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Abstract. In this manuscript we study a contact problem between a deformable
viscoelastic body and a rigid foundation. Thermal effects, wear and friction between
surfaces are taken into account. A variational formulation of the problem is supplied
and an existence and uniqueness result is proved. The idea of the proof rested on
a recent result on history-dependent quasivariational inequalities. Finally, a pertur-
bation of the data is initiated and a convergence result is demonstrated when the
perturbation parameter converges to zero.
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1 Introduction

Analysis of mathematical models in Contact Mechanics is rapidly growing.
These models are suggested for different materials using different boundary
conditions modelling friction, lubrication, adhesion, wear, damage, etc. The
aim of this paper is to model and establish the variational analysis of a contact
problem for viscoelastic materials within the infinitesimal strain theory. The
process is supposed to be the subject of thermal effects, friction and wear of
contacting surfaces. Mathematical models in Contact Mechanics can be found
in [1, 2, 7, 8, 9, 10,12,13,14,17,18,19,21,22,23,24] .

�
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Wear of surfaces is the degradation phenomenon of the superficial layer
caused by many factors such as pressure, lubrication, friction and corrosion.
Moreover, wear is a loss of use as a result of plastic deformations, material
removal or fractures. Also, it is often connected to friction and lubrication.
This phenomenon falls within a largest science named Tribology. The latter
is encountered in industrial applications and everyday life (adhesion between
wheels and rails and chalk squealing on a blackboard are simple examples).
Analysis of contact problems with wear can be found in [4, 5, 16,25].

Frictional contact represents a phenomenon which is frequently encountered
almost everywhere in people’s daily life. When two contacting bodies are sub-
jected to relative motion, a friction force opposing motion appears leading to a
modification of contact surfaces caused by particle detachment. Recent models
of frictional contact problems can be found in [17,19,22,23,24].

Contact and friction processes are invariably accompanied by heat genera-
tion which may be considerable. Thermal effects in contact processes affect the
composition and stiffness of the contacting surfaces, and cause thermal stresses
in the contacting bodies. Moreover, the contacting surfaces exchange heat and
energy is lost to the surroundings. Models taking into account thermal effects
can be found in [3], [15] and [16] .

Thermoviscoelastic materials are materials which behave according to vis-
coelastic constitutive laws with added thermal effects. We model the material’s
behavior with a constitutive law with long memory of the form

σ (t) = A ε(u̇ (t)) + G ε(u (t)) +

∫ t

0

B(t− s) ε(u (s)) ds−M ξ (t) , (1.1)

in which A is the viscosity operator, G is the elastic operator and B is the
relaxation tensor. Also, u denotes the displacement field, σ represents the stress
tensor, ε(u) is the linearized strain tensor of infinitesimal deformations and ε(u̇)
is the velocity of infinitesimal deformations. Moreover, ξ is the temperature
field andM = (mij) represents the thermal expansion tensor. In the particular
case without thermal effects, the constitutive equation (1.1) reduces to the
following viscoelastic constitutive law with long memory

σ (t) = A ε(u̇ (t)) + G ε(u (t)) +

∫ t

0

B(t− s) ε(u (s)) ds.

The evolution of the temperature field ξ is governed by the heat equation
obtained from the conservation of energy, and defined by the following differ-
ential equation for the temperature

ξ̇ (t)−Div (K ∇ξ (t)) = q (t)−M ∇u̇ (t) ,

where K = (kij) is the thermal conductivity tensor, Div(K ∇ξ) = (kij ξ,i),i
and q (t) represents the density of volume heat sources. We recall that we use
dots for derivatives with respect to the time variable t. The pointwise heat
exchange condition on the contact surface is given by

−kij
∂ξ

∂xi
(t) νj = ke (ξ (t)− θR (t)) ,
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where kij are the components of the thermal conductivity tensor, νj are the
normal components of the outward unit normal ν described in section 2, ke is
the heat exchange coefficient, ξ is the the pointwise surface temperature and
θR is the known temperature of the foundation.

The model is obtained by combining the thermoviscoelastic constitutive law
with long memory term, wear and friction. Moreover, the process is studied
on an unbounded interval of time R+ = [0,+∞) , which implies the use of the
framework of Fréchet spaces of continuous functions, rather than the classical
Banach spaces of continuous functions defined on a bounded interval of time.
This leads to a new mathematical model governed by a history-dependent qua-
sivariational inequality for the velocity field and a nonlinear equation for the
temperature field. In this paper, we prove that the proposed model has a
unique weak solution using history-dependent operators. Also, we study the
continuous dependence of the weak solution of the problem with respect to the
relaxation tensor, friction coefficient, volume forces and surface tractions.

Finally, to study the suggested model, we proceed as follows. In Section 2,
some notations and preliminary material are introduced. In Section 3, we
provide a description of the model of the contact process, we list assumptions
on the data and derive a variational formulation of the model. In Section 4, we
state and prove our main existence and uniqueness result, Theorem 2. Finally,
in Section 5, a continuous dependence of the solution with respect to the data
is proved.

2 Notations and preliminaries

In this short section, we present the notations we shall use and some preliminary
material. We use the notation N for the set of positive integers and R+ will
represent the set of nonnegative real numbers, i.e. R+ = [0,+∞). For d ∈ N,
we denote by Sd the space of second order symmetric tensors on Rd (d = 1, 2, 3).
The inner products and norms on Rd and Sd are defined by

u .v = uivi , ‖v‖ = (v .v)
1
2 ∀u, v ∈ Rd,

σ .τ = σijτij , ‖τ‖ = (τ .τ)
1
2 ∀σ, τ ∈ Sd.

Here and below, the indices i and j run between 1 to d and, unless stated
otherwise, the summation convention over repeated indices is used. Also, an
index that follows a comma represents the partial derivative with respect to
the corresponding component of the spatial variable, e. g. ui,j = ∂ui/∂xj .

