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Abstract. Eigenvalue problems of the form x′′ = −λf(x+) + µg(x−), x′(a) = 0,
x′(b) = 0 are considered. We are looking for (λ, µ) such that the problem (i), (ii) has
a nontrivial solution. This problem generalizes the famous Fučík problem for piece-
wise linear equations. In our considerations functions f and g may be nonlinear.
Consequently spectra may differ essentially from those for the Fučík equation.
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1 Formulation of the Problem

In this article we consider equations

x′′ = −λf(x) (1.1)

and
x′′ = −λf(x+) + µg(x−), (1.2)

where λ and µ are the parameters, f, g : [0, +∞) → [0, +∞) are locally Lips-
chitz continuous functions such that f(0) = g(0) = 0, x+ = max{x, 0}, x− =
max{−x, 0}. The boundary conditions are of the Neumann type

x′(a) = 0, x′(b) = 0. (1.3)

We are looking for such values of λ (resp.: λ and µ) that the problem (1.1),
(1.3) (resp.: (1.2), (1.3) has a nontrivial solution.

The spectrum of the first problem (if any) is relatively simple one-dimen-
sional set of points. A report on investigation of this problem and a plenty of
interesting results may be found in [4].

The spectrum of the second problem may consist of a set of planar curves
as in the case of the Fučík equation

x′′ = −λx+ + µx−, (1.4)
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which is obtained from (1.2) if f = g = x. Intensive literature is devoted to
spectral problems for the Fučík equation and generalizations. We mention the
recent articles [2, 7] which also contains related references. The first branches
of the spectrum for the problem (1.4), (1.3) are depicted in Fig. 1.

Figure 1. The Neumann problem: classical spectrum.

The spectrum of the problem (1.4), (1.3) for a = 0, b = 1 is given by the
relations (i = 1, 2, . . .):

F±
i =

{

(λ; µ) :
1√
λ

+
1√
µ

=
2(b − a)

iπ

}

, i = 1, 2, . . . .

The branch F+
i (resp: F−

i ) consists of points (λ, µ) such that equation (1.4)
has a solution which satisfies the Neumann boundary conditions, has exactly i
zeros in (a, b) and the derivative x′ at t = a is positive (resp: negative).

The rest of the paper is organized as follows. In Section 2 we consider
the one parameter problem. In Section 3 we study problem (1.2), (1.3) and
provide the theorem which gives description of the spectrum. The subsection
3.1 is devoted to relatively simple case when the spectrum is similar to the
classical one. The subsection 3.2 contains material showing that the spectrum
of the problem (1.2), (1.3) may differ essentially from the classical one. In
Section 4 an example is considered which shows that branches of the spectrum
may be of usual nature (planar hyperbola looking curve) or may contain several
disjoint components and some of these components may be even bounded.

2 One-Parameter Problems

Consider the problem

x′′ + f(x) = 0, x(0) = 0, x′(0) = α > 0.

Let t1(α) be the time map (the first zero function). By rescaling the time t,

one easily can show that function U(α, λ) = 1√
λ
t1

(

α/
√

λ
)

defines the time

map for the problem

x′′ + λf(x) = 0, x(0) = 0, x′(0) = α > 0.
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A respective solution satisfies the following zero Dirichlet boundary conditions

x(a) = 0, x(a + U(α, λ)) = 0 (2.1)

and is symmetric with respect to the middle point of the interval (a, a+U(α, λ)).
If we consider equation

x′′ + λf(x+) − λf(x−) = 0, (2.2)

then also negative valued solutions are allowed and functions ±x(t + b−a
2 ; α, λ)

solve the Neumann problem (2.2), (1.3), where x(t; α, λ) is a positive solution
of the problem

x′′ + λf(x) = 0, x(a) = 0, x(b) = 0.

If there exist solutions of problem (2.1) with multiple zeros then, due to
autonomity of the equation, solutions of the Neumann problem can be con-
structed in the same interval. More precisely, the following statement is true.

Proposition 1. Let (α, λ), α > 0, λ > 0 be solutions of the equation

U(α, λ) =
1

n
(b − a), n = 1, 2, . . . .

