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Abstract. An inverse problem to determine parameters of microstructured solids
by means of group and phase velocities of wave packets is studied. It is proved that
in the case of normal dispersion the physical solution is unique and in the case of
anomalous dispersion two physical solutions occur. Numerical tests are presented.
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1 Introduction

Microstructured materials like alloys, crystallites, ceramics, functionally graded
materials, etc. have gained a wide utilization [5, 7, 10]. In many cases the
nondestructive evaluation of physical properties of such materials is necessary.
The simplest method to gather data for nondestructive evaluation is to gen-
erate waves and measure their characteristics, such as velocities, amplitudes,
frequencies, etc. [1, 2, 3, 12, 13].

The wave propagation in materials with microstructure is influenced by
various scales of microstructure and involves dispersive effects [5, 6, 7, 11]. In
case of presence of dispersion the group and phase velocities are different and
expected to contain information about the physical properties.

In this paper we will study an inverse problem to reconstruct physical pa-
rameters of microstructured materials from measured phase and group veloc-
ities of wave packets. This is a continuation of the research of the paper [9],
where these parameters were recovered from spectra of linear waves. Similar
results for a simplified approximate model were obtained in [8].

Our method is as follows. Firstly, we determine coefficients of a dispersion
equation (see eq. (3.1) given below) by means of the phase and group velocities
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and then we compute the physical parameters by means of these coefficients.
We expect that this quite general method can be adjusted for nondestructive
evaluation of other dispersive media, too.

2 Model Description

We follow the Mindlin model of microstructure [11], where the microelement
is taken as a deformable cell (e.g. a molecule of a polymer, a crystallite of a
polycrystal or a grain of a granular material). 1D system of governing equations
in Mindlin model was derived in [6]:

{
ρutt = auxx +Dψx,

Iψtt = Cψxx −Dux −Bψ.
(2.1)

Here u is the macrodisplacement, ψ is the microdeformation and ρ, I, a, B,C
are physical parameters of the material satisfying the inequalities

ρ, I, a, B, C > 0. (2.2)

We rewrite (2.1) in dimensionless variables X = x
L
, T = t

T0

, U = u
U0

where
L, T0, U0 are certain constant values. Introducing in addition the geometric
parameters

δ =
l2

L2
, ǫ =

U0

L
, ϑ =

T 2
0

L2
, (2.3)

where l is the scale of the microstructure, system (2.1) can be written as





ρUTT = aϑUXX +
Dϑ

ǫ
ψX ,

δ
I

ϑl2
ψTT = δ

C

l2
ψXX −DǫUX −Bψ.

(2.4)

For the macrodeformation v we have the relation v = ux = ǫUX . Let us replace
the first equation in (2.4) by the corresponding equation for v, namely

ρvTT = aϑvXX +
Nϑ

2
(v2)XX +DϑψXX ,

and rewrite the resulting system by means of the lower-case letters x and t:





ρvtt = aϑvxx +Dϑψxx,

δ
I

ϑl2
ψtt = δ

C

l2
ψxx −Dv −Bψ.

(2.5)

This system has in total 7 coefficients: ρ, aϑ, Dϑ, I
ϑl2
, C

l2
, D and B related to

the physical properties of the material. We suppose that these coefficients are
unknown. The geometric parameter δ is assumed to be given.

Evidently, it is not possible to recover all coefficients of the homogeneous
system (2.5). Indeed, any vector of coefficients that fits to this system can be
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multiplied by an arbitrary constant to get another vector of coefficients that
also fits to this system. The determination of all coefficients could be possible
only in the case of non-homogeneous system containing mass-forces. Therefore,
we divide equations (2.5) by ρ and I

ϑl2
, respectively, to obtain the system





vtt = a0vxx + αψxx ,

ψtt = a1ψxx − β

δ
v − γ

δ
ψ,

(2.6)

that contains 5 unknown coefficients:

a0 =
aϑ

ρ
, α =

Dϑ

ρ
, a1 =

Cϑ

I
, β =

Dϑl2

I
, γ =

Bϑl2

I
. (2.7)

It seems that a realistic problem could be to determine five coefficients a0, a1,
γ, α and β. However, it was shown in [9] that it is not possible to separate
α and β from their product αβ by means of information gathered from linear
waves in macro-level. Therefore, the inverse problem we will pose and study
consists in determination of four parameters a0, a1, γ and αβ.