Let Ω ⊂ Rd (d = 1, 2, 3) be a bounded domain with a Lipschitz continuous
boundary Γ and let Γ1 be a measurable part of Γ such that meas (Γ1) > 0. We
use x = (xi) for a generic point in Ω and we denote by ν = (νi) the outward
unit normal at Γ , u = (ui), σ = (σij) .

Now, let consider the spaces

V =
{
v = (vi) ∈ H1 (Ω)

d
/ v = 0 on Γ1

}
,

Q =
{
τ = (τij) ∈ L2(Ω)d×d/ τij = τji

}
.
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We note that V and Q are real Hilbert spaces endowed with the inner products

(u,v)V =

∫
Ω

ε(u).ε(v) dx, (σ, τ)Q =

∫
Ω

σ.τ dx,

and the associated norms ‖.‖V and ‖.‖Q respectively. Here ε represents the
deformation operator given by

ε(v) = (εij(v)), εij(v) =
1

2
(vi,j + vj,i) ∀v ∈ H1 (Ω)

d
.

Completeness of the space (V, ‖.‖V ) follows from the assumptionmeas (Γ1) > 0,
which allows the use of Korn’s inequality.

For an element v ∈ V, we still write v for the trace of v on the boundary
and we denote by vν and vτ the normal and the tangential components of v on
the boundary Γ given by vν = v.ν, vτ = v− vνν. Let Γ3 be a measurable part
of Γ. Then, by the Sobolev trace Theorem, there exists a positive constant c0
which depends on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d
≤ c0 ‖v‖V , ∀v ∈ V. (2.1)

For a regular function σ ∈ Q we denote by σν and στ the normal and the
tangential components of the vector σν on Γ , respectively, and we recall that

σν = (σν).ν, στ = σν − σνν.

We also recall that the divergence operator is defined by Div σ = (σij,j), the
following Green’s formula holds:∫

Ω

σ.ε(v) dx+

∫
Ω

Div σ.v dx =

∫
Γ

σν.v da, ∀v ∈ V. (2.2)

For functional reasons, it is convenient to shift the ambient temperature
to zero on Γ1 ∪ Γ2. We consider for this purpose θ = ξ − θa, by assuming
θa ∈ H1

(
R+, H1 (Ω)

)
. Therefore, we have

ξ (t) = θa (t)⇒ θ (t) = 0 on Γ1 ∪ Γ2,

and the following change of variable will be used

ξ (t) = θ (t) + θa (t) , ξ0 = θ0 + θa (0) .

Then, the following spaces for the temperature field are introduced

E =
{
γ ∈ H1 (Ω) / γ = 0 on Γ1 ∪ Γ2

}
, F = L2 (Ω) .

The spaces E and F endowed with their respective canonical inner products
are Hilbert spaces. Identifying F with its own dual, we obtain the Gelfand
evolution triple E ⊂ F ≡ F

′ ⊂ E
′
, where the inclusion is continuous and

dense.
Finally, we denote by Q∞ the space of fourth order tensor fields given by

Q∞ = {E = (Eijkl) / Eijkl = Eklij = Ejikl ∈ L∞ (Ω) , 1 ≤ i, j, k, l ≤ d} ,
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which is a real Banach space with the norm

‖E‖Q∞ = max
1≤i,j,k,l≤d

‖Eijkl‖L∞(Ω) .

A simple calculation shows that

‖E τ‖Q ≤ d ‖E‖Q∞ ‖τ‖Q , ∀E ∈ Q∞, τ ∈ Q. (2.3)

For each Banach space X we use the notation C (R+, X) for the space of X-
valued continuous functions defined on R+ with values on X, and C1 (R+, X)
for the space of continuous differentiable functions defined on R+. Details can
be found in [6] and [11] for instance.

The following results will be used in Section 4. We start by recalling a
convergence criterion in C (R+, X) of a sequence (xk)k to an element x, which
is given by the following,{

xk → x in C (R+, X) as k →∞ if and only if

max
r∈[0,n]

‖xk (r)− x (r)‖X → 0 as k →∞ for all n ∈ N. (2.4)

Moreover, the convergence of a sequence (xk)k to an element x∈C1 (R+, X)
is given by{

xk → x in C1 (R+, X) as k →∞ if and only if

xk → x in C (R+, X) and
.
xk →

.
x in C (R+, X) as k →∞,

(2.5)

where
.
x denotes the time derivative of x for all x ∈ C (R+, X) .

Next, we state a second result proved in [20] on history-dependent quasi-
variational inequalities. To this end, we introduce the following setting. Let X
be a real Hilbert space with the inner product (., .)X and the associated norm
‖.‖X and let Y be a normed space with the norm ‖.‖Y . Let K be a subset of
X and consider the operators A : K → X, S : C (R+, X) → C(R+, Y ), the
functionals ϕ : Y × K → R and j : X × K → R, in addition to the function
f : R+ → X such that

K is a nonempty closed convex subset of X. (2.6)
(a) There exists mA > 0 such that

(Au1 −Au2,u1 − u2)X ≥ mA ‖u1 − u2‖2X , ∀u1, u2 ∈ K.
(b) There exists LA > 0 such that
‖Au1 −Au2‖X ≤ LA ‖u1 − u2‖X , ∀u1, u2 ∈ K.

(2.7)


For every n ∈ N∗ there exists sn > 0 such that

‖Su1 (t)− Su2 (t)‖Y ≤ sn
∫ t
0
‖u1 (s)− u2 (s)‖X ds,

∀u1, u2 ∈ C (R+, X) , ∀t ∈ [0, n] .

(2.8)



(a) The function ϕ (y, .) : K → R is convex
and lower semicontinuous, for all y ∈ Y.
(b) There exists α ≥ 0 such that
ϕ (y1,v2)− ϕ (y1,v1) + ϕ (y2,v1)− ϕ (y2,v2)
≤ α ‖y1 − y2‖Y ‖v1 − v2‖X ,
∀y1, y2 ∈ Y, ∀v1, v2 ∈ K.

