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1 Introduction

Fractional calculus has grasped the attention of many researchers through re-
cent decades as it is a solid and growing work each in the theoretical and applied
concept. Several researchers tried to suggest various kinds of fractional oper-
ators that deal with derivatives and integrals of non-integer orders and their
applications, (for more details see [1,17,18,22,24]). There are some articles that
presented studies about theory and analysis of ψ- fractional differential equa-
tions, we mention here some works on fractional differential equations including
ψ−fractional derivative with respect to another function (see [2,3,16,19,20,25]
and references therein). Recently, Kilbas et al. in [18] introduced the proper-
ties of fractional integrals and fractional derivatives of a function with respect
to another function. Some of generalized fractional integral and differential
operators and their properties were introduced by Agrawal in [4]. On the other
hand, Furati and Kassim, [15] studied the existence, uniqueness and stability of
global solutions for a Cauchy-type problem involving Hilfer fractional derivative

Dα,β
a+ u(t) = f(t, u(t)), 0 < α < 1, 0 ≤ β ≤ 1, t > a,

I1−γa+ u(a+) = ua, γ = α+ β − αβ.

Very recently, Sousa and Oliveira [9] proposed a ψ– Hilfer fractional oper-
ator and extended few previous works dealing with the Hilfer [15, 17]. More-
over, they discussed some important qualitative properties of solutions such
as existence, uniqueness, dependence continuous, and stability results, see
[8, 10,11,12,13,14].

In the same context, Harikrishnan et al. [16], studied the existence and
uniqueness results of fractional pantograph differential equations with ψ–Hilfer
fractional derivative and nonlocal conditions

Dα,β;ψ
a+ u(t) = f(t, u(t), λu(t)), 0 < λ < 1, t ∈ (a, b],

I1−γ;ψa+ u(t) |t=a=

m∑
i=1

ciu(τi), τi ∈ (a, b],

where 0 < α < 1, 0 ≤ β ≤ 1 and γ = α+ β − αβ.
Motivated by above work, in this paper, we prove the existence, unique-

ness, and Ulam–Hyers–Rassias stability of solutions of a nonlinear fractional
integro-differential equation with nonlocal condition and ψ−Hilfer fractional
derivatives of the form:

Dα,β;ψ
a+ u(t) = f

(
t, u(t),

∫ t

0

K(t, s, u(s))ds

)
, t ∈ (a, b], (1.1)

I1−γ;ψa+ u(t) |t=a = ua + g(u), α ≤ γ = α+ β − αβ, (1.2)

where 0 < α < 1, 0 ≤ β ≤ 1, ua is a constant, Dα,β;ψ
a+ (·) is the generalized Hilfer

fractional derivative introduced by Sousa and de Oliveira in [9], I1−γ;ψa+ (·) is the
ψ−fractional integral in the sense of Riemann-Liouville, f : (a, b]×R× R −→ R
and g : C([a, b],R) → R are appropriate functions with g(u) =

∑m
k=1 cku(τk),
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τk ∈ (a, b), ua ∈ R, τk (k = 0, 1, ..,m) are prefixed points satisfying a < τ1 <
τ2 < ... < τm < b, ck is real numbers, and K : D × R −→ R is continuous on
D = {(t, s) : a ≤ s ≤ t ≤ b}. For brevity let us take Hu(t) =

∫ t
0
K(t, s, u(s))ds.

The plan of this paper is as follows. In Section 2, we present some basic
definitions, preliminary facts that will be useful throughout the paper. In
Section 3, we list the hypotheses and obtain an equivalent integral equation of
the Cauchy type problem (1.1)–(1.2) in weighted space. Further, we prove the
existence of solution of the problem (1.1)–(1.2). The uniqueness result, Ulam-
Hyers and Ulam-Hyers-Rassias stability to such equations in the weighted space
C1−γ;ψ[a, b] are discussed in Section 4. In Section 5, we investigate Mittag
operational matrix to approximate any finite integration. An example with
numerical results is provided in Section 6. Finally, the conclusions are given.

2 Mathematical preliminaries

In this section, we introduce some notations, definitions, and preliminary facts
related by fractional calculus. The following observations are taken from [9,18].
The two-parameters Mittag-Leffler function is given by:

Eµ,ν(z) =

∞∑
k=0

zk

Γ (µk + ν)
, µ, ν > 0, z ∈ R. (2.1)

where Γ (·) is the Euler Gamma function. We consider the weighted spaces
Cγ;ψ[a, b] and Cnγ;ψ[a, b] as follows

Cγ;ψ[a, b] = {h : (a, b]→ R : (ψ(t)− ψ(a))γh(t) ∈ C[a, b]},
Cnγ;ψ[a, b] = {h : (a, b]→ R : h(t) ∈ Cn−1[a, b];h(n)(t) ∈ Cγ;ψ[a, b]},

where 0≤γ<1, n∈N, with the norms ‖h‖Cγ;ψ[a,b] = max{|(ψ(t)−ψ(a))γh(t)| ,
t∈[a, b]}, and ‖h‖Cnγ;ψ[a,b] =

∑n−1
k=0

∥∥h(k)∥∥
C[a,b]

+
∥∥h(n)∥∥

Cγ;ψ[a,b]
, respectively. In

particular, if n = 0, we have C0
γ;ψ[a, b] = Cγ;ψ[a, b].

Definition 1. ( [18]) Let α > 0 and ψ be an increasing function, having a
continuous derivative ψ′ on (a, b). The left-sided fractional integral of a function
h with respect to ψ on [a, b] is defined by

Iα,ψa+ h(t) =
1

Γ (α)

∫ t

a

ψ′(s) [ψ(t)− ψ(s)]
α−1

h(s)ds, t > a

provided that Iα,ψa+ is exists. Note that when ψ(t) = t, we obtain the known
classical Riemann-Liouville fractional integral.

Definition 2. ( [6]) Let α > 0, n be the smallest integer greater than or equal
to α and h ∈ Lp[a, b], p ≥ 1, let ψ ∈ Cn[a, b] an increasing function such
that ψ′(t) 6= 0, for all t ∈ [a, b]. The left-sided ψ−Riemann–Liouville fractional
derivative of h of order α is given by

Dα;ψ
a+ h(t) =

(
1

ψ′(t)

d

dt

)n
In−α,ψa+ h(t).



On ψ−Hilfer Fractional Derivative 567

Definition 3. ( [5]) The left-sided ψ–Caputo fractional derivative of function
h ∈ Cn[a, b] (n − 1 < α < n = [α] + 1) with respect to another function ψ is
defined by

cDα;ψ
a+ h(t) = In−α;ψa+ h

[n]
ψ (t),

where [α] denotes the integer part of the real number α, h
[n]
ψ (t)=

(
1

ψ′(t)
d
dt

)n
h(t)

and ψ as in Definition 2.