We note that the coefficients to be determined satisfy the following a priori
inequalities

a0, a1, γ, αβ > 0, (2.8)

that easily follow from (2.7) in view of the physical inequalities (2.2). Moreover,
in the case when the scale of the microstructure is zero, i.e. δ = 0, from (2.6)
we get v = −γψ/β. Plugging this relation into (2.6) we reach the equation for
the macrodeformation:

vtt =

(
a0 −

αβ

γ

)
vxx.

From this equation we infer the following necessary hyperbolicity condition for
the coefficients:

a0γ − αβ > 0 . (2.9)

3 Dispersion Relation. Wave Packets

Harmonic wave solutions of system (2.6) represent synchronous sinus – oscilla-
tions in the macro- and microlevel [9]:

v(x, t) = Aei(kx−ωt) , ψ(x, t) =
A(ω2 − a0k

2)

αk2
ei(kx−ωt) .

Here A > 0, k ∈ R and ω ∈ R are the amplitude of the macrodeformation, the
wavenumber and the frequency, respectively. The wavenumber and frequency
satisfy the following quartic dispersion equation [9]:

ω4 + κ1ω
2k2 + κ2k

4 + κ3ω
2 + κ4k

2 = 0, (3.1)

Math. Model. Anal., 14(1):57–68, 2009.



60 J. Janno and J. Engelbrecht

where

κ1 = −(a0 + a1), κ2 = a0a1, κ3 = −γ
δ
, κ4 =

a0γ − αβ

δ
. (3.2)

For given ω equation (3.1) has 4 roots:

k = ±ω

√
1

2a0a1

[
a0+a1−

a0γ − αβ

δω2
±R1(ω)

]

where

R1(ω) =

√(
a0−a1−

a0γ − αβ

δω2

)2

+
4a1αβ

δω2
.

We will limit our analysis to acoustic branches of the dispersion relation that
are continuous real-valued functions satisfying the condition w = 0 ⇔ k = 0.
There exist only two solutions that meet these conditions: k = ±k(ω) where

k(ω) = ωR2(ω) , R2(ω) =

√
1

2a0a1

[
a0+a1−

a0γ − αβ

δω2
+R1(ω)

]
. (3.3)

Physically, k = k(ω) and k = −k(ω) correspond to the waves propagating to
the right and left, respectively. The phase velocity of a harmonic wave with
the number k(ω) is given by cph(ω) = ω/k(ω).

Then, a superposition of harmonic waves has the form (we write only the
macro-component v)

v(x, t) =

∫ ∞

−∞

A+(ω)ei(k(ω)x−ωt) dω +

∫ ∞

−∞

A−(ω)ei(−k(ω)x−ωt) dω.

Here A+ and A− are some functions (may be singular distributions, too).
Given a packet of harmonic waves propagating to the right with a central

frequency ω, the group velocity of this packet is equal to cg(ω) = 1
k′(ω) . Exam-

ples of such wave packets are harmonic oscillations with amplitudes modulated
by Gaussian curves (see e.g. [4, 8]).

For our analysis we have to establish the type of dispersion that depends
on the sign of cph(ω)− cg(ω). Differentiating the formula (3.3) we immediately
obtain the relation

k′(ω) =
k(ω)

ω
+

Q1(ω) +Q2(ω)

a0a1R1(ω)R2(ω)
⇒ cph(ω) − cg(ω)

cph(ω)cg(ω)
=

Q1(ω) +Q2(ω)

a0a1R1(ω)R2(ω)
,

where

Q1(ω) =
a0γ − αβ

δω2
R1(ω),

Q2(ω) =

(
a0−a1−

a0γ − αβ

δω2

)
a0γ − αβ

δω2
− 2a1αβ

δω2
.
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In further computations we follow the basic physical inequalities (2.8), (2.9)
and the relations R1(ω), R2(ω), cph(ω), cg(ω) > 0. Firstly, we get

sign (cph(ω) − cg(ω)) = sign (Q1(ω) +Q2(ω)).

