closed set,

the set M can be split as M =
⋃

ĥ∈coM
M(ĥ), where

M(ĥ) :=
{

h measurable, h(x) ∈ M a.e. x ∈ Q,
1

| Q |

∫

Q

h(x) dx = ĥ
}

.

Here by coA we denote the convex hull of the set A and by | Q | we denote the
Lebesgue measure of the set Q ⊂ R

n.
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Such a representation of M is useful when weak limits of sequences of control
functions are involved, especially in procedures of relaxation via convexification,
see, for instance, Warga [4]. Analogous splitting is used in the homogenization
theory defining the so-called Gθ-closures, see, for instance, Milton [2]. The
corresponding relaxation procedures often involve the evaluation of integrals
(over the periodicity cell K = (0, 1)n ) of the kind

I(ĥ) = inf
h∈M(ĥ)

∫

K

f(x, h(x)) dx (1.1)

and the investigation of continuity properties of the function ĥ → I(ĥ). To do
that, obviously, one needs to know certain properties of the dependence of sets
M(ĥ) on ĥ.

In Sections 2 and 3 we shall show the following results.

Theorem 1. Let Q ⊂ R
n be bounded Lipschitz domain and let the set M ⊂ R

m

is bounded and closed. Then for every given sequences {ĥk} and {hk} such that

(i) {ĥk} ⊂ coM and ĥk → ĥ0 in R
m as k → ∞ ;

(ii) hk ∈ M(ĥk), k = 1, . . . ,

there exists a sequence {h0k} ⊂ M(ĥ0) such that

hk − h0k → 0 strongly in L2(Q; Rm) as k → ∞.

Theorem 2. Let Q ⊂ R
n be bounded Lipschitz domain and let the set M ⊂ R

m

is finite or M is the closed convex hull of a finite set of elements. Then for every
fixed sequence {ĥk} ⊂ coM that converges in R

m to an element ĥ0 and for every

given element h0 ∈ M(ĥ0) there exists a sequence {hk}, hk ∈ M(ĥk), k =
1, 2, . . . , such that

hk − h0 → 0 strongly in L2(Q; Rm) as k → ∞.

Remark 1. Obviously, from Theorem 2 it follows immediately that the multi-
valued mapping ĥ → M(ĥ) is lower semicontinuous on coM (for the definition
and properties of multivalued mappings we refer to Kuratowski [1]).

Remark 2. It is easy to see that under hypotheses of Theorem 1 the func-
tion ĥ → I(ĥ) defined by (1.1) is lower semicontinuous provided that f is
Caratheodory function and that f has a majorant f0 ∈ L1(Q) (we recall that
the set M is bounded). If, in addition, the hypotheses of Theorem 2 are satis-

fied, then the function ĥ → I(ĥ) is continuous on coM .

2 Proof of Theorem 1

In this Section, we give the proof of Theorem 1. Since all reasonings below do
not depend on concrete properties of the reference domain Q, then, without
loosing a generality, all proofs are given for the standard case Q = K := (0, 1)n.
Since the set M is bounded and closed, then the convex hull coM of M is
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closed too and all sets M(ĥ) with ĥ ∈ coM are nonempty closed sets. In what
follows, we shall use the notion of the relative interior riA for convex sets A
from Euclidean spaces, for instance ricoM stands for the relative interior of the
convex hull of M . For the definition of riA and other notations and properties
for convex sets we refer to Rockafellar [3]. Let r0 be dimension of coM .

Step 1. Let ĥ0 ∈ ricoM . Then there exists d > 0 such that ĥ ∈ ricoM
whenever ĥ ∈ coM and |ĥ − ĥ0| ≤ d. Let us fix ε > 0, 0 < ε < d/4, and let

|ĥ − ĥ0| ≤ ε. Then the element

ĥ∗ = ĥ +
d

ε
(ĥ0 − ĥ) ∈ ricoM.

Let h ∈ M(ĥ), h∗ ∈ M(ĥ∗) be arbitrary chosen elements. By virtue of
Lyapunov’s theorem on the range of vectorial measures for every λ ∈ [0, 1]
there exists a measurable set Eλ ⊂ K such that

|Eλ| = λ,

∫

Eλ

h(y) dy +

∫

K\Eλ

h∗(y) dy = λĥ + (1 − λ)ĥ∗.