The fractional derivative that we will deal in our work is a Hilfer type
operator and it is defined by the following definition.

Definition 4. ( [9, 20]) Let 0 < α < 1, 0 ≤ β ≤ 1 and h, ψ ∈ C1[a, b] be two
functions such that ψ′(t) 6= 0, for all t ∈ [a, b]. Then the left-sided ψ–Hilfer

fractional derivative Dα,β;ψ
a+ (·) of a function h of order α and type β is defined

by

Dα,β;ψ
a+ h(t) = I

β(1−α);ψ
a+

(
1

ψ′(t)

d

dt

)
I
(1−β)(1−α);ψ
a+ h(t).

On the other hand, we have

Dα,β;ψ
a+ h(t) = I

β(1−α);ψ
a+ Dγ;ψ

a+ h(t), t > a, (2.2)

where Dγ;ψ
a+ h(t) =

(
1

ψ′(t)
d
dt

)
I
(1−β)(1−α);ψ
a+ h(t) and γ = α+ β − αβ.

Lemma 1. ( [18]) Let α, β > 0. Then we have the following semigroup property

Iα;ψa+ Iβ;ψa+ h(t) = Iα+β;ψa+ h(t), t > a.

Lemma 2. ( [9]) Let α > 0, 0 ≤ β ≤ 1 and 0 ≤ γ = α + β − αβ < 1. If

h ∈ L1(a, b) and D
β(1−α);ψ
a+ h(·) exists on L1(a, b), then

Dα,β;ψ
a+ Iα;ψa+ h(t) = I

β(1−α);ψ
a+ D

β(1−α);ψ
a+ h(t), t ∈ (a, b].

Moreovere, if h ∈ C1−γ;ψ[a, b], I
β(1−α);ψ
a+ h ∈ C1

1−γ;ψ[a, b], then Dα,β;ψ
a+ Iα;ψa+ h(·)

exists on (a, b] and

Dα,β;ψ
a+ Iα;ψa+ h(t) = h(t), t ∈ (a, b].

Lemma 3. ( [3]) Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β − αβ. If h ∈
Cγ1−γ;ψ[a, b] then

Iγ;ψa+ Dγ;ψ
a+ h(t) = Iα;ψa+ Dα,β;ψ

a+ h(t), Dγ;ψ
a+ Iα;ψa+ h(t) = D

β(1−α);ψ
a+ h(t).

Proposition 1. ( [18]) Let α, δ > 0 and t > a. Then ψ−fractional integral and
derivative of a power function are given by

Iα;ψa+ [ψ(t)− ψ(a)]
δ−1

=
Γ (δ)

Γ (δ + α)
[ψ(t)− ψ(a)]

α+δ−1
, (2.3)

and Dα;ψ
a+ [ψ(t)− ψ(a)]

α−1
= 0, 0 < α < 1.
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Lemma 4. ( [2, 8]) Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α + β − αβ and let
ψ ∈ C1[a, b] an increasing function such that ψ′(t) 6= 0, for all t ∈ [a, b]. Then

Iα;ψa+ (·) is bounded from C1−γ;ψ[a, b] into C1−γ;ψ[a, b].

Lemma 5. ( [2]) Let α > 0, 0 ≤ γ < 1, ψ as in Definition 4, and h ∈
C1−γ;ψ[a, b]. If α > γ, then Iα;ψa+ h ∈ C[a, b] and Iα;ψa+ h(a) = lim

t→a+
Iα;ψa+ h(t) = 0.

Theorem 1. ( [9, 21]) Let h ∈ C1−γ;ψ[a, b], and I1−α;ψa+ h ∈ C1
1−γ;ψ[a, b], 0 <

α < 1, 0 ≤ γ < 1. Then

Iα;ψa+ Dα;ψ
a+ h(t) = h(t)−

I1−α;ψa+ h(a)

Γ (α)
[ψ(t)− ψ(a)]

α−1
, for all t ∈ (a, b].

Theorem 2. ( [18]) (Banach fixed point theorem) Let (X, d) be a nonempty
complete metric space with T : X → X is a contraction mapping. Then map
T has a fixed point.

Theorem 3. ( [7]) (Krasnoselskii’s fixed point theorem) Let X be a Banach
space, let Ω be a bounded closed convex subset of X and let T1, T2 be mapping
from Ω into X such that T1x + T2y ∈ Ω for every pair x, y ∈ Ω. If T1 is
contraction and T2 is completely continuous, then the equation T1x+ T2x = x
has a solution on Ω.

Lemma 6. ( [8]) (Gronwall’s lemma) Let x, y, be two integrable functions and
h continuous, with domain [a, b]. Let ψ ∈ C1[a, b] an increasing function such
that ψ′(t) 6= 0,∀t ∈ [a, b]. Assume that x and y are nonnegative and h is
nonnegative and nondecreasing. If

x(t) ≤ y(t) + h(t)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1x(s)ds,

then, for all t ∈ [a, b],we have

x(t) ≤ y(t) +

∫ t

a

∞∑
k=1

[h(t)Γ (α)]
k

Γ (αk)
ψ′(s)(ψ(t)− ψ(s))αk−1y(s)ds. (2.4)

3 Existence result

In this section, we obtain an equivalent integral and existence result of the
problem (1.1)–(1.2) in weighted space of continuous functions by means of
fixed point theorem of Krasnoselskii. Firstly, we introduce the weighted spaces

Cα,β1−γ;ψ[a, b] = {h ∈ C1−γ;ψ[a, b], Dα,β;ψ
a+ h ∈ C1−γ;ψ[a, b]},

Cγ1−γ;ψ[a, b] = {h ∈ C1−γ;ψ[a, b], Dγ;ψ
a+ h ∈ C1−γ;ψ[a, b]},

where γ = α + β − αβ. Since Dα,β;ψ
a+ h = I

β(1−α);ψ
a+ Dγ;ψ

a+ h it is obvious that,

Cγ1−γ;ψ[a, b] ⊂ Cα,β1−γ;ψ[a, b].
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Theorem 4. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β − αβ. Assume that
f(·, u(·), Hu(·)) ∈ C1−γ;ψ[a, b] for any u ∈ C1−γ;ψ[a, b]. If u ∈ Cγ1−γ;ψ[a, b] then
u satisfies the problem (1.1)–(1.2) if and only if u satisfies the integral equation

u(t) =
[ψ(t)− ψ(a)]

γ−1

B

[
m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)h(s)ds+ ua

]

+
1

Γ (α)

∫ t

a

	αψ(t, s)h(s)ds, (3.1)

where 	αψ(τk, s) := ψ′(s) [ψ(τk)− ψ(s)]
α−1

, h(s) :=f(s, u(s), Hu(s)) and

0 6= B := Γ (γ)−
∑m
k=1 ck [ψ(τk)− ψ(a)]

γ−1
.