Further, using elementary calculations, one can check that

signQ2(ω) = sign

[
a0(a0γ − a1γ − αβ) − a1αβ

(a0γ − αβ)2
− 1

δω2

]
.

Next let us compare the quantitiesQ1(ω) andQ2(ω). Squaring these quantities,
subtracting, simplifying and observing that Q1(ω) > 0, we deduce the relation

sign (Q1(ω) − |Q2(ω)|) = sign (a0γ − a1γ − αβ).

Finally, we come to the following conclusions.

1. In case a0γ − a1γ − αβ > 0 the quantity Q1(ω) +Q2(ω) is positive, hence
cph(ω) > cg(ω) for any ω ∈ R. The model possesses normal dispersion.

2. In case a0γ − a1γ − αβ < 0 the quantities Q1(ω) − |Q2(ω)| and Q2(ω) are
negative for any ω ∈ R. This implies that Q1(ω) + Q2(ω) is negative,
hence cph(ω) < cg(ω) for any ω ∈ R. The model possesses anomalous

dispersion.

3. In case a0γ−a1γ−αβ = 0 there holds Q1(ω)−|Q2(ω)| = 0 and Q2(ω) < 0
for any ω ∈ R. This implies thatQ1(ω)+Q2(ω) = 0, hence cph(ω) = cg(ω)
for any ω ∈ R. The model has no dispersion.

4 Inverse Problem for Phase and Group Velocities

Let us assume that we have the group and phase velocities cg,j and cph,j of two
wave packets with central frequencies ωj, j = 1, 2, such that ω2

1 6= ω2
2 . We pose

the inverse problem to determine the coefficients a0, a1, γ and the product αβ.

In the sequel we will see that the properties of the inverse problem depend
on the type of the dispersion. The latter one can be immediately inferred from
the data, namely the sign of cph,j − cg,j which is the same for j = 1 and j = 2.
Indeed, by virtue of the previous section we have the relation

sign (cph,j − cg,j) = sign (a0γ − a1γ − αβ),

which implies that the case of different signs of cph,1 − cg,1 and cph,2 − cg,2 is
contradictive.

In the sequel we focus ourselves to the solution algorithm and the uniqueness
issues. From (3.1) we easily deduce the relation for the derivative k′(ω):

κ1

(
ωk(ω)2+ω2k(ω)k′(ω)

)
+2κ2k(ω)3k′(ω)+κ3ω+κ4k(ω)k′(ω) = −2ω3. (4.1)

Thus, denoting kj := k(ωj) = ωj/cph,j and k′j := k′(ωj) = 1/cg,j , from (3.1)
and (4.1) we get the following equations for κ1, . . . ,κ4:

k2
jω

2
j κ1 + k4

j κ2 + ω2
j κ3 + k2

j κ4 = −ω4
j , j = 1, 2,

(
ωjk

2
j + ω2

jkjk
′
j

)
κ1 + 2k3

jk
′
jκ2 + ωjκ3 + kjk

′
jκ4 = −2ω3

j , j = 1, 2.
(4.2)

Math. Model. Anal., 14(1):57–68, 2009.
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We propose the following solution procedure that consists of two steps:

1. Solve the 4 × 4 linear system (4.2) for the quantities κ1, . . . ,κ4;

2. Plug κ1, . . . ,κ4 into equations (3.2) and solve them for a0, a1, γ, αβ.

The solution of (4.2) is unique in the case of presence of the dispersion, i.e.
when the parameters satisfy a0γ − a1γ − αβ 6= 0. This follows from the next
theorem, whose proof is shifted to Section 6.