(2.9)

Math. Model. Anal., 24(3):351–371, 2019.
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(a) The function j (u, .) is convex and lower
semicontinuous on K, for all u ∈ X.
(b) There exists β ≥ 0 such that
j (u1,v2)− j (u1, v1) + j (u2,v1)− j ( u2,v2)
≤ β ‖u1 − u2‖X ‖v1 − v2‖X ,
∀u1, u2 ∈ X, ∀v1, v2 ∈ K.

(2.10)

f ∈ C
(
R+, X

)
. (2.11)

β < mA. (2.12)

We have the following result.

Theorem 1. Assume that (2.6)–(2.12) hold. Then there exists a unique func-
tion u ∈ C (R+,K) such that, for all t ∈ R+,

(Au (t) ,v − u (t))X + ϕ (Su (t) ,v)− ϕ (Su (t) ,u (t))
+ J (u (t) ,v)− J (u (t) ,u (t)) ≥ (f (t) ,v − u (t))X , ∀v ∈ K.

(2.13)

We note that (2.13) is a time-dependent variational inequality in which the
functional ϕ depends on the solution; such inequality is referred to as a quasi-
variational inequality. Moreover, following the terminology introduced in [20]
we refer to an operator which satisfies condition (2.8) as a history-dependent
operator. Therefore, (2.13) represents a history-dependent quasivariational in-
equality.

Finally, we assume that X and Y are two real Hilbert spaces with the
inner products (., .)X and (., .)Y , and the associated norms ‖.‖X and ‖.‖Y ,
respectively. We denote by X ×Y the product space of X and Y and we recall
that X × Y is a real Hilbert space with the canonical inner product (., .)X×Y
given by

(z1, z2)X×Y = (x1, x2)X + (y1, y2)Y , ∀ z1 = (x1, y1) , z2 = (x2, y2) ∈ X × Y.

The associated norm of the space X × Y , denoted ‖.‖X×Y , satisfies

‖z‖X×Y ≤ ‖x‖X + ‖y‖Y ≤
√

2 ‖z‖X×Y , ∀ z = (x, y) ∈ X × Y. (2.14)

3 Problem statement and variational formulation

We consider a thermoviscoelastic body which occupies a bounded domain Ω ⊂
Rd, (d = 1, 2, 3) with a Lipschitz continuous boundary Γ , divided into three
measurable parts Γ1, Γ2 and Γ3, such that meas (Γ1) > 0. The body is acted
upon by body forces of density f0 and surface tractions of density f2 act on Γ2.
We assume that the body is clamped on Γ1, and therefore, the displacement
field vanishes there. The body may come in contact over Γ3 with a moving
rigid foundation. The contact is supposed to be bilateral, which means that it
is maintained at all times and there is only relative sliding. A common example
of such a situation is a conveyer belt or a chain connecting two rotating wheels.
Moreover, in our model, the contacting surfaces evolve via their wear which is
modelled by the wear function ω : Γ3 × R+ → R+ measuring the depth in the
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normal direction of the removed material. Following [16], it is negative when
the foundation is worn out, and positive when the surface of the body wears
out. Here, we assume that the foundation is rigid and the body wears out,
and therefore ω is nonnegative. Since the body is in bilateral contact with the
foundation,

uν = −ω. (3.1)

Since ω ≥ 0, it follows that uν ≤ 0. It means that the effect of the wear is the
recession of Γ3. So, we describe the evolution of the shape of the contact zone
as a result of wear, see [16].

To describe the evolution of the wear, we use the following rate form of
Archard’s law of surface wear, (see [16] or [25])

.
ω = −kω |σν | ‖u̇τ − ϑ∗‖ ,

where kω is the wear coefficient supposed to be a very small positive constant.
Here, since the contact is bilateral, the foundation is itself moving with pre-
scribed velocity ϑ∗ = ϑ∗ (t) . Moreover, for the sake of simplicity, we assume
that ϑ∗ is a positive constant; i.e. it does not vary in time. We can see that the
rate of the wear of the surface is proportional to the contact pressure and to
the relative slip speed u̇τ − ϑ∗. Since the normal stress on the contact surface
is negative (σν ≤ 0 on Γ3), then the previous version of Archard’s law becomes

.
ω = −kωσν ‖u̇τ − ϑ∗‖ .

Also, we assume that α∗ = ‖ϑ∗‖ > 0 is large so that we can neglect ‖u̇τ‖
besides ‖ϑ∗‖ and thus, we obtain

.
ω = −kωα∗σν . (3.2)

We note that (3.2) implies
.
ω ≥ 0; that is the wear increases in time. Also,

from (3.1),
.
uν ≤ 0. Now, let β∗ = 1/ kω α

∗, which is supposed to be a positive
constant. Then, using (3.1) and (3.2), we can eliminate the unknown function
ω from the problem. We obtain the following boundary condition

σν = β∗
.
uν ,

which has the same form of the normal damped response condition, see [16].
We note that, once the solution of the problem is obtained, ω is then calculated
using (3.2). Recalling that there is only sliding contact, we model the friction
by the following Coulomb’s law of dry friction

‖στ‖ = µ |σν | , στ = −λu̇τ , λ ≥ 0,

where µ > 0 is the friction coefficient. Since σν ≤ 0, it follows that

‖στ‖ = −µ σν , στ = −λ u̇τ , λ ≥ 0.

