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Abstract. A popular class of methods for solving weakly singular integral equations
is the class of piecewise polynomial collocation methods. In order to implement those
methods one has to compute exactly certain integrals that determine the linear sys-
tem to be solved. Unfortunately those integrals usually cannot be computed exactly
and even when analytic formulas exist, their straightforward application may cause
unacceptable roundoff errors resulting in apparent instability of those methods in the
case of highly nonuniform grids. In this paper fully discrete analogs of the colloca-
tion methods, where integrals are replaced by quadrature formulas, are considered,
corresponding error estimates are derived.

Key words: weakly singular, integral equation, collocation method, nonuniform

grid, fully discrete method, Fredholm equation, Volterra equation.

1 Introduction

In many applications there arise integral equations of the form

y(t) =

∫ b

0

K(t, s)y(s) ds + f(t), (1.1)

where the integration kernel K is not smooth across the diagonal t = s. If
K(t, s) ≡ 0 in the region t > s, then the equations are of Volterra type,
otherwise they are of Fredholm type. A popular class of methods for solving
such equations is the class of piecewise polynomial collocation methods using
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nonuniform grids. Such methods are considered, for example, in the case of
Fredholm integral equation in [6, 8, 9] and by many others, in the case of
Volterra equations in [1, 2] and many others; for additional references we refer
to the list of references in [2]. In order to apply those methods it is necessary

to compute exactly integrals of the form
∫ ti+1

ti
K(t, s)φ(s) ds, where K is the

kernel of the integral operator and φ is a basis function corresponding to the
collocation method. Unfortunately those integrals usually cannot be computed
exactly and even when analytic formulas exist, their straightforward application
may cause unacceptable roundoff errors resulting in apparent instability of
those methods in the case of highly nonuniform grids (see [4]). Therefore it is
of great practical and theoretical interest to consider methods (so called fully
discrete methods), where the integrals are computed by quadrature formulas.
As the kernel K is not smooth, a straightforward application of quadrature
formulas reduce, in general, the order of the convergence of the method. A fully
discrete collocation method, preserving the order of convergence of the original
collocation method, for solving Fredholm integral equations was proposed in
[3], a more general class of such methods was described by E. Tamme in [7]. In
the present paper we improve the estimates of E. Tamme of the error caused by
the quadrature approximation of the system integrals and extend the results
to other types of integral equations.

2 Collocation Method for Solving Integral Equations

For a given N ∈ IN let ΠN =
{

t0, t1, . . . , tN : 0 = t0 < t1 < . . . < tN = b
}

be
a partition (a mesh) of the interval [0, b] (for ease of notation we suppress the

index N in tn = t
(N)
n indicating the dependence of the grid points on N).

We look for approximate solutions to integral equations in the form of piece-
wise polynomial functions

S
(−1)
k (ΠN ) =

{

w : w
∣

∣

(tn−1,tn)
∈ πk, n = 1, . . . , N

}

.

Here πk denotes the set of polynomials of degree not exceeding k and w
∣

∣

(tn−1,tn)

is the restriction of w : [0, b] → IR to the subinterval (tn−1, tn).
We define m ≥ 1 interpolation points in every subinterval [tn−1, tn]

(n = 1, . . . , N) of the grid ΠN by

tnj = tn−1 + ηjhn, j = 1, . . . , m (n = 1, . . . , N),

where hn = tn − tn−1 and η1, . . . , ηm are some fixed parameters (called collo-

cation parameters) which do not depend on n and N and satisfy

0 ≤ η1 < . . . < ηm ≤ 1.

We look for an approximate solution u to the solution y of equation (1.1) in

S
(−1)
m−1(ΠN ), m, N ∈ IN. We determine u = u(N) ∈ S

(−1)
m−1(ΠN ) by the colloca-

tion method from the following conditions:

u(tnj) =

b
∫

0

K(tnj , s)u(s) ds + f(tnj), j = 1, . . . , m; n = 1, . . . , N. (2.1)
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If η1 = 0, then by u(tn1) we denote the right limit lim
t→tn−1+0

u(t). Similarly, if

ηm = 1, then u(tnm) denotes the left limit lim
t→tn−0

u(t).

