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Abstract. We present a numerical scheme used to investigate a mathematical model
of tumor growth which incorporates multiple disparate timescales. We simulate the
model with different initial data. The initial conditions explored herein correspond
to a small remnant of tumor tissue left after surgical resection. Our results indicate
that tumor regrowth begins at the pre-surgery tumor-healthy tissue interface and
penetrates back into the original tumor area. This growth is rate-limited by the
reformation of the tumor vascular network.
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1 Introduction

We propose a mathematical model for tumor growth based upon the assump-
tion that growth and motility are mutually exclusive phenomena [1, 4, 10]. Cells
exist in one of two states, and can transit between those states at density de-
pendent per capita rates. We use the Holling type III functional response from
the mathematical population theory as the form of these transitions. Growth
of tumor cells is limited by a single nutrient, here considered to be oxygen.
The model presented here is a simplified variation of the one detailed in [14].
For simplicity, we recreate the heuristic derivation here. More detailed descrip-
tions and justifications of the model and its function forms may be found in
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[14]. A much more complicated three-dimensional model which is essentially
and expanded version of this model is implemented on real brain geometry and
validated by a set of clinical data in [5], indicating that the model framework
proposed in [14] and used in this paper is robust and plausible.

The two states of this model represent cells locked in a proliferative state
and cells locked in a migratory state. Net cellular proliferation is a function of
available nutrient, as experimentally quantified in [7, 15]. Migratory cells do
not grow, but die at a constant per capita rate. Migration is assumed to be
a random walk through the tumor region, with solid boundaries which permit
no cells to invade the surrounding healthy tissue.

Based on these assumptions, we give a word model which describes the
system and then formalize the model into a set of partial differential equations.
The model consists of three dependent variables: migratory cells (M), growing
cells (G), and nutrient (O). The word equations for the model are:

Change of M = Migration + Transitions from G to M
− Transitions from M to G − Death,

Change of G = Birth − Death + Transitions from M to G
− Transitions from G to M,

Change of O = Diffusion − Consumption.

The initial conditions considered in this work correspond to a novel setting
for tumor growth. Rather than investigating early tumor development, we
assume that such a tumor has already grown, been detected, and removed.
Since surgical resection never guarantees removal of all transformed cells [3, 8],
we consider initial conditions which dictate different distributions of possible
remaining cells and study the nature of tumor regrowth, if in fact it does even
regrow. In this setting, we assume spherical symmetry in the region of the
excised tumor, and we assume that all vasculature has been removed along
with the tumor tissue. Thus, the only source of nutrient to the system is from
the exterior boundary.

The organization of this paper is as follows. In Section 2 we provide a
mathematical description of the model with new initial conditions correspond-
ing to the distribution of the remaining cancer cells after the therapy. The
spatial discretization of the model by pseudospectral method is then described
in Section 3. In Section 4 we investigate the equation of the model for the
tumor cell density in the proliferation state. In Section 5 we investigate the
influence of initial conditions on the stability of computations. The numerical
experiments with the model are presented in Section 6. Finally, in Section 7
some concluding remarks are given.

2 Mathematical Model

Let ρM (r, t) be the tumor cell density in migratory state, ρG(r, t) be the tumor
cell density in proliferation state, and O(r, t) be the oxygen concentration.
Here, r denotes radius and t denotes time. We consider the following model
equations, which are introduced in [14] for the cell densities and the oxygen
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concentration:
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with the total cell density ρ(r, t) = ρM (r, t)+ρG(r, t) and the oxygen dependent
growth and consumption functions are
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Here, A and B are the maximal oxygen dependent growth and death rates,
respectively. Constants C1 and C2 are the oxygen thresholds and p and q are
the cooperativity coefficients for their respective processes. The constant σ is
considered to be a survival scaling factor, although its biological interpretation
is vague. The constant γ is a conversion factor relating oxygen concentration
to the cell density. The Laplacian ∆rρM is given by