Theorem 1. Assume that a0, a1, γ, α, β satisfy the inequality a0γ−a1γ−αβ 6=
0 and κ1, . . . ,κ4 are given by (3.2) in terms a0, a1, γ, α, β. Furthermore, let

ωj ∈ R, ωj 6= 0, j = 1, 2 be such that ω2
1 6= ω2

2. Let us define kj = k(ωj),
k′j = k′(ωj), j = 1, 2, where k(ω) is given by (3.3) in terms of a0, a1, γ, α, β.

By these definitions, κ1, . . . ,κ4 solve (4.2) with the data ωj, kj , k
′
j, j = 1, 2.

In addition, if κ̃1, . . . , κ̃4 solve (4.2) with the same data, then κ̃j = κj, j =
1, . . . , 4.

It is easy to check that the second subproblem, i.e. the system (3.2), has
two solutions:

a0 = a+
0 , a1 = a−1 , γ = −δκ3, αβ = (αβ)1 := a+

0 γ − δκ4, (4.3)

a0 = a−0 , a1 = a+
1 , γ = −δκ3, αβ = (αβ)2 := a−0 γ − δκ4, (4.4)

where

a±0 = a±1 =
−κ1 ±

√
κ2

1 − 4κ2

2
. (4.5)

From the physical point of view, the solution must satisfy the inequalities
(2.8). The first three inequalities a0 > 0, a1 > 0 and γ > 0 in (2.8) can be
rewritten in the form of necessary conditions for the data κ1,κ2,κ3 of the
second subproblem:

κ1 +
√

κ2
1 − 4κ2 < 0 , κ3 < 0.

The fourth inequality αβ > 0 in (2.8) enables to extract the physical solutions
from the set of mathematical solutions. Note that in view of the definitions of
(αβ)1 and (αβ)2, the relation

(αβ)2 = a−0 γ − a+
0 γ + (αβ)1 (4.6)

is valid. Further, since a−0 ≤ a+
0 (cf. (4.5)) and γ > 0, we have from (4.6) that

(αβ)1 ≥ (αβ)2. Thus, two different cases may occur:

1. (αβ)1 > 0, (αβ)2 ≤ 0;

2. (αβ)1 > 0, (αβ)2 > 0.
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We exclude the third case (αβ)1 ≤ 0, (αβ)2 ≤ 0 because then the problem has
no physical solution at all.

In the case (αβ)1 > 0, (αβ)2 ≤ 0 only the solution (4.3) is physical. Then
in view of (4.6) and the relation a−0 = a−1 we have

0 ≥ (αβ)2 = a−0 γ − a+
0 γ + (αβ)1 = a−1 γ − a+

0 γ + (αβ)1.

This implies the inequality a+
0 γ − a−1 γ − (αβ)1 ≥ 0 for the solution (4.3).

Consequently, either the material has the normal dispersion or dispersion is
absent. In terms of κ-s the relations (αβ)1 > 0, (αβ)2 ≤ 0 can be written as

κ3

(
κ1 +

√
κ2

1 − 4κ2

)
≤ 2κ4 < κ3

(
κ1 −

√
κ2

1 − 4κ2

)
.

In the case (αβ)1 > 0, (αβ)2 > 0 both solutions (4.3) and (4.4) are physical.
Again, in view of (4.6) and the relations a±0 = a±1 we get

0 < (αβ)2 = a−0 γ − a+
0 γ + (αβ)1 = a−1 γ − a+

0 γ + (αβ)1,

0 < (αβ)1 = a+
0 γ − a−0 γ + (αβ)2 = a+

1 γ − a−0 γ + (αβ)2.

This yields a+
0 γ−a−1 γ−(αβ)1 < 0 and a−0 γ−a+

1 γ−(αβ)2 < 0 for the solutions
(4.3) and (4.4), respectively. Consequently, the material has the anomalous
dispersion. In terms of κ-s the relations (αβ)1 > 0, (αβ)2 > 0 can be written
as

κ3

(
κ1 +

√
κ2

1 − 4κ2

)
> 2κ4.

Taking into account Theorem 1 and the discussion concerning the system
(3.2) we come to the following conclusions.

1. In the case of normal dispersion the physical solution of the inverse prob-
lem is unique. It has the form (4.3), where a+

0 , a−1 are given by (4.5) and
κ1, . . . ,κ4 solve (4.2).