We are interested in the deformation of the body for the entire time interval
R+ = [0,+∞). The process is assumed to be quasistatic, i.e. the inertial effect

Math. Model. Anal., 24(3):351–371, 2019.
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in the equation of the motion is neglected. To simplify the notation, sometimes
we do not indicate the dependence of a function on the spatial variable x or the
time variable t. The classical formulation of the contact problem is as follows:

Problem P . Find a displacement field u = (ui) : Ω × R+ → Rd, a stress
field σ : Ω × R+ → Sd and a temperature field θ : Ω × R+ → R+ such that

σ (t) = Aε(u̇ (t)) + G ε(u (t))

+

∫ t

0

B(t− s) ε(u (s)) ds−M θ (t) in Ω × R+ , (3.3)

θ̇ (t)−Div(K∇θ (t)) = q (t)−M∇u̇ (t) in Ω × R+, (3.4)

Div σ (t) + f0 (t) = 0 in Ω × R+, (3.5)

u (t) = 0 on Γ1 × R+, (3.6)

σ (t) .ν = f2 (t) on Γ2 × R+, (3.7)

− kij
∂θ

∂xi
(t) νi = ke (θ (t)− θR (t)) on Γ3 × R+, (3.8)

σν(t) = β∗
.
uν(t) on Γ3 × R+, (3.9)

‖στ (t)‖ = −µσν(t), στ = −λu̇τ (t), λ ≥ 0. on Γ3 × R+, (3.10)

θ(t) = 0 on (Γ1 ∪ Γ2)× R+, (3.11)

u (0) = u0, θ (0) = θ0 in Ω. (3.12)

We now describe the problem (3.3)–(3.12). First, equations (3.3)–(3.4) rep-
resent the thermoviscoelastic constitutive law and the evolution equation of
the heat field respectively introduced in Section 1. Equation (3.5) is the bal-
ance equation for the stress field and it is used since the process is assumed to
be quasistatic. Conditions (3.6)–(3.7) are the displacement-traction boundary
conditions respectively.

Now, we comment on the conditions (3.8)–(3.11) which are the boundary
conditions. Conditions (3.8) and (3.11) represent the temperature boundary
conditions, where (3.8) is described in Section 1. The wear evolution and the
bilateral contact yield condition (3.9). Condition (3.10) is the friction law where
(−µ σν) is the friction bound function, µ ≥ 0, λ ≥ 0.

Finally, (3.12) represents the initial conditions in which u0 and θ0 are the
initial displacement and the initial temperature respectively.

We turn now to the variational formulation of the Problem P . To this end,
we assume that the viscosity operator A, the elasticity operator G and the
relaxation tensor B satisfy

(a) A : Ω × Sd → Sd.
(b) There exists LA > 0 such that

‖A (x, ξ1)−A (x, ξ2)‖ ≤ LA ‖ξ1 − ξ2‖ ,
∀ ξ1, ξ2 ∈ Sd, a. e. x ∈ Ω.

(c) There exists mA > 0 such that

(A (x, ξ1)−A (x, ξ2)) . (ξ1 − ξ2) ≥ mA ‖ξ1 − ξ2‖2 ,
∀ ξ1, ξ2 ∈ Sd, a. e. x ∈ Ω.
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 (d) The mapping x 7→ A (x, ξ) is measurable on Ω,
for any ξ ∈ Sd.

(e) The mapping x 7→ A (x,0) belongs to Q.
(3.13)



(a) G : Ω × Sd → Sd.
(b) There exists LG > 0 such that
‖G (x, ξ1)− G (x, ξ2)‖ ≤ LG ‖ξ1 − ξ2‖ ,
∀ ξ1, ξ2 ∈ Sd, a. e. x ∈ Ω.

(c) The mapping x 7→ G (x, ξ) is Lebesgue measurable on Ω,
for any ξ ∈ Sd.

(e) The mapping x 7→ G (x,0) belongs to Q.

(3.14)

B ∈ C
(
R+, Q∞

)
. (3.15)

The densities of body forces and surface tractions are such that

f0 ∈ C
(
R+, L2 (Ω)

d
)
, f2 ∈ C

(
R+, L2 (Γ2)

d
)
. (3.16)

Coefficients µ and β∗ satisfy the following conditions{
µ ∈ L∞ (Γ3) , µ (x) ≥ 0 a.e. on Γ3.
β∗ ∈ L∞ (Γ3) , β∗ (x) ≥ β0 > 0 a.e. on Γ3.

(3.17)

The thermal tensors and the heat source density satisfy
M = (mij) , mij = mji ∈ L∞ (Ω) .
K = (kij) , kij = kji ∈ L∞ (Ω) , kij ξi ξi ≥ ck ξi ξi,

for some ck > 0, for all (ξi) ∈ Rd.
q ∈ L2

(
R+, L2 (Ω)

)
.

(3.18)

Finally, the boundary and initial data verify

u0 ∈ V, θ0 ∈ E, θR ∈ L2
(
R+, L2 (Γ3)

)
, ke ∈ L∞

(
Ω,R+

)
. (3.19)

In order to get a variational formulation of the Problem P , we assume in
what follows that (u, σ,θ) are sufficiently regular functions which satisfy (3.3)–
(3.12). Let v ∈ V and t > 0 be given.

Then, using the Riesz representation Theorem we define, for all u,v ∈ V
and t ∈ R+, the function f : R+ → V by

(f (t) ,v)V =

∫
Ω

f0 (t) v dx+

∫
Γ2

f2 (t) v da. (3.20)

Moreover, we define the mapping J : V × V → R as follows

J (u,v) =

∫
Γ3

β∗ |uν | (µ ‖vτ‖+ vν) da, (3.21)

Math. Model. Anal., 24(3):351–371, 2019.
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for all u,v ∈ V and t ∈ R+. We note that, from assumptions (3.16) and (3.17),
we can see that the integrals defined in (3.20)–(3.21) are well-defined and, in
addition,

f ∈ C
(
R+, V

)
. (3.22)

Also, we note that for all u1,u2,v1,v2 ∈ V we have

J (u1,v2)− J (u1,v1) + J (u2,v1)− J (u2,v2)
=
∫
Γ3
β∗ (|u1ν | − |u2ν |) [µ (‖v2τ − v1τ‖) + (v2ν − v1ν)] da.

Taking into account assumptions (3.17) combined with (2.1), we obtain

J (u1,v2)− J (u1,v1) + J (u2,v1)− J (u2,v2)

≤ c20 ‖β∗‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
‖u1 − u2‖V ‖v1 − v2‖V .