∆rρM =
∂2ρM

∂r2
+

2

r

∂ρM

∂r

with ∆rρG defined in a similar way. The system (2.1) has to be supplemented
with the initial and boundary conditions. As in [14] we will always assume that
the boundary conditions take the form















∂ρM (0, t)

∂r
=

∂ρM (R, t)

∂r
= 0,

∂O(0, t)

∂r
= 0, O(R, t) = C0,

(2.2)

where C0 > 0 is a given constant. We consider a modification of the initial
conditions considered in [14] which correspond to a specific tumor development.
These conditions are given by

ρM (r, 0) = 0, r ∈ [0, R], (2.3)

ρG(r, 0) =







8.3912 · 10−6 · exp

(

−
r2

0.005

)

, 0 ≤ r < 0.2,

0, 0.2 ≤ r ≤ R,
(2.4)

O(r, 0) = 95, r ∈ [0, R]. (2.5)

As already mentioned in Section 1 in this paper we also consider a novel setting
and assume that the tumor has already grown, has been detected and removed.
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This corresponds to different initial conditions which dictate different distribu-
tions of the remaining cells, and we assume that

ρM (r, 0) = 10−6, r ∈ [0, R], (2.6)

ρG(r, 0) = 8.3912 · 10−6
· exp

(

−
r2

0.005

)

, r ∈ [0, R], (2.7)

where O(r, 0) is defined as in [14] by (2.5). Notice that the initial functions
(2.5), (2.6) and (2.7) are even with respect to r and can be symmetrically
extended over the interval [−R, R]. The overall new model consisting of (2.1),
boundary conditions (2.2), and the initial conditions (2.5), (2.6) and (2.7) will
be discretized with respect to the space variable r by pseudospectral method
and then integrated in time by the code ode15s from Matlab ODE suite [12].

3 Pseudo-spectral Radial Discretization

To compute numerical approximations to the unknown functions ρM , ρG, O
we discretize the system (2.1) with respect to r ∈ [−R, R] by pseudo - spec-
tral method based on the Chebyshev-Gauss-Lobatto points ri = −R cos

(

iπ
N

)

,
for i = 0, 1, . . . , N . To omit the point of singularity r = 0 we apply only
odd numbers N . We have chosen this method because it is fast, efficient, and
very accurate. Pseudo-spectral methods are exponentially convergent, i.e., the
error behaves like O(αN ) for some 0 < α < 1, compare [6, 9], while the finite
difference methods converge only with polynomial rate, i.e., the error behaves
like O(1/Np) for some integer p, the order of the method. Hence, we can employ
a significantly smaller number of grid points N to get a comparable accuracy
to finite difference methods with a much larger number of grid points.

The first order derivatives ∂ρM (ri, t)/∂r can be replaced by the spectrally
accurate approximations

∂ρM (ri, t)

∂r
≈

N
∑
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d
(1)
i,j ρM (rj , t) (3.1)

for i = 0, 1, . . . , N . Here, D(1) =
[

d
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]N

i,j=0
is the differentiation matrix of the

first order, compare [2] and [11]. The approximations (3.1) and the boundary
conditions (2.2) lead to
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which results in the approximations for ρM (r0, t) and ρM (rN , t) of the form
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Then, the approximations (3.1) and (3.2) lead to

(

ρM

)

r
(t) ≈ D ρM (t) + ρ0(t) d0 + ρN (t) dN . (3.3)

Now, applying (3.3) with (2.2) gives

(

ρM

)

rr
(t) ≈ D2 ρM (t) + ρ0(t)D d0 + ρN (t)D dN . (3.4)

The approximations (3.3) and (3.4) result in

∆rρM ≈ D2 ρM (t) + ρ0(t)D d0 + ρN (t)D dN

+ 2Ir ·
(

D ρM (t) + ρ0(t) d0 + ρN (t) dN

)