2. In the case of anomalous dispersion the inverse problem has two physical
solutions. They have the forms (4.3) and (4.4), where a±0 , a±1 are given
by (4.5) and κ1, . . . ,κ4 solve (4.2).

In non-dispersive media, i.e. when a0γ − a1γ − αβ = 0, Theorem 1 doesn’t
apply. It is easy to see that in this case the inverse problem has infinitely many
solutions. Indeed, then the function k(ω) has the degenerate form k(ω) =
ω/

√
a1 and this means that the data of the inverse problem contain information

about the coefficient a1 only, i.e.:

a1 =
ω2

j

k2
j

= c2ph,j = c2g,j , j = 1, 2.

The remaining coefficients a0, γ and αβ may be arbitrary numbers satisfying
the equation a0γ − a1γ − αβ = 0.

Although the non-dispersive case is rather theoretical, one should take into
account that when the weak dispersion occurs, i.e. a0γ − a1γ − αβ ≈ 0, then
the matrix of (4.2) is ill-conditioned, i.e. close to singular. This may cause
large computational errors in the solution.

Math. Model. Anal., 14(1):57–68, 2009.
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5 Numerical Tests

We have tested the sensitivity of the solution with respect to errors of the phase
and group velocities. The computations were performed using Mathematica
5.1. In all examples we chose δ = 10−4 and the central frequencies ω1 = 1,
ω2 = 2. The synthetic data for chosen parameters a0, a1, γ, α and β were
computed by the formulas cph,j = ωj/k(ωj), cq,j = 1/k′(ωj), j = 1, 2, where
k(ω) is given by (3.3), and is disturbed in the following manner:

cǫph,j = cph,j +Rj
phǫ , cǫg,j = cg,j +Rj

gǫ,

where ǫ is a given noise level and Rj
ph, Rj

g are uniformly distributed random
numbers in the interval [−1, 1]. The vector (aǫ

0, a
ǫ
1, γ

ǫ, (αβ)ǫ) stands for the
solution corresponding to the synthetic noisy data cǫph,j , c

ǫ
g,j , j = 1, 2.

For every noise level we made 50 computations with different random factors
and picked up the largest relative errors of solution components.

In the first example we took a0 = 100, a1 = 1, γ = 10−4, α = 0.1 and
β = 10−4 (the parameters γ and β contain the small quantity l2 (formulas
(2.3),(2.7)), hence it is realistic to choose them small). Then the quantity
related to the dispersion equals a0γ − a1γ−αβ ≈ 10−2. The values of κ-s and
velocities are given as

κ1 = −101 , κ2 = 100, κ3 = −1, κ4 = 99.9,

cph,1 ≈ 9.53463 , cph,2 ≈ 1.15451 , cg,1 ≈ 1.03936 , cg,2 ≈ 0.86617.

The results of experiments are presented in Table 1.

Table 1. Relative errors in case a0 = 100, a1 = 1, γ = 10−4, αβ = 10−5 (strong
dispersion).

ǫ
˛

˛

˛

aǫ
0
−a0

a0

˛

˛

˛

˛

˛

˛

aǫ
1
−a1

a1

˛

˛

˛

˛

˛

˛

γǫ
−γ
γ

˛

˛

˛

˛

˛

˛

(αβ)ǫ
−αβ

αβ

˛

˛

˛

10−4 0.084% 0.008% 0.058% 0.46%

10−3 0.81% 0.034% 0.19% 5.3%

10−2 7.3% 0.86% 1.2% 73%

For comparison, the following relative errors were obtained in the method
of spectral decomposition for the same data in case ǫ = 10−2 (see, [9]):

∣∣∣aǫ
0
−a0

a0

∣∣∣ = 3.6%,
∣∣∣aǫ

1
−a1

a1

∣∣∣ = 2.2%,
∣∣∣γǫ

−γ
γ

∣∣∣ = 1.7%,
∣∣∣ (αβ)ǫ

−αβ

αβ

∣∣∣ = 35%.

In the second example we took a0 = 2.1, a1 = 1, γ = 10−4, α = 1 and
β = 10−4. Then the dispersion is weaker:

a0γ − a1γ − αβ = 10−5.