For a special choice λ = λ0 = 1 − ε/d we define h0 as

h0( · ) = χEλ0
( · )h( · ) + (1 − χEλ0

( · ))h∗( · ),

where χE denotes the characteristic function of the set E. By construction,
h0 ∈ M(ĥ0) and

∫

K

(h(y) − h0(y))2 dy =

∫

K\Eλ0

(h(y) − h0(y))2dy ≤ 4c(M)ε/d,

where c(M) depends only on M . Thus, the assertion of Theorem 1 holds

whenever ĥ0 ∈ ricoM .

Step 2. Let ĥ0 does not belong to ricoM . Because ricoM is not empty
(provided that M consists of more than one element), then there exist a vector
a ∈ R

m and a constant c such that

|a| = 1, 〈a, ĥ0〉 = c < 〈a, ĥ〉 for all ĥ ∈ ricoM.

Without loosing generality, we can assume that c = 0, otherwise we can use
the transform ĥ 7→ ĥ − ĥ0.

Let M1 =
{

h ∈ M | 〈a, h〉 = 0
}

. Because the sets M and M1 are compact,
then there exists a continuous function γ, γ(t) = 0 if t ≤ 0, γ(t) > 0 if t > 0,
such that

〈a, h − ĥ0〉 ≥ γ(dist{h; M1}) for all h ∈ M. (2.1)

Without loosing generality, we can assume that the function γ is convex, oth-
erwise we can pass to the bipolar γ∗∗, which has the desired properties. By
construction, for nonnegative τ there exists the inverse function τ → γ−1(τ),
γ−1(γ(t)) = t for t ≥ 0, which is continuous and strictly increasing on {τ ∈
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R| τ ≥ 0}. Now, from (2.1) and convexity of γ it follows that for every chosen
h ∈ M there exists an element h∗,

h∗ ∈ M1 =
{

h ∈ L2(K; R
r)|h(y) ∈ M1 a.e. y ∈ K

}

,

such that

‖ h − h∗ ‖2
L2(K; Rm)≤ c(m, M)

∫

K

|h(y) − h∗(y)| dy

≤ c(m, M)γ−1

(

γ

(
∫

K

|h(y) − h∗(y)| dy

))

≤ c(m, M)γ−1
(

∫

K

γ(|h(y) − h∗(y)|) dy
)

≤ c(m, M)γ−1
(∣

∣

∣

∫

K

h(y) dy −

∫

K

h∗(y) dy
∣

∣

∣

)

,

where c(m, M) depends only on m and M . This way, for our situation with

a fixed ĥ0 ∈ coM1, for every ĥ ∈ coM and arbitrary chosen h ∈ M(ĥ) there
exists a corresponding h∗ ∈ M1 such that

‖ h − h∗ ‖2
L2(K; Rm)≤ c(m, M)γ−1(|ĥ − ĥ0|).

By construction,
∫

K

h∗(y) dy = ĥ∗ ∈ coM1,

M(ĥ0) ⊂ M1 and the dimension of coM1 is less than r0. From now on,

we have to approximate the element h∗ ∈ M(ĥ∗) ⊂ M1 by elements from

M(ĥ0) ⊂ M1, i.e. we have reduced the dimension r0 of our problem to the
problem with dimension less than or equal to r0 − 1.

Step 3. To conclude our reasoning by induction over the dimension r0 we
have to prove our assertion for the case r0 = 1. If ĥ0 ∈ ricoM , then we apply
reasoning from Step 1. If ĥ0 does not belong to ricoM , then the set M1 from
the Step 2 consists of only one element ĥ0 and the set M1 consists of one
constant function h0(y) = ĥ0 a.e. y ∈ K. For this case we can apply the same
reasoning as in Step 2, what gives the statement of Theorem for r0 = 1.

3 Proof of Theorem 2

In this Section, we give the proof of Theorem 2. Let M = {h1, . . . , hN} ⊂ R
m.

Let H be m × N matrix with columns h1, . . . , hN respectively and let

Λ :=
{

λ ∈ R
N | λ = (λ1, . . . , λN ) , λj ≥ 0, j = 1, . . . , N ; λ1 + · · · + λN = 1

}

.