Proof. (=⇒) Let u ∈ Cγ1−γ;ψ[a, b] be a solution of the problem (1.1)–(1.2).
We prove that u is also a solution of Equation (3.1). From the definition of
Cγ1−γ;ψ[a, b], Lemma 4, and using Definition 4, we have

I1−γ;ψa+ u ∈ C1−γ;ψ[a, b] and Dγ;ψ
a+ u =

(
1

ψ′(t)

d

dt

)
I1−γ;ψa+ u ∈ C1−γ;ψ[a, b].

Since ψ ∈ C1[a, b] and using definition of Cnγ;ψ[a, b], it follows that I1−γ;ψa+ u ∈
C1

1−γ;ψ[a, b]. Hence by utilize Theorem 1, then for each t ∈ (a, b], we can write

Iγ;ψa+ Dγ;ψ
a+ u(t) = u(t)−

I1−γ;ψa+ u(a)

Γ (γ)
[ψ(t)− ψ(a)]

γ−1
. (3.2)

By hypothesis, Dγ;ψ
a+ u ∈ C1−γ;ψ[a, b], using Lemma 3 and Equation (1.1), we

have
Iγ;ψa+ Dγ;ψ

a+ u(t) = Iα;ψa+ Dα,β;ψ
a+ u(t) = Iα;ψa+ h(t). (3.3)

Comparing Equations (3.2) and (3.3), we see that

u(t) =
I1−γ;ψa+ u(a)

Γ (γ)
[ψ(t)− ψ(a)]

γ−1
+ Iα;ψa+ h(t). (3.4)

Now, we substitute t = τk in (3.4) and multiply by ck we can write

cku(τk) =
ckI

1−γ;ψ
a+ u(a)

Γ (γ)
[ψ(τk)− ψ(a)]

γ−1
+ ckI

α;ψ
a+ h(τk).

The last equality with the nonlocal condition (1.2), gives us

I1−γ;ψa+ u(a) =

m∑
k=1

cku(τk) + ua =
Γ (γ)

B

[
m∑
k=1

ckI
α;ψ
a+ h(τk) + ua

]
. (3.5)

Substituting (3.5) into (3.4), we conclude that u(t) satisfies (3.1).
(⇐=) Assume that u ∈ Cγ1−γ;ψ[a, b] satisfying the integral equation (3.1).

First, we prove that u also satisfies the problem (1.1)–(1.2). To this end,
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apply the fractional derivative operator Dγ;ψ
a+ on both sides of (3.1). Then from

Lemma 3, Proposition 1 and Definition 4, we get

Dγ;ψ
a+ u(t) = D

β(1−α);ψ
a+ h(t). (3.6)

Since u ∈ Cγ1−γ;ψ[a, b], and by definition of Cγ1−γ;ψ[a, b], we have Dγ;ψ
a+ u ∈

C1−γ;ψ[a, b]. The last inclusion with (3.6) gives

D1;ψ
a+ I

1−β(1−α);ψ
a+ h = D1;ψ

a+ I
1;ψ
a+ I

−β(1−α);ψ
a+ h = D

β(1−α);ψ
a+ h ∈ C1−γ;ψ[a, b], (3.7)

where D1;ψ
a+ = 1

ψ′(t)
d
dt . Also, since h ∈ C1−γ;ψ[a, b], by Lemma 4,

I
1−β(1−α);ψ
a+ h ∈ C1−γ;ψ[a, b]. (3.8)

It follows from (3.7) and (3.8) and the definition of Cγ1−γ;ψ[a, b], that

I
1−β(1−α);ψ
a+ h ∈ C1

1−γ;ψ[a, b].

Thus, h and I
1−β(1−α);ψ
a+ h satisfy the conditions of Theorem 1. Hence, by

applying the operator I
β(1−α);ψ
a+ on both sides of (3.6) with using Theorem 1

and Lemma 2, we obtain

I
β(1−α);ψ
a+ Dγ;ψ

a+ u(t) = I
β(1−α);ψ
a+ D

β(1−α);ψ
a+ h(t)

= h(t)−
I
1−β(1−α);ψ
a+ h(a)

Γ (β(1− α))
[ψ(t)− ψ(a)]

β(1−α)−1
= h(t),

where I
1−β(1−α);ψ
a+ h(a) = 0 is implied by Lemma 5. Comparing the last equality

with (2.2), we get Dα,β;ψ
a+ u(t) = h(t), which means that (1.1) holds. Next, we

show that if u ∈ Cγ1−γ;ψ[a, b] satisfies (3.1), it also satisfies the condition (1.2).

To this end, we multiply both sides of (3.1) by I1−γ;ψa+ and use Proposition 1,
Definition 1 and Lemma 1, we have

I1−γ;ψa+ u(t) =
Γ (γ)

B

[
m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)h(s)ds+ ua

]

+
1

Γ (α+ 1− γ)

∫ t

a

	α−γ+1
ψ (t, s)h(s)ds.

Since 1−γ < α+1−γ, Lemma 5 can be used when taking the limit as t→ a,

I1−γ;ψa+ u(a) =
Γ (γ)

B

[
m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)h(s)ds+ ua

]
. (3.9)

Substituting t = τk into (3.1), we have

u(τk) =
[ψ(τk)− ψ(a)]

γ−1

B

[
m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)h(s)ds+ ua

]

+
1

Γ (α)

∫ τk

a

	αψ(τk, s)h(s)ds.
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Then, we derive

m∑
k=1

cku(τk) =

m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)h(s)ds

×
[
1 +

m∑
k=1

ck
B

[ψ(τk)− ψ(a)]
γ−1

]
+

m∑
k=1

ck
B

[ψ(τk)− ψ(a)]
γ−1

ua

=
Γ (γ)

B

m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)h(s)ds+
[Γ (γ)

B
− 1
]
ua.

Which gives

m∑
k=1

cku(τk) + ua =
Γ (γ)

B

[ m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)h(s)ds+ ua

]
. (3.10)

It follows (3.9) and (3.10) that I1−γ;ψa+ u(a) =
∑m
k=1 cku(τk) +ua. The Theorem

is proved completely. ut

Now, we need to the following hypotheses:

(A1) Let f : (a, b] × R × R → R be a function such that f(·, u(·), Hu(·)) ∈
C
β(1−α)
1−γ;ψ [a, b] for any u ∈ C1−γ;ψ[a, b], and there exists M > 0 such that

|f(t, u1, v1)− f(t, u2, v2)| ≤M [|u1 − u2|+ |v1 − v2|] ,

for all t ∈ (a, b] and ui, vi ∈ R (i = 1, 2).