3 A Discrete Collocation Method for Solving Integral
Equations

In order to discretize the integrals in (2.1) we introduce a set of points S =
{sj, j = −M, . . . , M}, where sj = sgn(j)b (|j|/M)

ρ
, M > 1 is a natural

number, sgn(j) = j
max(|j|,1) and ρ ≥ 1 is a real number that determines the

nonuniformity of the set of points at zero. Next, for a given t ∈ [0, b] we divide
the interval [0, b] into subintervals with the points

Vt = (ΠN ∪ (t + S)) ∩ [0, b],

where t+S = {t+ s : s ∈ S}. Let us number the points in Vt in the increasing
order so that the index of t is 0:

Vt =
{

vi : i = −k1,−k1 + 1, . . . , k2 − 1, k2

}

,

where

0 = v−k1
< v−k1+1 < . . . < v0 = t < v1 < . . . < vk2

= b,

and denote ∆vi = vi − vi−1, i = −k1 + 1, . . . , k2. Additionally, we choose a
quadrature formula

∫ 1

0

x(s) ds ≈

ℓ
∑

p=1

wpx(ξp) (3.1)

with knots 0 ≤ ξ1 < ξ2 < . . . < ξℓ ≤ 1 and weights w1, . . . , wℓ and denote

vip = vi−1 + ξp∆vi, i = −k1 + 1, . . . k2, p = 1, . . . , ℓ.

If K is bounded and has left and right limits as s → t, then we replace the
integrals in (2.1) by the quadrature sums

Atu=

k2
∑

i=−k1+1

∆vi

ℓ
∑

p=1

wpK(t, vip)u(vip),

otherwise we use the approximation

Atu=
∑

i:vi−1<t+s−1

∆vi

ℓ
∑

p=1

wpK(t, vip)u(vip)+
∑

i:vi−1≥t+s1

∆vi

ℓ
∑

p=1

wpK(t, vip)u(vip).

Our fully discrete collocation method is as follows: we determine an approxi-

mate solution ū ∈ S
(−1)
m−1 by the condition

ū(tnj) = Atnj
ū + f(tnj), j = 1, . . . , m; n = 1, . . . , N. (3.2)

Math. Model. Anal., 14(1):69–78, 2009.
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4 Convergence of the Fully Discrete Method (3.2)

First we derive an estimate for the error of the quadrature approximation of
the integral operator.

Theorem 1. Assume that the quadrature formula (3.1) is exact for all poly-

nomials of order µ, where µ ≥ m − 1. Assume also, that the kernel K of the

integral operator of the equation (1.1) is µ − m + 2 times continuously differ-

entiable with respect to s on the set {(t, s) ∈ [0, b]× [0, b] : t 6= s} and satisfies

for i = 0, 1, . . . , µ − m + 2 the estimates

∣

∣

∣

∂iK

∂si
(t, s)

∣

∣

∣
≤ cκi(|t − s|),

where

κi(τ) =











1, i < −ν,

1 − ln τ
b , i = −ν,

τ−i−ν , i > −ν,

τ ∈ (0, b]

and ν < 1 is a real number. Then for all t ∈ [0, b] we have

∣

∣

∣

b
∫

0

K(t, s)u(s)ds − Atu
∣

∣

∣
≤ c‖u‖∞































M−ρ(1−ν), ρ < µ−m+2
1−ν , ν 6∈ IN

M−ρ(1−ν)(1 + lnM), ρ < µ−m+2
1−ν , ν ∈ IN

M−µ+m−2(1 + lnM), ρ = µ−m+2
1−ν ,

M−µ+m−2, ρ > µ−m+2
1−ν ,

where c does not depend on t, M, N and the form of ΠN and ‖ · ‖∞ is the L∞

norm.

Proof. Denote

εi =

∫ vi

vi−1

K(t, s)u(s) ds − ∆vi

ℓ
∑

p=1

wpK(t, vip)u(vip).

In the case ν ≥ 0, when K may be unbounded, we have

∣

∣

∣

∫ b

0

K(t, s)u(s)ds−Atu
∣

∣

∣
≤

∑

i:vi−1<t+s−1

|εi|+‖u‖∞

∫ t+s1

t+s−1

|K(t, s)| ds+
∑

i:vi−1≥t+s1

|εi|.

(4.1)

If ν < 0, then we have

∣

∣

∣

∫ b

0

K(t, s)u(s) ds − Atu
∣

∣

∣
≤

k2
∑

i=−k1+1

|εi| ≤
∑

i:vi−1≤t+s−1

|εi|

+
∑

i:[vi−1,vi]⊂[t+s−1,t+s1]

|εi| +
∑

i:vi−1≥t+s1

|εi|. (4.2)
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Consider first the common terms (the first and the third) in estimates (4.1)
and (4.2). Notice that, since the quadrature formula (3.1) is exact for all
polynomials or order µ, we have for all polynomials φ of order µ − m + 1
equality

εi =

∫ vi

vi−1

(K(t, s) − φ(s))u(s) ds − ∆vi

ℓ
∑

p=1

wp(K(t, vip) − φ(vip))u(vip),

thus for any such polynomial φ we get an estimate

|εi| ≤ c‖u‖∞∆vi sup
s∈[vi−1,vi]

|K(t, s) − φ(s)|. (4.3)

For values of i such that vi−1 < t + s−1 we use

φ(s) =

µ−m+1
∑

q=0

1

q!