Then the Dirichlet problem

x′′ + λf(x) = 0,

x(a) = 0, x(b) = 0, x′(a) = α, x(t) has exactly (n − 1) zeros in (a, b)

and the Neumann problem

x′′ + λf(x+) − λf(x−) = 0,

x′(a) = x′(b) = 0, |x′(z)| = α, if x(z) = 0,

x(t) has exactly n zeros in (a, b)

have solutions.

For instance, equation U(α, λ) = b − a defines all pairs (α, λ), for which
a positive solution of the Dirichlet problem exists in the interval (a, b) and a
solution with exactly one zero in (a, b) exists for the Neumann problem. The
values of derivative x′ at the zero points of x are equal in modulus to α. For
example, for equation

x′′ = −λx3,

in the interval (0, 1) the respective relation between α and λ, which connects
positive solutions of the Dirichlet problem and solutions of the Neumann prob-
lem with exactly one zero, is given by

α1/2λ1/4 = 25/4

∫ 1

0

dx√
1 − x4

.

Notice that for any α > 0 there exists the respective λ and vice versa.

Math. Model. Anal., 14(1):33–42, 2009.
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If we look for the spectrum of the Neumann problem (2.2), (1.3) then we
should consider the Dirichlet problem

x′′ = −λf(x), x(0) = 0, x(1) = 0.

This problem may have a continuous spectrum as the following example of

x′′ = −λx3, x(0) = 0, x(1) = 0

shows. Therefore one formulate some normalization condition which prevents
continuous spectrum. This additional condition might be |x′(0)| = 1.

3 Two-Parameter Problems

Consider the problem

x′′ =

{

−λf(x), if x ≥ 0

µg(−x), if x < 0,
x′(a) = x′(b) = 0.

Suppose that f and g satisfy the conditions (A1) and (A2) respectively.

(A1) A first zero t1(γ) of a solution to the Cauchy problem

u′′ = −f(u), u(a) = 0, u′(a) = γ

exists for any γ > 0.

(A2) A first zero τ1(δ) of a solution to the Cauchy problem

v′′ = g(v), v(a) = 0, v′(a) = −δ

exists for any δ > 0.

Let us introduce the normalization condition |x′(z)| = 1, where z is a zero
point.

Remark 1. Without the normalization condition the problem may have (and
generally has) a continuous spectrum.

We consider the following problem

x′′ =











−λf(x), if x ≥ 0

µg(−x), if x < 0,

x′(a) = x′(b) = 0, |x′(z)| = 1, {z ∈ (a, b) : x(z) = 0}.
(3.1)

Theorem 1. Let the conditions (A1) and (A2) hold with the functions t1(γ)
and τ1(δ). The Fučík spectrum for the problem (3.1) is given by the relations

(i = 1, 2, . . .) :

F±
i =

{

(λ; µ) :
1√
λ

t1

( 1√
λ

)

+
1√
µ

τ1

( 1√
µ

)

=
2(b − a)

i

}

. (3.2)
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Proof. Consider the problem

x′′ = −λf(x), x′(a) = 1, x(a) = 0,

where λ > 0 is fixed. Let a + 2T1(λ) be the first zero of x(t) in (a, +∞). Then

it follows from [1] that 2T1 = t1
( 1√

λ

)

/
√

λ. Then function u(t) = x(t − T1)

solves the problem

u′′ = −λf(u), u′(a) = 0, u(a + T1) = 0, u(t) > 0, t ∈ (a, a + T1).

Notice that u′(a + T1) = −1. Consider the problem

y′′ = µg(−y), y′(a) = −1, y(a) = 0,

where µ > 0 is fixed. Then the first zero of y(t) in (a, +∞) is at t = a + 2T2,

where 2T2 = τ1

( 1√
µ

)

/
√

µ (see, [1]). Then function v(t) = y(t − T1) satisfies

the conditions
v(a + T1) = 0, v′(a + T1) = −1

and it is a smooth continuation of u(t). The function

w(t) =

{

u(t), if t ∈ [a, a + T1]

v(t), if t ∈ [a + T1, a + T1 + T2],

is a C2-solution of the equation (3.1) with the conditions

w′(a) = 0, w′(a + T1 + T2) = 0.