(A2) Let K : D × R −→ R is continuous on D and there exists L∗ > 0 such
that

|Hu1 −Hu2| ≤ L∗ |u1 − u2| , where Hu(t) =

∫ t

0

K(t, s, u(s))ds,

for all t ∈ (a, b] and u1, u2 ∈ R.

Theorem 5. Assume that the hypotheses (A1) and (A2) are fulfilled. Then
there exists at least one solution for the ψ−Hilfer problem (1.1)–(1.2) in the

space Cγ1−γ;ψ[a, b] ⊂ Cα,β1−γ;ψ[a, b], provided that

σ :=

[ m∑
k=1

ck
B

[ψ(τk)−ψ(a)]
α

+ [ψ(b)−ψ(a)]
α

]
B(γ, α)

Γ (α)
(M+ML∗) < 1, (3.11)

where 0 6= B is defined as in Theorem 4, and B(·, ·) is a Beta function.

Proof. We use the Krasnoselskii’s fixed point theorem to prove the exis-
tence of solution u in the weighted space Cγ1−γ;ψ[a, b]. Define the operator
T : C1−γ;ψ[a, b]→ C1−γ;ψ[a, b] by

(Tu)(t) =
[ψ(t)− ψ(a)]

γ−1

B

[ m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)Fu(s)ds+ ua

]
+

1

Γ (α)

∫ t

a

	αψ(t, s)Fu(s)ds, (3.12)
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where Fu(s) := f(s, u(s), Hu(s)). Consider the ball Br = {u ∈ C1−γ;ψ([a, b] :

‖u‖C1−γ;ψ
≤ r}, f̃(s) = F0(s) := f(s, 0, 0), M∗ = |H(0)| and r ≥ ρ

1−σ , where
σ < 1 and

ρ : =

[ m∑
k=1

ck
B

[ψ(τk)− ψ(a)]
α

+ [ψ(b)− ψ(a)]
α

]
×
[
‖f̃‖C1−γ;ψ +MM∗/Γ (α+ 1)

]
+

1

B
|ua| .

Now, we need to analyze the operator T into sum two operators T1 + T2 as
follows

T1u(t) =
[ψ(t)− ψ(a)]

γ−1

B

[ m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)Fu(s)ds+ ua

]
,

T2u(t) =
1

Γ (α)

∫ t

a

	αψ(t, s)Fu(s)ds.

The proof will be given in several steps.
Step 1: We prove that T1u+ T2v ∈ Br for every u, v ∈ Br.
For operator T1, by our hypotheses, we have∣∣∣[ψ(t)− ψ(a)

]1−γ
T1u(t)

∣∣∣ ≤ 1

B

m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)
[
|Fu(s)−F0(s)|

+ |F0(s)|
]
ds+

1

B
|ua| ≤

1

B

m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s) [ψ(s)− ψ(a)]
γ−1

×
[
(M +ML∗) ‖u‖C1−γ;ψ

+ ‖f̃‖C1−γ;ψ

]
ds+

1

B
|ua|

+
1

B

m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)MM∗ds,

where we used the formula

|F0(s)| = |f̃(s)| ≤ [ψ(s)− ψ(a)]
γ−1 ‖f̃‖C1−γ;ψ .

From Definition 1 and Proposition 1, we get∣∣∣[ψ(t)− ψ(a)]
1−γ

T1u(t)
∣∣∣ ≤ m∑

k=1

ck
B

Γ (γ)

Γ (α+ γ)
[ψ(τk)− ψ(a)]

α+γ−1

×
[
(M +ML∗) ‖u‖C1−γ;ψ

+
∥∥∥f̃∥∥∥

C1−γ;ψ

]
+

1

B
|ua|+

m∑
k=1

ck
B

[ψ(τk)− ψ(a)]
α

Γ (α+ 1)
MM∗ds.

As 0 < γ < 1, then
[ψ(τk)− ψ(a)]

γ

[ψ(τk)− ψ(a)]
< 1, (3.13)
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hence, for every u ∈ Br, we find that

‖T1u‖C1−γ;ψ
≤

m∑
k=1

ck
B

[
B(γ, α)

Γ (α)
(M +ML∗)r +

∥∥∥f̃∥∥∥
C1−γ;ψ

+
MM∗

Γ (α+ 1)

]
[ψ(τk)− ψ(a)]

α
+

1

B
|ua| . (3.14)

As for operator T2, by using the previous hypotheses, we have

∣∣ [ψ(t)− ψ(a)]
1−γ

T2v(t)
∣∣ ≤ [ψ(t)− ψ(a)]

1−γ

Γ (α)

∫ t

a

	αψ(t, s)

×
[
|Fv(s)−F0(s)|+ |F0(s)|

]
ds ≤ [ψ(t)− ψ(a)]

1−γ

Γ (α)

∫ t

a

	αψ(t, s)

× [ψ(s)− ψ(a)]
γ−1 [

M(1 + L∗) ‖v‖C1−γ;ψ
+
∥∥f̃∥∥

C1−γ;ψ

]
ds

+
[ψ(t)− ψ(a)]

1−γ

Γ (α)

∫ t

a

	αψ(t, s)MM∗ds.

In view of Proposition 1 and Equation (3.13), then for every v ∈ Br, we get

‖T2v‖C1−γ;ψ
≤

[
B(γ, α)

Γ (α)
(M +ML∗)r +

∥∥∥f̃∥∥∥
C1−γ;ψ

+
MM∗

Γ (α+ 1)

]
[ψ(b)− ψ(a)]

α
. (3.15)

By definitions of σ and r with (3.14) and (3.15), we get

‖T1u+ T2v‖C1−γ;ψ
≤ ‖T1u‖C1−γ;ψ

+ ‖T2v‖C1−γ;ψ
≤ σr + ρ ≤ r.

This proves that T1u+ T2v ∈ Br for every u, v ∈ Br.
Step 2: We prove that the operator T1 is a contration mapping on Br. By

the preceding assumptions, then for any u, v ∈ Br, and for t ∈ (a, b], we have∣∣∣[ψ(t)− ψ(a)]
1−γ

T1u(t)− [ψ(t)− ψ(a)]
1−γ

T1v(t)
∣∣∣ ≤ m∑

k=1

ck
B

1

Γ (α)

×
∫ τk

a

	αψ(t, s) |Fu(s)−Fv(s)| ds ≤
m∑
k=1

ck
B

1

Γ (α)

∫ τk

a

	αψ(t, s)

× [ψ(s)− ψ(a)]
γ−1

M
[
‖u− v‖C1−γ;ψ

+ L∗ ‖u− v‖C1−γ;ψ

]
ds

≤ B(γ, α)

Γ (α)
(M +ML∗)

m∑
k=1

ck
B

[ψ(τk)− ψ(a)]
γ−1+α ‖u− v‖C1−γ;ψ

.