∂K

∂s
(t, vi)(s − vi)

q,

which, together with the well-known estimate for Taylor expansions

|K(t, s) − φ(s)| ≤
|s − vi|

µ−m+2

(µ − m + 2)!
sup

s∈[vi−1,vi]

∣

∣

∣

∣

∂µ−m+2K

∂sµ−m+2
(t, s)

∣

∣

∣

∣

and the assumptions of the theorem gives us

|εi| ≤ c1‖u‖∞(∆vi)
µ−m+3 sup

s∈[vi−1,vi]

|κµ−m+2(|t − s|)|

= c1‖u‖∞(∆vi)
µ−m+3κµ−m+2(|t − vi|).

Denote ∆sj = sj − sj−1, j = −M + 1, . . . , M. Then we get an estimate

∑

i:vi−1<t+s−1

|εi| =

−1
∑

j=−M+1

∑

i:[vi−1,vi]⊂[t+sj−1,t+sj ]

|εi|

≤
−1
∑

j=−M+1

∑

i:[vi−1,vi]⊂[t+sj−1,t+sj ]

c1‖u‖∞(∆vi)
µ−m+3κµ−m+2(|t − vi|)

≤ c1‖u‖∞

−1
∑

j=−M+1

κµ−m+2(|sj |)
∑

i:[vi−1,vi]⊂[t+sj−1,t+sj ]

(∆vi)
µ−m+3

≤ c1‖u‖∞

−1
∑

j=−M+1

κµ−m+2(|sj |)
(

∑

i:[vi−1,vi]⊂[t+sj−1,t+sj ]

∆vi

)µ−m+3

≤ c1‖u‖∞

−1
∑

j=−M+1

(∆sj)
µ−m+3κµ−m+2(|sj |)

= c1‖u‖∞

M−1
∑

j=1

(∆sj+1)
µ−m+3κµ−m+2(sj).

Math. Model. Anal., 14(1):69–78, 2009.
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For values of i such that vi−1 ≥ t + s1 we use the estimate (4.3) with φ that is
the Taylor’s expansion of K with respect to s at the point s = vi−1. Repeating
the steps we used for negative values of i we arrive to the same estimate:

∑

i:vi−1≥t+s1

|εi| ≤ c1‖u‖∞

M−1
∑

j=1

(∆sj+1)
µ−m+3κµ−m+2(sj).

Notice that for j ≥ 1 we have ∆sj = b
∫ j/M

(j−1)/M ρxρ−1 dx, therefore

bρ

M

(

j − 1

M

)ρ−1

≤ ∆sj ≤
bρ

M

(

j

M

)ρ−1

≤
ρb

M
.

If µ−m +2 + ν < 1, then κµ−m+2 is integrable on the interval [0, b] and hence

M−1
∑

j=1

(∆sj+1)
µ−m+3κµ−m+2(sj) ≤

( ρb

M

)µ−m+2 M−1
∑

j=1

∆sj+1

∆sj
∆sjκµ−m+2(sj)

≤

(

ρb

M

)µ−m+2 M−1
∑

j=1

∆sjκµ−m+2(sj)











s2

s1
, if j = 1,

(

j + 1

j − 1

)ρ−1

, if j ≥ 2

≤

(

ρb

M

)µ−m+2

max
{

2ρ, 3ρ−1
}

M−1
∑

j=1

∆sjκµ−m+2(sj)

≤

(

ρb

M

)µ−m+2

max
{

2ρ, 3ρ−1
}

∫ b

0

κµ−m+2(s) ds ≤ cM−µ+m−2.

If µ − m + 2 + ν ≥ 1, then

M−1
∑

j=1

(∆sj+1)
µ−m+3κµ−m+2(sj) ≤

M−1
∑

j=1

(

bρ

M

(

j + 1

M

)ρ−1
)µ−m+3

s−µ+m−2−ν
j

≤ cM−µ+m−3
M−1
∑

j=1

(

2j

M

)(ρ−1)(µ−m+3)(
j

M

)ρ(−µ+m−2−ν)

≤ c1M
−ρ(1−ν)

M−1
∑

j=1

jρ(1−ν)−(µ−m+3)

≤ c1































M−ρ(1−ν)
∞
∑

j=1

jρ(1−ν)−(µ−m+3) if ρ(1 − ν) < µ − m + 2,

M−ρ(1−ν)(1 +
M
∫

1

dτ

τ
), if ρ(1 − ν) = µ − m + 2,

M−ρ(1−ν)
M
∫

0

τρ(1−ν)−(µ−m+3) dτ, if ρ(1 − ν) > µ − m + 2
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≤ c2











M−ρ(1−ν), if ρ < µ−m+2
1−ν ,

M−ρ(1−ν)(1 + lnM), if ρ = µ−m+2
1−ν ,

M−µ+m−2, if ρ > µ−m+2
1−ν .