To a given vector-function h ∈ M (it has only N admissible values from M) we
can appoint an element λ whose components λj represent the volume fractions
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in K of the sets where the vector-function h has the value hj , j = 1, . . . , N,
respectively. Let E := {z ∈ R

N | Hz = 0}.
In these notations the statement of Theorem 2 is a straight consequence of:







































if λ̂0 ∈ Λ, {ak} ⊂ R
N , ak → 0 ask → ∞

and {λ̂0 + ak + E}
⋂

Λ 6= ∅, k = 1, 2, . . . ,

then there exists a sequence {λk} such that

λk → λ̂0 as k → ∞,

λk ∈ {λ̂0 + ak + E}
⋂

Λ, k = 1, 2, . . . .

(3.1)

Indeed, first of all we have to take care only about volume fractions of sets where
the functions under consideration take the corresponding values h1, . . . , hN

(we always can prearrange the corresponding sets preserving their measures).
Further, for h ∈ M with corresponding volume fractions (λ1, . . . , λN ) = λ

we have that h ∈ M(Hλ), and every ĥ ∈ coM has the representation ĥ =

H(λ̂+E) with some λ̂ ∈ Λ. The convergence ak → 0 as k → ∞ in (3.1) implies

the corresponding convergence ĥk → ĥ0 in Theorem 2, and the convergence
λk → λ̂0 implies the corresponding convergence hk → h0 in Theorem 2.

Let us denote 1 = (1, . . . , 1) ∈ R
N and let us represent E as the direct sum

E = E0 ⊕ E1 where
E0 = {z ∈ E | 〈z, 1〉 = 0}.

Here the subspace E1 can be equal to {0} if 1 is orthogonal to E. From
assumptions on ak we have the existence of z0k ∈ E0 and z1k ∈ E1 such that

λ̂0 + ak = z0k + z1k ∈ Λ,

〈ak + z1k, 1〉 = 0, z1k → 0 as k → ∞.

So, if necessary, using the transform ak → ak + z1k and replacing E by E0,
without loosing generality, we can assume that

(i) the vector 1 is orthogonal to E;

(ii) 〈ak, 1〉 = 0, k = 1, 2, . . ..

That means (since 〈λ̂0 , 1〉 = 1) our further reasoning concerns only the hyper-
plane

{

z ∈ R
N | 〈1, z〉 = 1

}

. There are two possibilities:

(a) (λ̂0 + E)
⋂

riΛ 6= ∅;

(b) λ̂0 belongs to a façade Λs of Λ with the dimension s, 0 ≤ s ≤ N − 2, and

λ̂0 + E can be separated from riΛ.

For the case (a) there exists a λ∗ ∈ (λ̂0 + E)
⋂

riΛ and the elements

λk = λ̂0 + ak + τk(λ∗ − λ̂0), k = 1, 2, . . . ,

with appropriate τk > 0 , k = 1, 2, . . ., solve the problem for k ≥ k0 with some
k0.

Math. Model. Anal., 14(1):91–98, 2009.
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For the case (b), without loosing generality, we can assume that Λs is the
façade with the minimal dimension s compared to all façades, which contain
λ̂0. Hence, after relabeling indexes we obtain

Λs =
{

λ ∈ Λ | λ = (λ1, . . . , λN ) , λs+2 = · · · = λN = 0
}

,

λ̂0 =
(

λ0
1, . . . , λ

0
N

)

, 0 < λ0
1, . . . , 0 < λ0

s+1, λ0
s+2 = · · · = λ0

N = 0.

If
λ̂0 + ak + zk ∈ Λ & zk ∈ E , k = 1, 2, . . . ,

then from

ak → 0 as k → ∞, and 〈zk, 1〉 = 0 , k = 1, 2, . . . ,

it follows immediately that the sequence {zk} is bounded.
Let us assume that the sequence {zk} converges to an element z0. If z0 = 0,

then the sequence
λk := λ̂0 + ak + zk, k = 1, 2, . . . ,

solves the problem.
If z0 6= 0, then those entries of z0 = (z01, . . . , z0N), which are different from

zero, are positive for j ≥ s + 2 and negative for those indexes j
′′

, for which
λ0

j′′ = 1 (if any). Therefore, there exists d0 > 0 such that λ̂0+τz0 ∈ Λ provided
0 ≤ τ ≤ d0.