This gives with (3.13) that

‖T1u−T1v‖C1−γ;ψ
≤ B(γ, α)

Γ (α)
(M+ML∗)

m∑
k=1

ck
B

[ψ(τk)−ψ(a)]
α ‖u−v‖C1−γ;ψ

.
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The operator T1 is contraction mapping due to assumption (3.11).

Step 3: We show that the operator T2 is completely continuous on Br.
From the continuity of Fu, we conclude that the operator T2 is continuous.

Now, we prove that (T2Br) is uniformly bounded. Indeed, it is enough to show
that for some r > 0, there exists a positive constant ` such that ‖T2u‖C1−γ;ψ

≤ `.
According to Step 1, for u ∈ Br, we know that

‖T2u‖C1−γ;ψ
≤

[
B(γ, α)

Γ (α)
(M +ML∗) ‖u‖C1−γ;ψ

+
∥∥∥f̃∥∥∥

C1−γ;ψ

+
MM∗

Γ (α+ 1)

]
[ψ(b)− ψ(a)]

α
:= `,

which is independent of t and u. This means that ‖T2u‖C1−γ;ψ
≤ ` i.e. T2 is

uniformly bounded on Br. Moreover, we prove that (T2Br) is equicontinuous
in Br. Let u ∈ Br and t1, t2 ∈ [a, b] with t1 < t2, we have∣∣∣[ψ(t2)− ψ(a)]

1−γ
T2u(t2)− [ψ(t1)− ψ(a)]

1−γ
T2u(t1)

∣∣∣
≤

∣∣∣∣∣ [ψ(t2)− ψ(a)]
1−γ

Γ (α)

∫ t2

a

	αψ(t2, s) [ψ(s)− ψ(a)]
γ−1

× max
s∈[a,b]

∣∣∣[ψ(s)− ψ(a)]
1−γ Fu(s)

∣∣∣ ds
− [ψ(t1)− ψ(a)]

1−γ

Γ (α)

∫ t1

a

	αψ(t1, s) [ψ(s)− ψ(a)]
γ−1

× max
s∈[a,b]

∣∣∣[ψ(s)− ψ(a)]
1−γ Fu(s)

∣∣∣ ds∣∣∣∣
≤ ‖Fu‖C1−γ;ψ[a,b]

B(γ, α)

Γ (α)
|[ψ(t2)− ψ(a)]

α − [ψ(t1)− ψ(a)]
α| .

Observe that the right-hand side of the above inequality is independent of
u. Thus, using the continuity of ψ, |t2 − t1| → 0 implies that∣∣∣[ψ(t2)− ψ(a)]

1−γ
T2u(t2)− [ψ(t1)− ψ(a)]

1−γ
T2u(t1)

∣∣∣ → 0. This proves that

(T2Br) is equicontinuous. In view of Arzela-Ascoli Theorem, it follows that
(T2Br) is relatively compact. As a consequence of Theorem 3, we conclude
that the problem (1.1)–(1.2) has at least one solution in C1−γ;ψ[a, b].

Finally, we show that such a solution is indeed in Cγ1−γ;ψ[a, b]. By applying

Dγ;ψ
a+ on both sides of (3.1), we get

Dγ;ψ
a+ u(t)=Dγ;ψ

a+ Iα;ψa+ h(t)=Dγ−α;ψ
a+ f(t, u(t), Hu(t)=D

β(1−α);ψ
a+ f(t, u(t), Hu(t).

Since f(·, u(·), Hu(·))∈Cβ(1−α)1−γ;ψ [a, b], it follows by definition of the space

C
β(1−α)
1−γ;ψ [a, b] that Dγ;ψ

a+ u(t)∈C1−γ;ψ[a, b] which implies that u(t) ∈ Cγ1−γ;ψ[a, b].
ut
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4 The Ulam-Hyers-Rassias stability

In this section, we will investigate the various types of stability results of the
problem (1.1)–(1.2). The stability results are based on the Banach fixed point
theorem.

Theorem 6. Assume that hypotheses (A1) and (A2) are fulfilled. If σ < 1.
Then, the problem (1.1)–(1.2) has a unique solution, where σ is defined as in
Theorem 5.

Proof. Consider the operator T : C1−γ;ψ[a, b] → C1−γ;ψ[a, b] defined as in
Equation (3.12). In view of Theorem 5, we know that the fixed points of T
are solutions of problem (1.1)–(1.2). Now, we prove that T has a unique fixed
point, which is a solution of problem (1.1)–(1.2). Indeed, by hypotheses (A1)–
(A2), Proposition 1 and Equation (3.13), then for u, v ∈ C1−γ;ψ[a, b], t ∈ (a, b],
we have∣∣∣[ψ(t)− ψ(a)]

1−γ
Tu(t)− [ψ(t)− ψ(a)]

1−γ
Tv(t)

∣∣∣ ≤ m∑
k=1

ck
B

1

Γ (α)

×
∫ τk

a

	αψ(τk, s) |Fu(s)−Fv(s)| ds+
[ψ(t)− ψ(a)]

1−γ

Γ (α)

×
∫ t

a

	αψ(t, s) |Fu(s)−Fv(s)| ds ≤
m∑
k=1

ck
B

(M +ML∗)

Γ (α)

×
∫ τk

a

	αψ(τk, s) [ψ(s)− ψ(a)]
γ−1 ‖u− v‖C1−γ;ψ

ds

+
(M +ML∗) [ψ(t)− ψ(a)]

1−γ

Γ (α)

∫ t

a

	αψ(t, s) [ψ(s)− ψ(a)]
γ−1

× ‖u− v‖C1−γ;ψ
ds ≤

[ m∑
k=1

ck
B
ψ(τk)− ψ(a))α + [ψ(b)− ψ(a)]

α
]

× B(γ, α)

Γ (α)
(M +ML∗) ‖u− v‖C1−γ;ψ

.

This gives, ‖Tu− Tv‖C1−γ;ψ
≤ σ ‖u− v‖C1−γ;ψ

. Since σ < 1, the operator

T : C1−γ;ψ[a, b] → C1−γ;ψ[a, b] is a contraction mapping. Hence by Banach
fixed point theorem, it follows that T has a unique fixed point, which is a solution
of problem (1.1)–(1.2). ut

Now, we study the Ulam-Hyers stability, and Ulam-Hyers-Rassias stability.
Let ε > 0, ũ ∈ Cγ1−γ;ψ[a, b] and Φ ∈ C1−γ;ψ[a, b], such that∣∣∣Dα,β,ψ

a+ ũ(t)−Fũ(s)
∣∣∣ ≤ ε, t ∈ (a, b], (4.1)∣∣∣Dα,β,ψ

a+ ũ(t)−Fũ(s)
∣∣∣ ≤ εΦ(t), t ∈ (a, b], (4.2)∣∣∣Dα,β,ψ

a+ ũ(t)−Fũ(s)
∣∣∣ ≤ Φ(t), t ∈ (a, b], (4.3)
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where Fũ(s) := F(t, ũ(t), Hũ(t)).