The values of κ-s and velocities are given by

κ1 = −3.1, κ2 = 2.1, κ3 = −1 , κ4 = 1.1 ,

cph,1 ≈ 1.02470, cph,2 ≈ 1.00949, cg,1 ≈ 0.99970, cg,2 ≈ 0.99398.
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Table 2. Relative errors in case a0 = 2.1, a1 = 1, γ = 10−4, αβ = 10−4 (weak dispersion).

ǫ
˛

˛

˛

aǫ
0
−a0

a0

˛

˛

˛

˛

˛

˛

aǫ
1
−a1

a1

˛

˛

˛

˛

˛

˛

γǫ
−γ
γ

˛

˛

˛

˛

˛

˛

(αβ)ǫ
−αβ

αβ

˛

˛

˛

10−4 15% 0.041% 3.6% 51%

10−3 577% 0.32% 27% 820%

10−2 – 2% 106% –

Due to the much weaker dispersion, the system (4.2) is ill-conditioned. This is
clearly seen from the results presented in Table 2.

Summing up, in the case of strong dispersion the sensitivity of parameters
with respect to the noise is moderate. But in the case of weak dispersion
all parameters except a1 are very sensitive. This is in accordance with the
theoretical statement that in non-dispersive medium only a1 is identifiable. In
addition, we see that αβ is much more sensitive than other parameters even
in the case of strong dispersion. This fact is also observed in the method of
spectral decomposition [9]. Probably the reason is that linear waves in macro-
scale contain scarce information about αβ.

6 Proof of Theorem 1

For any ω ∈ C we define the following set of maximally four elements:

K(ω) = {k ∈ C : k solves (3.1) for given ω} .

Evidently, K(ω) depends on the coefficients κ1, . . . ,κ4 of equation (3.1), and
in turn on a0, a1, γ, α, β. We will need the following lemma proved in [9].

Lemma 1. Assume that a0, a1, γ, α, β satisfy a0γ−a1γ−αβ 6= 0 and κ1, . . . ,κ4

are given by (3.1) in terms of a0, a1, γ, α, β. Moreover, let ω1, ω2 ∈ C, ω1, ω2 6=
0, and kj ∈ K(ωj), j = 1, 2. If ω2

1 6= ω2
2 then the quantities sj =

kj

ωj
satisfy

s21 6= s22.

Further, consider the following equation for a quantity k′ obtained form
(3.1) by differentiation with respect to ω:

2ω3 + κ1

(
ωk2 + ω2kk′

)
+ 2κ2k

3k′ + κ3ω + κ4kk
′ = 0. (6.1)

This can be easily solved for k′:

k′ = − ω(2ω2 + κ1k
2 + κ3)

k(κ1ω2 + 2κ3k2 + κ4)
. (6.2)

Note that in case k ∈ K(ω), the quantity k′ depends on the coefficients
κ1, . . . ,κ4 of the equation (6.1).

Instead of Theorem 1 we prove the following more general theorem.

Theorem 2. Let the assumptions of Theorem 1 be valid for a0, a1, γ, α, β,

κ1, . . . ,κ4 and ωj ∈ C, ωj 6= 0, j = 1, 2 be such that ω2
1 6= ω2

2. Let us choose

some kj ∈ K(ωj), j = 1, 2 and denote by k′j the solution of (6.2) corresponding

Math. Model. Anal., 14(1):57–68, 2009.
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to ω = ωj, k = kj. By this construction, κ1, . . . ,κ4 solve (4.2) with the data

ωj , kj , k
′
j, j = 1, 2. If κ̃1, . . . , κ̃4 solve (4.2) with the same data, then κ̃j = κj,

j = 1, . . . , 4.