Since zk − z0 → 0 as k → ∞, then the elements

λk := λ̂0 + τkz0 + (zk − z0) + ak

for k ≥ k0 and with appropriate τk, τk → 0 as k → ∞, belong to Λ. Indeed,
since 〈z0 , 1〉 = 0 , 〈ak , 1〉 = 0 , 〈zk , 1〉 = 0 , k = 1, 2, . . . , we have to check
only inequalities

λkj ≥ 0, j = 1, . . . , N ; , k = k0, k0 + 1, . . .

(obviously, λk → λ̂0 as k → ∞). For those indexes {j
′

}, for which entries of z0

are equal to zero,

λ0
j
′ + akj

′ + (zkj′ − z0j′) ≥ 0, k = 1, 2, . . . ,

(by the initial assumptions on the sequence {ak}), but for the rest of indexes
{j

′′

} either
1 > λ0

j
′′ > 0

or
λ0

j
′′ = 1 & z0j

′′ < 0

what is sufficient for the existence of τk with desired properties.
The general case of an arbitrary sequence {zk} is treated by standard rea-

soning by contradiction, i.e., we assume the contrary that there exist d > 0 and
a sequence of indexes {k

′

} such that the distance from λ̂0 to {λ̂0 +ak′ +E}
⋂

Λ
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is greater than d. After that we take an arbitrary subsequence of {ak′}, for
which the corresponding sequence {zk′} converges. The proof of the first part
of Theorem 2 is completed.

Now, let M be closed convex hull of a finite number of elements {h1, . . . , hN}
and let

S := {σ ∈ L2(K; RN) | σ = (σ1, . . . , σN ) , 0 ≤ σj(x) ≤ 1 , j = 1, . . . , N ;

N
∑

j=1

σj(x) = 1 a.e. x ∈ K}.

Since the function

(σ, x) → (h(x) −
N

∑

j=1

σjhj)
2

is a normal integrand on Λ × K ( for every fixed h ∈ M ), then every h ∈ M
has the representation

h(x) =

N
∑

j=1

σj(x)hj a.e. x ∈ K

with some σ ∈ S. In turn, a subset of piecewise constant elements is dense in
S and sets M(ĥ) have the same property.

This way, by using Cantor’s diagonal process, we have that it is sufficient
to show the existence of the approximating sequence {hk} for the case of a

piecewise element h0 ∈ M(ĥ0). Let Qi ⊂ K, i = 1, . . . , s, are the sets where
the function h0 is constant and takes values g1, . . . , gs from M respectively.
Now, we define the set M̃ := {h1, . . . , hN , g1, . . . , gs} and sets

M̃(ĥ) := {h measurable in K | h(x) ∈ M̃ a.e. x ∈ K,

∫

K

h(x)dx = ĥ}.

By construction, coM̃ = M and M̃(ĥ) ⊂ M(ĥ) ∀ĥ ∈ M .

If {ĥk} ⊂ M and ĥk → ĥ0 as k → ∞ then also {ĥk} ⊂ coM̃ , ĥ0 ∈ coM̃ and

h0 ∈ M̃(ĥ0). This way, the existence of the desired approximating sequence
{hk} follows immediately from the proof of the first part of Theorem 2. The
proof of Theorem 2 is completed.

We conclude with a simple example, which shows that the statement of
Theorem 2 is not, in general, true under hypotheses of Theorem 1. Let

M =
{

(−1, 0, 0), (1, 0, 0), (0, t, t2), 0 ≤ t ≤ 1
}

⊂ R
3.

By construction,

M((0, t, t2)) =
{

(h1, h2, h3) ∈ L2(K; R3) |

h1(x) = 0, h2(x) = t, h3(x) = t2; x ∈ K
}

for 0 < t < 1,

M((0, 0, 0)) =
{

(h1, h2, h3) ∈ L2(K; R3) | h1(x) = −1 or 0 or 1,
∫

K

h1(x) dx = 0; h2(x) = 0, h3(x) = 0; x ∈ K
}

,

Math. Model. Anal., 14(1):91–98, 2009.
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and the statement of Theorem 2 does not hold.
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