Definition 5. The problem (1.1)–(1.2) is Ulam-Hyers stable if there exists
a real number CF > 0 such that, for each ε > 0 and for each solution
ũ ∈ Cγ1−γ;ψ[a, b] of Inequality (4.1), there exists a solution u ∈ Cγ1−γ;ψ[a, b]
of problem (1.1)–(1.2) with

|ũ(t)− u(t)| ≤ CFε, t ∈ (a, b].

Definition 6. The problem (1.1)–(1.2) is generalized Ulam-Hyers stable if
there exists ϕ ∈ C(R+,R+), ϕ(0) = 0 such that, for each ε > 0 and for
each solution ũ ∈ Cγ1−γ;ψ[a, b] of Inequality (4.1), there exists a solution u ∈
Cγ1−γ;ψ[a, b] of problem (1.1)–(1.2) with

|ũ(t)− u(t)| ≤ ϕ(ε) t ∈ (a, b].

Definition 7. The problem (1.1)–(1.2) is Ulam-Hyers-Rassias stable with re-
spect to Φ ∈ C1−γ;ψ[a, b], if there exists a real number CF,Φ > 0 such that,
for each ε > 0 and for each solution ũ ∈ Cγ1−γ;ψ[a, b] of Inequality (4.2), there

exists a solution u ∈ Cγ1−γ;ψ[a, b] of problem (1.1)–(1.2) with

|ũ(t)− u(t)| ≤ CF,ΦεΦ(t), t ∈ (a, b].

Definition 8. The problem (1.1)–(1.2) is generalized Ulam-Hyers-Rassias sta-
ble with respect to Φ ∈ C1−γ;ψ[a, b], if there exists a real number CF,Φ > 0
such that, for each solution ũ ∈ Cγ1−γ;ψ[a, b] of Inequality (4.3), there exists a

solution u ∈ Cγ1−γ;ψ[a, b] of problem (1.1)–(1.2) with

|ũ(t)− u(t)| ≤ CF,ΦΦ(t), t ∈ (a, b].

Theorem 7. Assume that the conditions (A1) and (A2) are satisfied. Then
the problem (1.1)–(1.2) is Ulam-Hyers stable.

Proof. Let ε > 0 and let ũ ∈ Cγ1−γ,ψ[a, b] be a function which satisfies the

inequality (4.1) and let u ∈ Cγ1−γ,ψ[a, b] the unique solution of the following
integro-differential equation

Dα,β;ψ
a+ u(t) = Fu(s), 0 < α < 1, 0 ≤ β ≤ 1, t ∈ (a, b], (4.4)

I1−γ;ψa+ u(t) |t=a =I1−γ;ψa+ ũ(t) |t=a =ua+

m∑
k=1

cku(τk), τk ∈ (a, b], γ = α+β−αβ.

(4.5)

In view of Theorem 4, we get

u(t) = Au +
1

Γ (α)

∫ t

a

	αψ(t, s)Fu(s)ds, (4.6)

where

Au =
[ψ(t)− ψ(a)]

γ−1

B

[ m∑
k=1

ck
Γ (α)

∫ τk

a

	αψ(τk, s)Fu(s)ds+ ua

]
.
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On the other hand, if u(τk) = ũ(τk) and I1−γ;ψa+ u(a) = I1−γ;ψa+ ũ(a), it follows
that Au = Aũ. Now, by integration of the inequality (4.1), we obtain∣∣∣∣ũ(t)−Aũ −

1

Γ (α)

∫ t

a

	αψ(t, s)Fũ(s)ds

∣∣∣∣ ≤ ε [ψ(b)− ψ(a)]
α

Γ (α+ 1)
, ∀t ∈ (a, b].

From the above, it follows

|ũ(t)− u(t)| ≤
∣∣∣∣ũ(t)−Aũ −

1

Γ (α)

∫ t

a

	αψ(t, s)Fũ(s)ds

∣∣∣∣
+

∣∣∣∣Aũ −Au +
1

Γ (α)

∫ t

a

	αψ(t, s) |Fũ(s)−Fu(s)| ds
∣∣∣∣

≤ ε [ψ(b)− ψ(a)]
α

Γ (α+ 1)
+

1

Γ (α)

∫ t

a

	αψ(t, s) |Fũ(s)−Fu(s)| ds

≤ ε [ψ(b)− ψ(a)]
α

Γ (α+ 1)
+

(M +ML∗)

Γ (α)

∫ t

a

	αψ(t, s) |ũ(s)− u(s)| .

In view of Lemma 6, we conclude that

|ũ(t)− u(t)| ≤ ε [ψ(b)− ψ(a)]
α

Γ (α+ 1)
+

∫ t

a

[ ∞∑
k=1

[(M +ML∗)]
k

Γ (αk)

× ψ′(s)(ψ(t)− ψ(s))αk−1
ε [ψ(b)− ψ(a)]

α

Γ (α+ 1)

]
ds ≤ ε [ψ(b)− ψ(a)]

α

Γ (α+ 1)

×
[
1 +

1

[ψ(b)− ψ(a)]

(
Eα,1 (M +ML∗) [ψ(b)− ψ(a)]

α − 1
)]
.

Take CF = [ψ(b)−ψ(a)]α
Γ (α+1)

[
1+ 1

[ψ(b)−ψ(a)]

(
Eα,1 (M +ML∗) [ψ(b)− ψ(a)]

α−1

)]
,

we get |ũ(t)− u(t)| ≤ CFε. ut

Theorem 8. Let the hypotheses of Theorem 7 hold. If there exists
ϕ ∈ C(R+,R+) with ϕ(0) = 0. Then the problem (1.1)–(1.2) has generalized
Ulam-Hyers stability.

Proof. In a manner similar to above Theorem 7, with putting ϕ(ε) = CFε and
ϕ(0) = 0, we get ‖ũ− u‖C1−γ;ψ

≤ ϕ(ε). ut

Theorem 9. Under the hypotheses (A1) and (A2). If the following condition
is satisfied:

(A3) There exists an increasing function Φ ∈ C1−γ,ψ[a, b] and there exists

λΦ > 0 such that, for any t ∈ (a, b], Iα,ψa+ Φ(t) ≤ λΦΦ(t).

Then the problem (1.1)–(1.2) is Ulam-Hyers-Rassias stable.