(3.23)

Finally, using (2.2), it is staightforward to see that if u, σ and θ are suffi-
ciently regular functions which satisfy (3.5)–(3.11), then we obtain the following
variational formulation of the Problem P.

Problem PV . Find a displacement field u : R+ → V , a stress field σ : R+ →
Q and a temperature field θ : R+ → E such that for all t ∈ R+,

σ (t) = Aε(u̇) + G ε(u) +

∫ t

0

B(t− s)ε(u (s))ds−Mθ (t) , (3.24)

(Aε(u̇ (t)), ε (v)−ε (u̇ (t)))Q + (Gε(u (t)), ε (v)−ε (u̇ (t)))Q

+

(∫ t

0

B(t− s)ε(u (s))ds−Mθ (t) , ε (v)−ε (u̇ (t))

)
Q

+ J (u̇ (t) ,v)− J (u̇ (t) , u̇ (t)) ≥ (f (t) ,v − u̇ (t))V , for all v ∈ V, (3.25)

θ̇ (t) +Kθ (t) = R u̇ (t) + Z (t) in E′, (3.26)

u (0) = u0, θ (0) = θ0, (3.27)

where K : E → E′, R : V → E′ and Z : R+ → E′ are given by

(Kτ, η)E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂η

∂xi
dx+

∫
Γ3

ke τη da,

(Rv, η)E′×E = −
∫
Ω

mij
∂vi
∂xj

η dx,

(Z (t) , η)E′×E =

∫
Γ3

ke (θR (t)− θa (t)) η da+

∫
Ω

(
q (t)− θ̇a (t)

)
η dx

−
d∑

i,j=1

∫
Ω

kij
∂θa (t)

∂xj

∂η

∂xi
dx,

for all v ∈ V , τ, η ∈ E.
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4 Existence and uniqueness result

Our main existence and uniqueness result of this section is the following.

Theorem 2. Assume (3.13)–(3.19). Then, there exists L0 > 0 depending only

on Ω, Γ1, Γ3 and A such that if ‖β∗‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
< L0, Problem

PV has a unique solution which satisfies

u ∈ C1 (R+, V ) , σ ∈ C (R+, Q) ,
θ ∈ C (R+, F ) ∩ L2 (R+, E) ∩W 1,2 (R+, E′) .

(4.1)

The proof of Theorem 2 will be carried out in several steps. We assume in
what follows that (3.13)–(3.19) hold and, everywhere below, we denote by c a
generic positive constant which is independent of time and whose value may
change from one occurrence to another. We start with the following result for
the unique solvability of equation (3.26).

Lemma 1. Given u ∈ C1 (R+, V ), there exists a unique function θ = θ (u) ∈
C (R+, F ) ∩ L2 (R+, E) ∩W 1,2 (R+, E′) such that for all t ∈ R+,

θ̇ (t) +Kθ (t) = R u̇ (t) + Z (t) in E′, (4.2)

θ (0) = θ0. (4.3)

Also, if θi = θ (ui) ∈ C (R+, F ) are solutions of (4.2)–(4.3) which corre-
spond to ui ∈ C1 (R+, V ), for i = 1, 2, then we have for all t ∈ R+

‖θ1 (t)− θ2 (t)‖2F ≤ c
∫ t

0

‖u̇1 (s)− u̇2 (s)‖2V ds, c > 0. (4.4)

Proof. For t ∈ R+ fixed, we note that the operator K : E → E′ is linear
continuous and strongly monotone. Moreover, Friedrich’s-Poincaré inequality
yields

(Kτ, τ)E′×E ≥ c |τ |
2
E , c > 0.

Since we have the Gelfand triple E ⊂ F ≡ F ′ ⊂ E′, we use a classical result
on first order evolution equations given in [18] to prove the unique solvability
of (4.2)–(4.3) at any t.

Now, for ui ∈ C1 (R+, V ), i = 1, 2, we still use the notation θi = θ (ui),
i = 1, 2. Let t ∈ R+ be fixed. Then, we have(

θ̇1 (t)−θ̇2 (t) , θ1 (t)−θ2 (t)
)
E′×E

+ (Kθ1 (t)−Kθ2 (t) , θ1 (t)− θ2 (t))E′×E

= (R u̇1 (t)−R u̇2 (t) , θ1 (t)− θ2 (t))E′×E . (4.5)

We integrate (4.5) over (0, t) and we use the strong monotonicity of K and the
Lipschitz continuity of R : V → E′ to deduce that (4.4) holds at any t ∈ R+.
ut

In the next step in the proof of Theorem 2, we define the operators S1 :
C (R+, V )→ C (R+, V ) by

S1w (t) =

∫ t

0

w (s) ds+ u0. (4.6)
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It is clear that S1 is a history-dependent operator since it verifies

‖S1w1 (t)− S1w2 (t)‖V ≤
∫ t

0

‖w1 (s)−w2 (s)‖V ds. (4.7)

Also, let introduce the operator S : C (R+, V ) → C (R+, Q× F ) given by
Sw (t) = (S2w (t) ,S3w (t)) such that

S2w (t) = G ε(S1w (t)) +

∫ t

0

B(t− s) ε(S1w (s)) ds, (4.8)

S3w (t) = θ (S1w (t)) . (4.9)

Let Y = Q× F and let define the functional ϕ : Y × V → R by

ϕ (y,v) = (τ −M η, ε(v))Q , (4.10)

for all y = (τ, η) ∈ Y, v ∈ V.
This allows us to introduce the following variational problem.

Problem QV . Find a velocity field w : R+ → V such that for all t ∈ R+,

(Aε(w (t)), ε (v)−ε (w (t)))Q + ϕ (Sw (t) ,v)− ϕ (Sw (t) ,w (t))

+ J (w (t) ,v)− J (w (t) ,w (t)) ≥ (f (t) ,v −w (t))V , ∀v ∈ V. (4.11)

The link between the Problems PV and QV is provided by the following equiv-
alence result.