, (3.5)

where ‘·’ stands for component-wise multiplication of vectors.
It can be checked that the denominators in (3.2) satisfy the inequalities
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> 120, for all N ≥ 8.
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Therefore, computing the approximations ρ0(t) and ρN (t) from (3.2) does not
cause significant rounding errors. However, since the boundary conditions in
(2.2) are different for the functions ρM and O, for the Laplacian ∆rO, we
apply a different approximation than (3.5). For this approximation, we take
the advantage from the fact that the values of O are known at the boundaries
and are given exactly by C0 (the boundary condition for O in (2.2)). To
derive the approximation for ∆rO we apply (3.1) with ρM replaced by O and
additionally we apply the spectrally accurate approximation

∂2O(ri, t)

∂r2
≈

N
∑

j=0

d
(2)
i,j O(rj , t), i = 0, 1, . . . , N,

where D(2) =
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d
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i,j=0
is the differentiation matrix of the second order, com-

pare with [2, 11]. Let the vectors O(t), (O)r(t) and (O)rr(t) be defined in
the same way as the vectors ρM (t), (ρM )r(t) and (ρM )rr(t). Then the vector
(O)r(t) is approximated by
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From (3.6) and (3.7) we obtain the approximation

∆rO ≈ D2 O(t) + C0 d
(2)
0 + C0 d
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N + 2Ir ·

(

D O(t) + C0 d0 + C0 dN

)

. (3.8)

Application of (3.5) and (3.8) to (2.1) results in the semi-discrete system
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with the vectors f (i)(t) =
(

f
(i)
1 (t), . . . , f

(i)
N−1(t)

)T
, i = 1, 2, 3, defined by

f
(1)
j (t) =
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K2
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(2)
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f
(3)
j (t) = −ΦC(O(rj , t))ρG(rj , t), j = 1, 2, . . . , N − 1.

The resulting semi-discrete system (3.9) of differential equations is stiff and
in the next sections, we apply the code ode15s from the Matlab ODE suite
[12] to compute approximations to ρM , ρG, and O. This code is designed for
stiff differential systems. It is much more efficient than the code ode45 based
on embedded pair of explicit Runge-Kutta methods of order p = 4 and p = 5
which is designed for non-stiff equations.

4 Investigations of the Equation for the Tumor Cell Den-

sity in the Proliferation State

In this section, we investigate the second equation of the model (2.1). It is used
to compute the tumor cell density ρG(r, t) in the proliferation state and it can
be written in the form:

∂ρG

∂t
= λ(r, t)ρG +

K2
G

K2
G + ρ2

ρM , (4.1)

with the variable coefficient

λ(r, t) =
(

A
Op

Cp
1 + Op

− B
(

1 − σ
Oq

Cq
2 + Oq

) ρ

ρmax

−
ρ2

K2
M + ρ2

)

. (4.2)

Since the functions O(r, t) and ρ(r, t) = ρM (r, t)+ρG(r, t) are symmetric about
the r = 0 axis, λ(r, t) has the same property. Our goal is to investigate the
sign of the function λ(r, t) for t ≥ 0 and r ∈ [0, R].

Note that λ(r, t) evolves differently for different initial functions ρ(r, 0) and
O(r, 0). Fig. 1 shows different coefficients λ(r, t) computed by the definition
(4.2) with the functions ρ(r, t) and O(r, t) obtained from model (2.1)-(2.2)
supplemented by three different sets of initial conditions:

1. (2.3), (2.4), and (2.5) for case (a),

2. (2.5), (2.6), and (2.7) for case (b),

3. (2.5), (2.7) and

ρM (r, 0) = 10−7, r ∈ [0, R], (4.3)

for case (c).
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Case (a): λ(r, t) with numerical solutions started from (2.3)-(2.5)

Case (b): λ(r, t) with numerical solutions started from (2.5)-(2.7)

Case (c): λ(r, t) with numerical solutions started from (2.5), (2.7), and (4.3)

Figure 1. The coefficient λ(r, t) for three different cases a) − c).
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Case (a) corresponds to early tumor development without medical treat-
ment, compare with [14], where the modification of this condition is consid-
ered; while cases (b) and (c) correspond to tumor development after surgical
resection of already grown tumors which may remain transformed cells, [3], [8].