Proof. Let ε > 0 and ũ ∈ Cγ1−γ,ψ[a, b] be the unique solution of the problem
(4.4)–(4.5) that satisfies the Inequality (4.2). By integration of (4.2) and using
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hypothesis (A3), we get∣∣∣ũ(t)−Aũ −
1

Γ (α)

∫ t

a

	αψ(t, s)Fũ(s)ds
∣∣∣ ≤ ελΦΦ(t), ∀t ∈ (a, b].

Now, let u ∈ Cγ1−γ,ψ[a, b] be the unique solution of problem (1.1)–(1.2) that is
defined as in Equation (4.6) due to Theorem 4. From the above, it follows

|ũ(t)− u(t)| ≤
∣∣∣ũ(t)−Aũ −

1

Γ (α)

∫ t

a

	αψ(t, s)Fũ(s)ds
∣∣∣

+
∣∣∣Aũ −Au +

1

Γ (α)

∫ t

a

	αψ(t, s) |Fũ(s)−Fu(s)| ds
∣∣∣

≤ ελΦΦ(t) +
1

Γ (α)

∫ t

a

	αψ(t, s) |Fũ(s)−Fu(s)| ds

≤ ελΦΦ(t) +
(M +ML∗)

Γ (α)

∫ t

a

	αψ(t, s) |ũ(s)− u(s)| .

In view of Lemma 6, we conclude that

|ũ(t)− u(t)| ≤ ελΦΦ(t) +

∫ t

a

∞∑
k=1

[(M +ML∗)]
k

Γ (αk)
	αkψ (t, s)ελΦΦ(s)ds

= ελΦΦ(t) + ελΦ

[
(M +ML∗) Iα,ψa+ Φ(t) + (M +ML∗)

2
I2α,ψa+ Φ(t) + · · · ·

]
≤ ελΦΦ(t) + ελΦ

[
(M +ML∗)λΦΦ(t) + (M +ML∗)

2
(λΦ)

2
Φ(t) + · · · ·

]
= ελΦΦ(t)

[
1 +

∞∑
k=1

(M +ML∗)
k

(λΦ)
k
]
.

Take CF,Φ = λΦ
[
1 +

∑∞
k=1 (M +ML∗)

k
(λΦ)

k ]
, then we obtain

|ũ(t)− u(t)| ≤ CF,ΦεΦ(t). ut

Corollary 1. Let the conditions of Theorem 9 hold. Then the problem (1.1)–
(1.2) is generalized Ulam-Hyers-Rassias stable.

Proof. Set ε = 1 in the proof of Theorem 9, we get |ũ(t)− u(t)| ≤ CF,ΦΦ(t).
ut

5 Mittag-Leffler function approximation of integrals

In this section, we shall investigate a new procedure for approximate integrals
depending on Mittag-Leffler function, firstly we define the first k terms in the
series representiaion of Mittag-Leffler function in (2.1) to be Ek(z, µ, ν), so, we
can approximate any function f(z) as

f(z) =

n∑
k=0

akEk(z, µ, ν). (5.1)
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The coefficients ak can be written as

ak =

n∑
k=0

ukθlk, (5.2)

Writting (5.1)–(5.2) in matrix form, we have

F = ATŒ(z), A = FTΘ, (5.3)

where Œ(z) = [E0(z, µ, ν), E1(z, µ, ν), ..., En(z, µ, ν)]T ,
F = [fn(z0), fn(z1), ..., fn(zn)]T , Θ = {θlk}nl,k=0 and A = {ai}ni=0 is the un-
knowns vector. Combining the two equations in (5.3) we conclude that

F = [FTΘ]TŒ(z) = FΘTŒ(z), (5.4)

or
Œ(z)Θ = I, so Θ = [Œ(z)]−1. (5.5)

Thus (5.4) in view of (5.1) can be written as:

f(z) =

n∑
k=0

f(zk)ΘkEk(z, µ, ν). (5.6)

For an approximation of integrals, integrating (5.6), we obtain∫ t

0

f(z)dt =

n∑
k=0

f(zk)Mk(t), (5.7)

where Mk(t) = Θk
∫ t
0
Ek(z, µ, ν)dz, is the Mittag operational matrix of integra-

tion. This approximation of integrals is accurate and highly efficient depending
on the error analysis and results of Mittag-Leffler approximation [23].

6 An example

Consider the ψ−Hilfer fractional integro-differential equation with nonlocal
condition

Dα,β,ψ
0+ u(t) = f(t, u(t), Hu(t)), t ∈ (0, 1], (6.1)

I1−γ,ψ0+ u(0) = 0.4u(2/3), (6.2)

where u0 = 0, α = 1
2 , β = 1

3 , γ = 2
3 , c1 = 2

5 , τ1 = 2
3 ,

f(t, u(t), Hu(t))= [ψ(t)−ψ(0)]
−1
6 +

1

16

[
[ψ(t)−ψ(0)]

5
6 sinu(t) +

∫ t

0

e
−1
2 u(s)ds

]
,

and Hu(t) =
∫ t
0
K(t, s, u(s))ds =

∫ t
0
e
−1
2 u(s)ds. Consider ψ : [0, 1] → R such

that ψ(t) = t for all t ∈ [0, 1], clearly,

t
1
3 f(t, u(t), Hu(t)) = t

1
6 +

1

16
t
7
6 sinu(t) +

1

16
t
1
3

∫ t

0

e
−1
2 u(s)ds ∈ C[0, 1],
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hence f(t, u(t), Hu(t)) ∈ C 1
3 ,t

[0, 1]. Observe that, for any u, v ∈ R+ and

t ∈ (0, 1],

|f(t, u,Hu)− f(t, v,Hv)| ≤ 1

16
[|u− v|+ |Hu−Hv|]

|Hu−Hv| =
∣∣∣∣∫ t

0

e
−1
2 u(s)ds−

∫ t

0

e
−1
2 v(s)ds

∣∣∣∣ ≤ ∫ t

0

e
−1
2 |u(s)−v(s)|ds ≤ 1

2
|u−v| .

Therefore, the conditions (A1) and (A2) are satisfied with M = 1
16 and L∗ = 1

2 .
It is easy to check that the condition (3.11) is satisfied. Indeed,

B = Γ (γ)− c1 [ψ(τ1)− ψ(a)]
γ−1

= Γ (
2

3
)− 2

5

(
2

3

)− 1
3

' 0.89.

Furthermore, by simple computations we get

σ =
[c1
B
ψ(τ1)− ψ(a))α + [ψ(b)− ψ(a)]

α
]B(γ, α)

Γ (α)
(M +ML∗) ≈ 0.19 < 1,

B(γ, α)

Γ (α)
(M +ML∗)

c1
B

[ψ(τ1)− ψ(a)]
α ' 0.05 < 1.