Lemma 2. Let the triplet (u, σ,θ) be a solution of Problem PV satisfying (4.1).
Then, the velocity field w = u̇ is a solution of Problem QV and w ∈ C (R+, V ).
Conversely, if w ∈ C (R+, V ) is a solution of Problem QV , then the triplet
(u, σ, θ) defined by

u = S1w, θ = S3w, σ = A ε(w) + S2w−M S3w, (4.12)

is a solution of Problem PV and it satisfies (4.1).

Proof. Let (u, σ,θ) be a solution of Problem PV which satisfies regularity (4.1)
and let use the notation w = u̇. From (3.27) we have

u (t) =

∫ t

0

w (s) ds+ u0,

and then (4.6) implies
u (t) = S1w (t) . (4.13)

Next, by Lemma 1, θ (t) = θ (u (t)) . Using (4.13) and (4.9), we get

θ (t) = S3w (t) . (4.14)

We use now (4.13)–(4.14) and (4.8) as well as (4.10) and the notation w = u̇ in
(3.25) to see that w is a solution of Problem QV . Since u ∈ C1 (R+, V ), then
w ∈ C (R+, V ) .
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Conversely, let w ∈ C (R+, V ) be a solution of Problem QV and let define
the triplet (u, σ,θ) by (4.12). Let t ∈ R+. By using definition of u in (4.12) with
(4.6), it follows that w = u̇ and that u (0) = u0. Also, regularity of w yields
u ∈ C1 (R+, V ) . Next, from the definition of θ in (4.12) and from (4.6) and
(4.9), we deduce that θ (t) = θ (u (t)) . Therefore, Lemma 1 shows that (3.26)
holds with regularity θ ∈ C (R+, F ) ∩ L2 (R+, E) ∩W 1,2 (R+, E′). Moreover,
σ is calculated from (4.12) and it is clear, using (3.13), that σ ∈ C (R+, Q) .
Finally, we recall that w = u̇ and we use (4.11), definition of σ in (4.12) and
(4.10) to find (3.25). It is now clear that the triplet (u, σ,θ) is a solution of
Problem PV with regularity (4.1). ut

The last step in the proof of Theorem 2 consists in the proof of the unique
solvability of Problem QV which is provided in the following result.

Lemma 3. Problem QV has a unique solution w ∈ C (R+, V ).

Proof. We apply Theorem 2 with K = X = V, Y = Q × F . Let define the
operator A : C (R+, V )→ C (R+, V ) by

(Aw,v) = (Aε(w), ε (v))Q ∀ w, v ∈ V.

We use (3.13) (b) and (3.13) (c) to find that

‖Aw1 −Aw2‖V ≤ LA ‖w1 −w2‖V ,

(Aw1 −Aw2,w1 −w2)V ≥ mA ‖w1 −w2‖2V ,

which shows that condition (2.7) of Theorem 2 is satisfied.
Moreover, by using assumptions onM given in (3.18), it is easy to show that

the functional ϕ given in (4.10) is convex and lower semi continuous on V , which
means that it satisfies condition (2.9) (a). In addition, for all y1 = (τ1, η1) ,
y2 = (τ2, η2) ∈ Y , v1, v2 ∈ V we have

ϕ (y1,v2)− ϕ (y1,v1) + ϕ (y2,v1)− ϕ (y2,v2)
= (τ2 − τ1, ε (v1)− ε (v2))Q − (Mη2 −Mη1, ε (v1)− ε (v2))Q .

By assumptions on M given in (3.18) and (2.14) we can see that

ϕ (y1,v2)− ϕ (y1,v1) + ϕ (y2,v1)− ϕ (y2,v2)
≤ ‖τ2 − τ1‖Q ‖v2 − v1‖V + ‖M ‖‖η2 − η1‖L2(Ω) ‖v2 − v1‖V
≤
√

2 max {1, ‖M‖ } ‖y2 − y1‖Y ‖v2 − v1‖V ,

(4.15)

which means that condition (2.9) (b) is satisfied with α =
√

2 max {1, ‖M‖} .
For the functional J , we use (3.17) and (2.1) to deduce that J satisfies

condition (2.10) (a). Also, we can see from (3.23) that condition (2.10) (b) is

satisfied with β = c20 ‖β∗‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
.

Next, let n ∈ N∗, t ∈ [0, n] and let w1,w2 ∈ C (R+, V ) . Then, the definition
of the operator S yields

‖Sw1 (t)−Sw2 (t)‖Q×L2(Ω)

≤ ‖S2w1 (t)−S2w2 (t)‖Q + ‖S3w1 (t)−S3w2 (t)‖F .
(4.16)
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However, from (4.8) and by using assumptions (3.14)–(3.15) and inequality
(2.3), we obtain for all v ∈ V,

(S2w1 (t)−S2w2 (t) , ε(v))Q ≤ LG ‖ε(S1w1 (t))− ε(S1w2 (t))‖Q

× ‖ε(v)‖Q + max
r∈[0,n]

‖B(r)‖Q∞

∫ t

0

‖ε(S1w1 (s))−ε(S1w2 (s))‖Q ds ‖ε(v)‖Q ,

which implies

‖S2w1 (t)−S2w2 (t)‖Q ≤ LG ‖S1w1 (t)− S1w2 (t)‖Q

+ max
r∈[0,n]

‖B(r)‖Q∞

∫ t

0

‖S1w1 (s)− S1w2 (s)‖Q ds.

From the previous inequality and (4.7), we can say that, for any n ∈ N∗, there
exists an n-dependent constant rn > 0 such that

‖S2w1 (t)−S2w2 (t)‖Q ≤ rn
∫ t

0

‖w1 (s)−w2 (s)‖V ds ∀t ∈ [0, n] . (4.17)

Also, using (4.9) we can see that

‖S3w1 (t)−S3w2 (t)‖F = ‖θ (S1w1 (t))− θ (S1w2 (t))‖F .