Besides, this function has exactly one zero (at t = a + T1) in the interval
(a, a+T1+T2). If λ and µ are such that a+T1+T2 = b then (λ, µ) ∈ F+

1 . Thus
the relation which defines the first positive branch of the spectrum is given by

F+
1 =

{

(λ; µ) :
1

2

1√
λ

t1

( 1√
λ

)

+
1

2

1√
µ

τ1

( 1√
µ

)

= b − a

}

.

In a similar manner other relations (3.2) can be obtained. ⊓⊔

3.1 Some properties of spectra

Let us consider the functions

U(λ) :=
1√
λ

t1

( 1√
λ

)

, V (µ) :=
1√
µ

τ1

( 1√
µ

)

,

where t1 and τ1 are the time maps associated with f and g respectively. Due
to Theorem 1 the spectrum of the Neumann problem is a union of pairs (λ, µ)
such that

i

2
U(λ) +

i

2
V (µ) = b − a, i = 1, 2, . . . .

Math. Model. Anal., 14(1):33–42, 2009.
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Proposition 2. If functions U and V both are monotonically decreasing from

+∞ to 0, then the spectrum of the Neumann problem is essentially the classical

one.

Points λi (resp: µi) of intersection of the graph of U(λ) (resp: V (µi)) with
the straight line U = b − a (resp: V = b − a) gives vertical (resp: horizontal)
asymptotes on the (λ, µ) plane for the branches F±

i of the spectrum, i =
1, 2, . . . . Acting like in [3, 6], one can obtain formulas:

U(λ) = 2

∫ x+

0

dx
√

1 − 2λF (x)
,

U ′(λ) = − 2

λ

∫ x+

0

(

1 − F (x)F ′′(x)

f2(x)

)

dx
√

1 − 2λF (x)
,

U(λ) = 4

∫ x+

0

(

3

2
− F (x)F ′′(x)

f2(x)

)

√

1 − 2λF (x) dx

U ′(λ) = − 2

λ

∫ x+

0

(

3 − 7
F (x)F ′′(x)

f2(x)
+ 6

(

F (x)F ′′(x)

f2(x)

)2

− 2
F 2(x)F ′′′(x)

f3(x)

)

√

1 − 2λF (x) dx,

where x+ is a maximal value of a solution to the Cauchy problem

x′′ + f(x) = 0, x(a) = 0, x′(a) = 1 and F (x) =

∫ x

0

f(s) ds.

Proposition 3. If 1 − F (x)F ′′(x)/f2(x) > 0 or

3 − 7
F (x)F ′′(x)

f2(x)
+ 6

(

F (x)F ′′(x)

f2(x)

)2

− 2
F 2(x)F ′′′(x)

f3(x)
> 0,

then function U is monotonically decreasing.

The dual statement is valid for V where F should be substituted by G, the
anti-derivative of g.

3.2 Location of branches

If functions f and g are majorized and minorized by linear functions then the
differential inequalities in [5, Ch. 15, Theorem 15.3] lead to the following
result. Suppose that

k2
1x < f(x) < k2

2x, m2
1x < g(x) < m2

2x, x > 0.

Let ξi be the first zero of a solution to the problem

x′′ = −k2
i x, x(0) = 0, x′(0) = 1, i = 1, 2 (3.3)

and let ηi be the first zero of a solution to the problem

x′′ = −m2
i x, x(0) = 0, x′(0) = 1, i = 1, 2. (3.4)
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Proposition 4. ξ2√
λ

< 1√
λ

t1

(

1√
λ

)

< ξ1√
λ

for any λ > 0.

Proof. The proof follows from comparison of the angular functions for equa-
tions x′′ + f(x) = 0 and (3.3), which results in the inequalities ξ2 < t1 < ξ1 for
the first zeros. ⊓⊔

The dual proposition states that

Proposition 5. η2√
µ < 1√

µ τ1

(

1√
µ

)

< η1√
µ for any µ > 0.

Corollary 1. Branch F±
N of the spectrum is located in the region between the

curves Γ1 = {(λ, µ) : λ > 0, µ > 0, ξ1√
λ

+ η1√
µ = 2(b−a)

N } and Γ2 = {(λ, µ) : λ >

0, µ > 0, ξ2√
λ

+ η2√
µ = 2(b−a)

N }.