Thus we have shown for all values of ν, µ and m that

∑

i:vi−1<t+s−1

|εi| +
∑

i:vi−1≥t+s1

|εi| ≤ c











M−ρ(1−ν), if ρ < µ−m+2
1−ν ,

M−ρ(1−ν)(1 + lnM), if ρ = µ−m+2
1−ν ,

M−µ+m−2, if ρ > µ−m+2
1−ν .

It remains to estimate the middle terms of (4.1) and (4.2). If ν > 0, then the
middle term in (4.1) can be estimated easily:

‖u‖∞

∫ t+s1

t+s−1

|K(t, s)| ds ≤ c‖u‖∞

∫ t+s1

t+s−1

|t − s|−ν ds = ‖u‖∞
2c

1 − ν

(

b

Mρ

)1−ν

≤ c1‖u‖∞M−ρ (1−ν).

If ν = 0 then

‖u‖∞

∫ t+s1

t+s−1

|K(t, s)| ds ≤ c‖u‖∞

∫ s1

s−1

(1 − ln
|τ |

b
) dτ

≤ c1‖u‖∞M−ρ(1 + lnM).

In both cases the estimate of the middle term on the right hand side of (4.1)
agrees well with (i.e. it is bounded from above by) the estimate of the Theorem,
so for ν ≥ 0 the Theorem is proved.

If ν < 0, then we divide the middle term of (4.2) into two halves:

∑

i:[vi−1,vi]⊂[t+s−1,t+s1]

|εi| =
∑

i:[vi−1,vi]⊂[t+s−1,t]

|εi| +
∑

i:[vi−1,vi]⊂[t,t+s1]

|εi|.

Since the estimation procedure is the same for both halves, we deal carefully
with the the second one only. Let q be the largest integer such that q ≤ µ−m+1

and q + ν < 0, then the derivatives ∂jK
∂sj (t, s) have finite right (and left) limits

as s → t for j = 0, 1, . . . , q. We denote

∂jK

∂sj
(t, t+) = lim

s→t, s>t

∂jK

∂sj
(t, s), j = 0, 1, . . . , q

and define

φ(s) =

q
∑

j=0

1

j!

∂jK

∂sj
(t, t+)(s − t)j .

Using now the integral representation of the error of the Taylor’s expansion

K(t, s) − φ(s) =
1

q!

∫ s

t

(s − τ)q ∂q+1K

∂sq+1
(t, τ) dτ

Math. Model. Anal., 14(1):69–78, 2009.
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and the estimate (4.3) we get

|εi| ≤ c‖u‖∞∆vi
sq
1

q!

∫ t+s1

t

κq+1(τ − t) dτ,

so
∑

i:[vi−1,vi]⊂[t,t+s1]

|εi| ≤ c
(b/Mρ)q+1

q!

∫ s1

0

κq+1(τ) dτ.

If q + 1 > −ν, then

∫ s1

0

κq+1(τ) dτ =

∫ s1

0

τ−q−1−ν dτ ≤ cMρ(q+ν),

in the case q + 1 = −ν we have

∫ s1

0

κq+1(τ) dτ =

∫ s1

0

(1 − ln
τ

b
) dτ ≤ cM−ρ(1 + lnM),

thus
∑

i:[vi−1,vi]⊂[t,t+s1]

|εi| ≤ c

{

M−ρ(1−ν), if ν 6∈ IN,

M−ρ(1−ν)(1 + lnM), if ν ∈ IN.

Since the last estimate is clearly bounded above by the estimate of the Theorem,
the proof is completed for all values of ν. ⊓⊔

The previous technical result enables us to estimate easily the difference of
solutions of the exact collocation method (2.1) and the fully discrete collocation
method (3.2).