From (4.13), it follows that S1w1 (t) = u1 (t), S1w2 (t) = u2 (t). Then, we use
(4.6) to see that u̇1 (t) = w1 (t), u̇2 (t) = w2 (t). We now apply (4.4) to obtain

‖S3w1 (t)−S3w2 (t)‖2F ≤ c
∫ t

0

‖w1 (s)−w2 (s)‖2V ds.

Since w1, w2 ∈ C (R+, V ) we find that for all t ∈ [0, n]

‖S3w1 (t)−S3w2 (t)‖2F ≤ c
∫ t

0

‖w1 (s)−w2 (s)‖V ds.

Moreover, we can see that there exists n∗ ∈ N such that

‖S3w1 (t)−S3w2 (t)‖F ≤ n
∗ ‖S3w1 (t)−S3w2 (t)‖2F .

Then,

‖S3w1 (t)−S3w2 (t)‖F ≤ cn
∗
∫ t

0

‖w1 (s)−w2 (s)‖V ds, (4.18)

From (4.16), (4.17) and (4.18), we conclude that

‖Sw1 (t)−Sw2 (t)‖Q×F ≤ sn
∫ t

0

‖w1 (s)−w2 (s)‖V ds, (4.19)

where sn = c n∗+ rn > 0. Therefore condition (2.8) is satisfied. Finally, (3.22)
implies (2.11). Also, we suppose that

c20 ‖β∗‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
< mA,

and then condition (2.12) is satisfied. Taking L0 = mA
c20

, Theorem 2 is then a

direct consequence of Lemmas 1 and 3. We recall that c0 depends on Ω, Γ1

and Γ3 and, therefore, L0 depends on Ω, Γ1, Γ3 and A. ut
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5 A convergence result

In this section, we study the dependence of the solution of Problem PV with
respect to perturbations of the data. For a parameter ρ > 0, we prove that the
solution

(
uρ, σρ,θρ

)
of the perturbated Problem P ρV converges to the solution

(u, σ,θ) of the Problem PV obtained in Theorem 2. To this end, we assume in
what follows that (3.13)–(3.23) still hold as well as the condition mentioned in
Theorem 2 which is given by

‖β∗‖L∞(Γ3)

(
‖µ‖L∞(Γ3)

+ 1
)
< L0,

where L0 > 0.
For the sake of simplicity, we restrict the study of the continuous dependence

of the solution for the relaxation tensor B, the coefficient of friction µ and
the densities of the body forces and surface tractions f0 and f2, respectively.
Then, for ρ > 0, let Bρ, µρ, f0ρ and f2ρ be the perturbations of B, µ, f0 and
f2, respectively, satisfying assumptions (3.15), (3.16) and (3.17). Also, for all
u,v ∈ V and t ∈ R+, let define the mapping Jρ : V × V → R and the function
fρ : R+ → V by

Jρ (u,v) =

∫
Γ3

β∗ |uν | (µρ ‖vτ‖+ vν) da, (5.1)

(fρ (t) ,v)V =

∫
Ω

f0ρ (t)v dx+

∫
Γ2

f2ρ (t) vda.

Moreover, we assume that there exists m0 ≥ 0 such that

c20 ‖β∗‖L∞(Γ3)

(
‖µρ‖L∞(Γ3)

+ 1
)
≤ m0 < mA for each ρ > 0. (5.2)

The perturbation of the Problem PV is given by the following.

Problem P ρV . Find a displacement field uρ : R+ → V , a stress field σρ :
R+ → Q and a temperature field θρ : R+ → E such that for all t ∈ R+,

σρ (t) = Aε(u̇ρ) + Gε(uρ) +

∫ t

0

Bρ(t− s) ε(uρ (s)) ds−M θρ (t) ,

(Aε(u̇ρ (t)), ε (v)−ε (u̇ρ (t)))Q + (G ε(uρ (t)), ε (v)−ε (u̇ρ (t)))Q

+

(∫ t

0

Bρ(t− s)ε(uρ (s)) ds−M θρ (t) , ε (v)−ε (u̇ρ (t))

)
Q

+ J (u̇ρ (t) ,v)− J
(
u̇ρ (t) , u̇ρ (t)

)
≥ (f (t) ,v − u̇ρ (t))V ,∀v ∈ V,

θ̇ρ (t) +Kθρ (t) = R u̇ρ (t) + Z (t) in E′,

uρ (0) = u0, θρ (0) = θ0.

Then, from Theorem 2, Problem P ρV has a unique solution
(
uρ, σρ,θρ

)
satisfying

the regularity

uρ ∈ C1 (R+, V ) , σρ ∈ C (R+, Q) ,
θρ ∈ C (R+, F ) ∩ L2 (R+, E) ∩W 1,2 (R+, E′) .
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Now, let consider the following assumptions

Bρ → B in C
(
R+, Q∞

)
as ρ→ 0. (5.3)

µρ → µ in L∞ (Γ3) as ρ→ 0. (5.4)

f0ρ → f0 in C
(
R+, L2 (Ω)

d
)

as ρ→ 0. (5.5)

f2ρ → f2 in C
(
R+, L2 (Γ2)

d
)

as ρ→ 0. (5.6)

These assumptions allow us to give the following convergence result.

Theorem 3. Assume that (5.3)–(5.6) hold. Then, the solution
(
uρ, σρ,θρ

)
of

the Problem P ρV converges to the solution (u, σ,θ) of the Problem PV ; i.e.

uρ → u in C1
(
R+, V

)
, σρ → σ in C

(
R+, Q

)
as ρ→ 0.

θρ → θ in C
(
R+, F

)
as ρ→ 0.