For Fig. 1, the numerical approximations to ρM (r, t), ρG(r, t), and O(r, t)
are computed by solving the semi-discrete system (3.9) for r ∈ [−R, R]. We
apply the code ode15s (see [12]) with AbsTol = 10−8 and RelTol = 10−6

to integrate (3.9) in time and then we use the definition (4.2) to compute
the approximations to λ(r, t). To compute the numerical approximations to
ρM (r, t), ρG(r, t), and O(r, t), for r ∈ [−R, R], we extend the corresponding
initial conditions over the interval [−R, R] by using the fact that the all three
initial functions in the cases (a), (b), and (c) are even as functions of r.

Note that, since A > 0, by the definition (4.2), the initial functions in cases
(a),(b) and (c) imply

λ(r, 0) > 0, for all r ∈ [−R, R].

Since λ(r, t) is a continuous function, this inequality is maintained also for
t > 0 which are close to zero. This observation is confirmed by the numerical
experiments presented in Fig. 1. However, Fig. 1 shows that the values of the
function λ(r, t) start to be negative for t > T , with some T sufficiently large.
Moreover, λ(r, t) < 0, for t > T and even all r ∈ [−R, R], in the cases (b) and
(c). This shows that the numerical computations for the model (2.1)-(2.2) are
stable provided that stable numerical methods are applied to the semi-discrete
system (3.9) to integrate it in time t.

The goal of this paper is to investigate the cases (b) and (c), which cor-
respond to the cancer development from the cells remained after surgical re-
sections of previously grown tumors. The case (a) was investigated in [14]. In
Section 5, we present results of numerical experiments for the cases (b) and (c).
The experiments show stable computations and confirm the above analysis of
the coefficient λ(r, t).

5 Analysis of Initial Conditions for the Cancer Model in

Spherical Coordinates

The goal of this section is to investigate the numerical solutions to ρG(r, t) and
ρM (r, t) started at t = 0 from different initial functions, which correspond to
different surgical resections. We consider three different sets of initial conditions
which correspond to a small remnants of tumor cells after surgery. These
conditions are given by:

1. (2.5), (2.6) and (2.7) for case (b),

2. (2.5), (2.7) and (4.3) for case (c),

3. (2.5), (2.7) and ρM (r, 0) = 10−6

(

exp
(

−
(r2

−1)2

0.5

)

+ 1

)

for case (d).
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We would like to mention again that the case (a) in Section 4 corresponds to
early tumor development. Some modification of this condition was investigated
in [14].
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Figure 2. Numerical solutions to (2.1)–(2.2) at t = 15 days (right-hand side pictures) and
their initial values at t = 0 (left-hand side pictures). Proliferating cells are denoted by solid
lines and migrating cells by dashed lines.

Note that all of the initial functions are even with respect to r and can
be symmetrically extended over the interval [−R, R]. The initial functions are
presented in the first column of Fig. 2. In the cases (b) and (c), the tumor cell
density in proliferation state is distributed uniformly for r ∈ [0, R], while in
the case (d), the density is nonuniform with a maximum located at r = 1. In
the case (d), the originally grown tumor was not uniformly removed during the
surgical resection which left transformed cells distributed in a nonuniform way
(Fig 2, case (d) at t = 0). The leftover cells initiate further developments of
new tumors. The densities of the new regrown cells are presented in the second
column of Fig 2.

The second column of Fig 2 shows numerical approximations to ρG(r, t) and
ρM (r, t) at t = 15 days. In all of the cases (b), (c) and (d) the tumor densities
regrow. Although the initial conditions are different in the case (d) than in the
cases (b) and (c), the regrowths develop similarly in all of the cases. Moreover,
Fig 2 shows that the regrown cells are concentrated at the boundary of the
surgical resection site.