The proof follows from representation of the branches in Theorem 1 and propo-
sitions given above.

Corollary 2. There are no branches F±
N , F±

N+1, . . . of the spectrum in the region
defined by

ξ2√
λ

+
η2√
µ

>
2(b − a)

N
.

Corollary 3. There are no branches F±
1 , . . . , F±

N of the spectrum in the region
defined by

ξ1√
λ

+
η1√
µ

<
2(b − a)

N
.

Proposition 6. Let Υ be a Jordan curve in the region {(λ, µ) : λ > 0, µ > 0}
such that

1√
λ

t1

( 1√
λ

)

+
1√
µ

τ1

( 1√
µ

)

<
2(b − a)

N
(resp. >) (3.5)

for any (λ, µ) ∈ Υ and, at the same time,

1√
λ∗

t1

( 1√
λ∗

)

+
1√
µ∗

τ1

( 1√
µ∗

)

>
2(b − a)

N
(resp. <) (3.6)

for some (λ∗, µ∗) ∈ interior Υ. Then the branch F±
N has an isolated component

in interior Υ .

Proof. Indeed, the branch F±
N is defined by the relation (3.5) where the equal-

ity sign “=” replaces “>” or “<”(cf. (3.2)). Therefore there are no points of F±
N

on Υ . On the other hand, in view of (3.6), there are points of F±
N in interior

Υ. ⊓⊔

Math. Model. Anal., 14(1):33–42, 2009.
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4 Example

Let us consider function f(x) = 0.25xe1.115x3−1.9x2+1. Function f is concave-
convex, strictly increasing and smooth (see Fig. 2). Let us define f for negative
x as f(x) = −f(−x). The first zero function (time map) is depicted in Fig. 3
and the following limits are valid:

lim
α→0+

t1(α) =
2π√

e
= 3.81 . . . , lim

α→+∞
t1(α) = 0.

Figure 2. The graph of f(x). Figure 3. The graph of time map func-
tion t1.

Figure 4. The curves Γi for i = 1, 2, 3. Figure 5. The graph of the function
1

2
U(1, λ).

Let us consider curves Γi : U(α, λ) = 5
i , (i = 1, 2, 3), presented in Fig. 4.

A graph of function 1
2 U(1, λ) has three crosspoints with straight line y = 5

2
(see, Fig. 5). The abscissas λ1 = 0.17394, λ2 = 0.417732, λ3 = 0.829269 relate
to abscissas of crosspoints of the curve Γ1 with straight line α = 1.

Crosspoints (λ1, λ1), (λ2, λ2), (λ3, λ3) of the branch F±
1 : 1

2 U(1, λ) +
1
2 U(1, µ) = 5 with the bisectrix are presented in Fig. 6. The branch consists
of two components, one component is bounded. The straight line λ = λ0,
λ0 = 0.3, intersects F±

1 at three points (λ0, µj) (j = 1, 2, 3), where µ1 =
0.144924, µ2 = 0.511889, µ3 = 0.772549. Three solutions of the Neumann
problem (3.1), f = g in the interval [0, 5] with one zero corresponding to pairs
(λ0, µj) (j = 1, 2, 3) are depicted in Fig. 7.

The relative location of first three branches of the spectrum is shown in
Fig. 8.
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Figure 6. The branch F±

1
consists

of two components.
Figure 7. Solutions of the problem (3.1),
f = g, a = 0, b = 5, for λ = λ0, µ =
µ1, µ2, µ3.

Figure 8. The first three branches of the spectrum
(scheme).

5 Conclusions

We see that the spectrum of the problem with nonlinear f and g may differ
essentially from the classical one. The branches of the spectrum do not in-
tersect, and they can be located asymmetrically with respect to the bisectrix.
The structure of the branches depend on properties of the functions U and V ,
which, in turn, are defined via t1 and τ1 functions. It appears that the non-
standard behaviour of branches of the spectrum is due to non-monotonicity of
the functions U and/or V. Branches may contain several disjoint sets which
consist of curves tending to asymptotes. The interesting thing is that branches
(especially the first ones) may contain separated bounded components. In-
vestigations of this kind are important to the study of multiple solutions of
nonlinear boundary value problems.

Math. Model. Anal., 14(1):33–42, 2009.
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