Proof. Dividing the first equations in the system (4.2) by ω4
j , second equations

by ω3
j and denoting sj = kj/ωj we obtain the following system






1 + κ1s
2
j + κ2s

4
j + 1

ω2

j

(
κ3 + κ4s

2
j

)
= 0 ,

1 + κ̃1s
2
j + κ̃2s

4
j + 1

ω2

j

(
κ̃3 + κ̃4s

2
j

)
= 0 ,

2 + κ1s
2
j + κ3

ω2

j

+
(
κ1 + 2κ2s

2
j + κ4

ω2

j

)
sjk

′
j = 0 ,

2 + κ̃1s
2
j + eκ3

ω2

j

+
(
κ̃1 + 2κ̃2s

2
j + eκ4

ω2

j

)
sjk

′
j = 0 ,

(6.3)

where j = 1, 2. We plan to eliminate the quantities ωj and k′j from (6.3).
One possibility of elimination is the multiplication of the first equation by
−κ̃3 − κ̃4s

2
j , the second equation by κ3 + κ4s

2
j and addition. This results in

the relations

(κ4κ̃2 − κ̃4κ2)s
6
j + (κ3κ̃2 − κ̃3κ2 + κ4κ̃1 − κ̃4κ1)s

4
j + (κ4 − κ̃4

+ κ3κ̃1 − κ̃3κ1)s
2
j + κ3 − κ̃3 = 0, j = 1, 2.

These relations show that σ = s2j , j = 1, 2, solve the cubic equation:

f(σ) := (κ4κ̃2 − κ̃4κ2)σ
3 + (κ3κ̃2 − κ̃3κ2 + κ4κ̃1 − κ̃4κ1)σ

2

+ (κ4 − κ̃4 + κ3κ̃1 − κ̃3κ1)σ + κ3 − κ̃3 = 0.

Another possibility of elimination contains the following steps. We multiply
in (6.3) the first equation by

(
2ω2

j

(
κ̃1 +2κ̃2s

2
j + eκ4

ω2

j

)
− κ̃4

)
, the second equation

by
(
−2ω2

j

(
κ1+2κ2s

2
j+

κ4

ω2

j

)
+κ4

)
, the third equation by

(
−ω2

j

(
κ̃1+2κ̃2s

2
j+

eκ4

ω2

j

))
,

the fourth equation by ω2
j

(
κ1 + 2κ2s

2
j + κ4

ω2

j

)
and add the obtained equations.

After simplification we get the relation

3(κ4κ̃2 − κ̃4κ2)s
4
j + 2(κ3κ̃2 − κ̃3κ2 + κ4κ̃1 − κ̃4κ1)s

2
j

+ κ4 − κ̃4 + κ3κ̃1 − κ̃3κ1 = 0, j = 1, 2.

From these relations we see that σ = s2j , j = 1, 2, solve the equation f ′(σ) =

0. Consequently, s2j , j = 1, 2 are double roots of the cubic function f(σ).

Since ω2
j , j = 1, 2 are different, Lemma 1 implies that s2j , j = 1, 2 are also

different. This means that the cubic function f(σ) has two different double
roots, hence it is trivial. Setting the coefficients of f(σ) equal to zero, after some
transformations we get the following 4× 4 linear system for the determination
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of vector (κ̃1 − κ1, κ̃2 − κ2, κ̃3 − κ3, κ̃4 − κ4):






κ̃3 − κ3 = 0,

κ3(κ̃1 − κ1) − κ1(κ̃3 − κ3) − (κ̃4 − κ4) = 0,

κ4(κ̃1 − κ1) + κ3(κ̃2 − κ2) − κ2(κ̃3 − κ3) − κ1(κ̃4 − κ4) = 0,

κ4(κ̃2 − κ2) − κ2(κ̃4 − κ4) = 0.

The determinant of this system is

∆ = −κ2κ
2
3 − κ

2
4 + κ1κ3κ4 =

(a0γ − a1γ − αβ)αβ

δ2
6= 0 ,

because αβ > 0 and a0γ−a1γ−αβ 6= 0. This implies that the system has only
the trivial solution. Consequently, κ̃1 = κ1, κ̃2 = κ2, κ̃3 = κ3, κ̃4 = κ4. This
proves Theorem 2. ⊓⊔

Theorem 1 follows from Theorem 2 because k(ωj) ∈ K(ωj), j = 1, 2, and
k′j = k′(ωj) solves (6.2).
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