Theorem 2. Assume that the integral equation (1.1) is uniquely solvable in L∞

and that a sequence of grids ΠN such that the length of the maximal subinterval

of ΠN goes to 0 as N → ∞ is given. Assume also that the collocation method

(2.1) is used and that the quadrature formula (3.1) is exact for all polynomials

of order µ, where µ ≥ m − 1. Assume also, that the kernel K of the integral

operator of the equation (1.1) is continuous and µ − m + 2 times continuously

differentiable with respect to s on the set {(t, s) ∈ [0, b] × [0, b] : t 6= s} and

satisfies the estimates of Theorem 1. Then there exist integers N0 and M0

such that for all N ≥ N0 and for all M ≥ M0 both methods (2.1) and (3.2)
are uniquely solvable and the solutions u of (2.1) and ū of (3.2) satisfy the

inequality

‖u − ū‖∞ ≤ c































M−ρ(1−ν), ρ < µ−m+2
1−ν , ν 6∈ IN

M−ρ(1−ν)(1 + lnM), ρ < µ−m+2
1−ν , ν ∈ IN

M−µ+m−2(1 + lnM), ρ = µ−m+2
1−ν ,

M−µ+m−2, ρ > µ−m+2
1−ν ,

,

where the constant c does not depend on M and N .
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Proof. Define an operator T : L∞(0, b) → C[0, b] by Tx(t) =
∫ b

0 K(t, s)x(s) ds

and a piecewise polynomial interpolation operator PN : C[0, b] → S
(−1)
m−1(ΠN ) ⊂

L∞(0, b) by conditions

PNx(tnj) = x(tnj), n = 1, . . . , N, j = 1, . . . , m.

It is well known that T is a compact operator and that PN is a sequence of
uniformly bounded operators satisfying

‖PNx − x‖∞ → 0 for all x ∈ C[0, b].

Therefore ‖PNT − T ‖L(L∞(0,b)) → 0 as N → ∞ (for a detailed proof of this
result see [5], Lemma 2.4.6) and hence (since I − T is invertible) there exists
N0 such that for every N ≥ N0 the estimate

‖(I − PNT )−1‖L(L∞(0,b)) ≤ 2‖(I − T )−1‖L(L∞(0,b))

holds. Denote by XN the space of piecewise polynomial functions S
(−1)
m−1(ΠN )

equipped with L∞(0, b) norm. Define an operator T̃N,M : XN → XN by the
interpolation conditions

T̃N,Mx(tnj) = Atnj
x, n = 1, . . . , N, j = 1, . . . , m, x ∈ XN ,

then

‖(PNT − T̃N,M)x‖∞ ≤ c max
n=1,...,N, j=1,...,m

{|Atnj
x − Tx(tnj)|},

where the constant c depends only on m and the choice of collocation param-
eters η1, . . . , ηm. Thus, according to Theorem 1 we have

‖PNT − T̃N,M‖L(XN ) ≤ c































M−ρ(1−ν), ρ < µ−m+2
1−ν , ν 6∈ IN,

M−ρ(1−ν)(1 + lnM), ρ < µ−m+2
1−ν , ν ∈ IN,

M−µ+m−2(1 + lnM), ρ = µ−m+2
1−ν ,

M−µ+m−2, ρ > µ−m+2
1−ν .

(4.4)

Let us choose M0 such that for M ≥ M0 we have

‖PNT − T̃N,M‖L(XN ) ≤
1

4‖I − T ‖L∞(0,b)
.

Notice that the numerical methods (2.1) and (3.2) correspond to operator equa-
tions

u = PNTu + PNf, ū = T̃N,M ū + PNf

in the space XN , respectively. Denote B = I − PNT , δB = PNT − T̃N,M and
δu = u − ū, then the equations take forms

Bu = PNf, (B + δB)(u + δu) = PNf.
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According to our choices of N0 and M0 the operators B and B + δB are both
invertible for all N ≥ N0, M ≥ M0 and satisfy estimates

‖B−1‖L(XN ) ≤ 2‖(I − T )−1‖L(L∞(0,b)),

‖(B + δB)−1‖L(XN ) ≤
‖B−1‖L(XN )

1 − ‖B−1‖L(XN )‖δB‖L(XN )
≤ 4‖(I − T )−1‖L(L∞(0,b))

therefore

‖u − ū‖∞=‖δu‖∞=‖[(B + δB)−1 − B−1]PNf‖∞

=‖B−1δB(B+δB)−1PNf‖∞≤c‖δB‖L(XN )=‖PNT−T̃N,M‖L(XN )

where c does not depend on M and N . Taking into account the estimate (4.4),
the statement of Theorem 2 is proved. ⊓⊔

Theorem 2 tells us that for any collocation method we can choose appro-
priate M depending on N (for example M = N), an appropriate quadrature
formula (3.1) and a suitable value for the nonuniformity parameter ρ so that
the convergence rate of the fully discrete collocation method is of the same
order as the convergence rate of the collocation method.
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