It follows from Theorem 5 that the problem (6.1)–(6.2) has a solution on [0, 1].
Now, to applying Theorem 6, we have previously seen that σ < 1 and the
hypotheses (A1)–(A2) hold. Therefore, Theorem 6 shows that the problem
(6.1)–(6.2) has a unique solution on [0, 1].

On the other hand, as shown in Theorem 7, for every ε > 0 if ũ ∈ C
2
3
1
3 ;t

[0, 1]

satisfies ∣∣∣Dα,β,ψ
0+ ũ(t)− f(t, ũ(t), Hũ(t))

∣∣∣ ≤ ε, t ∈ (0, 1],

there exists a unique solution u ∈ C
2
3
1
3 ;t

[0, 1] such that

|ũ(t)− u(t)| ≤ CFε,

where

CF =
1

Γ (0.5 + 1)
E 1

2 ,1

(
1

16
+

1

32

)
' 1.258.

Hence the problem (6.1)–(6.2) is Ulam-Hyers stable.

Now, we consider Φ(t) = [ψ(t)− ψ(0)], then [ψ(t)− ψ(0)]
1− 2

3 [ψ(t)− ψ(0)]

= [ψ(t)− ψ(0)]
4
3 = t

4
3 ∈ C[0, 1] i.e. Φ(t) ∈ C 1

3 ,t
[0, 1]. To verify the condition

(A3), we must to show that Iα,ψa+ Φ(t) ≤ λΦΦ(t), λΦ > 0. Indeed, by Defintion

of Iα,ψ0+ , equation (2.3) and simple computation, we have

I
1
2 ,ψ

0+ Φ(t) =
1

Γ (0.5)

∫ t

0

	
1
2

ψ(t, s) [ψ(s)− ψ(0)] ds

≤ [ψ(t)− ψ(0)]

Γ (0.5)

∫ t

0

	−
1
2

ψ (t, s)ds ≤ [ψ(1)− ψ(0)]
1
2

Γ (1.5)
Φ(t) =

1

Γ (1.5)
Φ(t).
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Thus, the hypothesis (A3) is satisfied with λΦ = 1/Γ ( 3
2 ) > 0. And for every

ε > 0 if ũ ∈ C
2
3
1
3 ;t

[0, 1] satisfies∣∣∣Dα,β,ψ
0+ ũ(t)− f(t, ũ(t), Hũ(t))

∣∣∣ ≤ ε [ψ(t)− ψ(0)] , t ∈ (0, 1],

there exists a unique solution u ∈ C
2
3
1
3 ;t

[0, 1] such that

|ũ(t)− u(t)| ≤ CF,Φε [ψ(t)− ψ(0)] = CF,Φεt,

where CF,Φ =
1

Γ ( 3
2 )

[
1 +

∑∞
k=1

(
3
32

)k ( 1

Γ ( 3
2 )

)k]
. Hence problem (6.1)–(6.2)

is Ulam-Hyers-Rassias stable. Finaly, take ε = 1, we get

|ũ(t)− u(t)| ≤ CF,Φt.

Therefore, the problem (6.1)–(6.2) is generalized Ulam-Hyers-Rassias stable.

7 Numerical solution

Making use of the analytic technique discussed in Section 3, the example de-
scribed by (6.1)–(6.2) has the solution

u(t) =
2
5 t
γ−1

Γ (α)[Γ (γ)− 2
5 ( 2

3 )γ−1]

∫ 2
3

0

(2

3
− s
)α−1[

s
−1
6 +

1

16
s5 sin(u(s))

+
1

16

∫ s

0

e
−1
2 u(τ)dτ

]
ds+

1

Γ (α)

∫ t

0

(t− s)α−1
[
s
−1
6 +

1

16
s5 sin(u(s))

+
1

16

∫ s

0

e
−1
2 u(τ)dτ

]
ds.

(7.1)

This is an implicit nonlinear formula for the solution. We can’t find the value
of it at any point directly. We must solve it numerically to catch the solution
values. Evaluating (7.1) at some points ti, i = 0, 1, . . . , n and approximating
all integrations making use of Equation (5.7), we obtain

L(i) = u(ti)−
2
5 t
γ−1
i

Γ (α)[Γ (γ)− 2
5 ( 2

3 )γ−1]

n∑
k=0

(
2

3
− tk)α−1Mk(

2

3
)

×
[
t
−1
6

k +
1

16
t5ksin(u(tk))+

1

16

n∑
j=0

e
−1
2 u(tj)Mj(tk)

]
+

1

Γ (α)

i∑
k=0

(ti−tk)α−1Mk(ti)

×
[
t
−1
6

k +
1

16
t5ksin(u(tk)) +

1

16

n∑
j=0

e
−1
2 u(tj)Mj(tk)

]
= 0. (7.2)

To avoid the singularity at the upper bound of integrals, we take tn to be close
to (but not equal) the upper bound of each integral. Now, the problem in
Equation (7.2) is a nonlinear system of algebraic equations in the unknowns
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{u(t0), u(t1), ..., u(tn)}. Applying least squares method, the problem become:

minimize E =
∑n
i=0

[
L(i)

]2
. This is an unconstrained optimization problem.

Which can be solved easily to catch the unknowns.
In Table 1, we present the errors for the least squares method n = 5. The

error is very small. This ensures that the minimum value and then the solution
is evaluated accurately. Figure 1 presents the solution curves with some values
of α, γ and n = 5.

Table 1. Errors for the least squares method, n = 5.

α γ E

1/2 2/3 2.00054E-22
1/3 1/2 1.32462E-21
1/4 2/5 1.92318E-21
1/5 1/3 6.64266E-22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(t)=t

0

1

2

3

4

5

6

7

8

9

u
(t

)

 =1/2   =2/3

=1/3   =1/2

=1/4   =2/5

=1/5   =1/3

Figure 1. Solution of illustrated example with some values of α, γ and n = 5.

8 Conclusions

We can conclude that the main results of this article have been successfully
achieved, that is, through of Banach fixed point theorem and Krasnoselskii’s
fixed point theorem, we have investigated the existence and uniqueness of so-
lutions of a nonlinear fractional integro-differential equation introduced by ψ-
Hilfer fractional derivative. Further, we discussed stabilities of Ulam-Hyers,
generalized Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-
Rassias. This paper contributes to the growth of the fractional calculus, espe-
cially in the case fractional differential equations involving a general formulation
of Hilfer fractional derivative with respect to another function. The numerical
results are evaluated by investigating Mittag operational matrix of integra-
tion. The resulting nonlinear system of algebraic equations is constructed as
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an unconstrained optimization problem which is solved easily to obtain the
unknowns. Table 1 and Figure 1 introduced in the results shows that the nu-
merical method success in approximating the solution. Further, this paper may
be carried forward to higher fractional order of differential equation of ψ−Hilfer
fractional derivative.
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