Fig. 3 presents numerical approximations to ρG(r, t) and ρM (r, t) at t =
5, 10, 15 in the cases (b) and (c). We observe that both densities ρG(r, t) and
ρM (r, t) are somewhat higher in case (b) than in case (c). This can be explained
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Figure 3. The numerical solutions to (2.1)–(2.2), (2.5) and (2.7) with ρM started from
the initial function (2.6): left-hand side pictures, and from (4.3): right-hand side pictures.
Proliferating cells are denoted by solid lines and migrating cells by dashed lines.

by the fact that the initial function ρM (r, 0) is 10 times larger in case (b) than
in case (c).

The numerical solutions from Fig. 2 and 3 are obtained by the pseudospec-
tral radial discretization on the interval [−R, R] and by the code ode15s. The
parameter N = 128 is used for the pseudospectral method and AbsTol = 10−8,
RelTol = 10−6 are applied for the time integration. Because of symmetry of
the solutions, they are presented only on the part [0, R].

6 Numerical Computations of Tumor Cell Densities and

Oxygen Concentrations

In this section, we investigate the model (2.1)–(2.2) supplemented by the initial
conditions (2.5)–(2.7).

Fig. 4 presents tumor cell densities in migratory and proliferation states
after t = 8, 9, 10, 11, 12, 14, 35, and 40 days. The pictures of Fig. 4 show
differences between the cell densities developed in different time ranges. We
observe that the cells grow rapidly between t = 5 and t = 14 days, their growth
slows down between t = 14 and t = 35 and after t = 35 days the cell densities do
not change. Therefore, we conclude that, for (2.5)–(2.7), the most significant
changes in the tumor development occur between the 8th and the 14th day.

The development of the oxygen concentration is presented in Fig. 5. After
about t = 12 days the oxygen concentration stays constant like in Fig. 4, where

Math. Model. Anal., 14(1):43–56, 2009.



54 Z. Jackiewicz, Y. Kuang, C. Thalhauser and B. Zubik-Kowal

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

c
e

ll
 d

e
n

s
it
y

t=9

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8
t=10

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

c
e

ll
 d

e
n

s
it
y

t=11

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8
t=12

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

radius

c
e

ll
 d

e
n

s
it
y

t=14

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

radius

t=35

Figure 4. The numerical solutions ρM (r, t) and ρG(r, t) to (2.1)–(2.2), (2.5)–(2.7). Prolif-
erating cells are denoted by solid lines and migrating cells by dashed lines.
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Figure 5. The numerical solution O(r, t) to (2.1)–(2.2), (2.5)–(2.7). After 12 days the
oxygen values O(r, t) stay the same.

the tumor cell densities stay constant after about t = 35. Moreover, Fig. 4
and 5 show that the tumor cell densities, especially in migratory state (dotted
lines), are higher in the regions with higher oxygen concentration and lower in
the regions with lower oxygen concentration.

7 Conclusions

As shown in Fig. 3 and 4, we observe a quick (t < 14 days) regrowth of
tumor density back into the vacant cavity. This regrowth is driven primarily by
leftover migratory cells converting back into a proliferative state in a suddenly
nutrient-rich environment. This regrowth occurs at the boundary of the surgical
resection site; cells more towards the core have little opportunity to establish
a large colony (compare initial condition densities 1 and 2 in Section 5 with
resulting steady state densities in Figures 4 and 5). The inward extent of growth
is limited by consumption of diffusible nutrients (Fig. 5). Taken together, the
data generated by this model suggest that the process of tumor recurrence after
surgery is rate-limited by the reconstruction of the angiogenic network needed
to support large tumor structures. Given the timescale disparities between
clinically observed bulk tumor growths (order weeks to months, see [13] for
example) versus small-scale tumor growth (order days), one could approximate
the rate of vascularization by the rate of bulk tumor expansion.
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