Proof. Let ρ > 0 and let use the notations w (t) = u̇ (t) and wρ (t) = u̇ρ (t)
for the velocity fields. Since there is a perturbation of the relaxation tensor
B, we use definitions (4.8)–(4.9) to define the operator Sρ : C (R+, V ) →
C (R+, Q× F ) by

Sρw (t) = (S2ρw (t) ,S3w (t)) , (5.7)

S2ρw (t) = Gε(S1w (t)) +

∫ t

0

Bρ(t− s)ε(S1w (s))ds, (5.8)

S3w (t) = θ (S1w (t)) .

We can see from Lemma 2 that the solution
(
uρ, σρ,θρ

)
of the Problem P ρV

satisfies

uρ = S1wρ, σρ = Aε(wρ) + S2ρwρ−MS3wρ, (5.9)

θρ = S3wρ, (5.10)

(Aε(wρ (t)), ε (v)−ε (wρ (t)))Q + ϕ (Sρwρ (t) ,v)−ϕ
(
Sρwρ (t) ,wρ (t)

)
+ J (wρ (t) ,v)− J

(
wρ (t) ,wρ (t)

)
≥ (fρ (t) ,v −wρ (t))V ,∀v ∈ V. (5.11)

Now, let ρ > 0 and t ∈ [0, n] . Taking v = w (t) in (5.11) and v = wρ (t) in
(4.11), we add the resulting inequalities to obtain

(Aε(wρ (t))−Aε(w (t)), ε (wρ (t))−ε (w (t)))Q ≤ ϕ
(
Sw (t) ,wρ (t)

)
− ϕ (Sw (t) ,w (t)) +ϕ (Sρwρ (t) ,w (t))−ϕ

(
Sρwρ (t) ,wρ (t)

)
+ J

(
w (t) ,wρ (t)

)
−J (w (t) ,w (t)) +J (wρ (t) ,w (t))

− J
(
wρ (t) ,wρ (t)

)
+ (fρ (t)−f (t) ,wρ (t)−w (t))V . (5.12)

Next, we proceed to estimate each term of the previous inequality. First, from
assumption (3.13) (c), we find that

mA ‖wρ (t)−w (t)‖2V ≤ (Aε(wρ (t))−Aε(w (t)), ε (wρ (t))−ε (w (t)))Q .

(5.13)
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Also, we use (4.15) to see that

ϕ
(
Sw (t) ,wρ (t)

)
− ϕ (Sw (t) ,w (t)) + ϕ (Sρwρ (t) ,w (t))

− ϕ
(
Sρwρ (t) ,wρ (t)

)
≤
√

2 max {1, ‖M‖}
× ‖Sρwρ (t)− Sw (t)‖Y ‖wρ (t)−w (t)‖V . (5.14)

However, from definition of Sw (t) and (5.7), it follows that

‖Sρwρ (t)−Sw (t)‖Y ≤ ‖S2ρwρ (t)−S2w (t)‖Q + ‖S3wρ (t)− S3w (t)‖L2(Ω) .

By (4.8), (5.8) and by using (3.14)–(3.15), we deduce that

‖S2ρwρ (t)− S2w (t)‖Q ≤ LG ‖S1wρ (t)− S1w (t)‖V
+
∥∥∥∫ t0 (Bρ (t− s) ε (S1wρ (s))− B (t− s) ε (S1w (s))) ds

∥∥∥
Q
.

We write,

Bρ (t− s) ε (S1wρ (s))− B (t− s) ε (S1w (s)) = Bρ (t− s)
× (ε (S1wρ (s))− ε (S1w (s))) + (Bρ (t− s)− B (t− s)) ε (S1w (s)) .

Then, we obtain

‖S2ρwρ (t)− S2w (t)‖Q ≤ LG ‖S1wρ (t)− S1w (t)‖V + max
r∈[0,n]

‖Bρ (r)‖Q∞

×
∫ t

0

‖S1wρ (s)−S1w (s)‖V ds+ max
r∈[0,n]

‖Bρ (r)−B (r)‖Q∞

∫ t

0

‖S1w (s)‖V ds.

We recall that S1w (t) = u (t) . From the last inequality and (4.6), we can see
that for any t ∈ [0, n] , there exists an n-dependent constant dn > 0 such that

‖S2ρwρ (t)− S2w (t)‖Q ≤ dn
(∫ t

0

‖wρ (s)−w (s)‖V ds

)
+ max
r∈[0,n]

‖Bρ (r)− B (r)‖Q∞

∫ t

0

‖u (s)‖V ds. (5.15)

Moreover, applying (4.4) and proceeding in the same way followed to find
(4.18), we obtain

‖S3wρ (t)− S3w (t)‖F ≤ c
∫ t

0

‖wρ (s)−w (s)‖V ds. (5.16)

Combining (5.15) and (5.16) yields

‖Sρwρ (t)− Sw (t)‖Y ≤ hn
∫ t

0

‖wρ (s)−w (s)‖V ds

+ max
r∈[0,n]

‖Bρ (r)− B (r)‖Q∞

∫ t

0

‖u (s)‖V ds, (5.17)
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where hn = c+ dn > 0. As a result of (5.14) and (5.17), we deduce that

ϕ
(
Sw (t) ,wρ (t)

)
− ϕ (Sw (t) ,w (t)) + ϕ (Sρwρ (t) ,w (t))

− ϕ
(
Sρwρ (t) ,wρ (t)

)
≤
√

2 max {1, ‖M‖} max
r∈[0,n]

‖Bρ (r)− B (r)‖Q∞

× ‖wρ (t)−w (t)‖V
∫ t

0

‖u (s)‖V ds+ hn
√

2 max {1, ‖M‖}

× ‖wρ (t)−w (t)‖V
∫ t

0

‖wρ (s)−w (s)‖V ds. (5.18)

Moreover, we use (3.21), (3.23) and (5.1); after some standard computations
it follows that

J
(
w (t) ,wρ (t)

)
− J (w (t) ,w (t)) + J (wρ (t) ,w (t))− J

(
wρ (t) ,wρ (t)

)
=

∫
Γ3

β∗ (‖wρ,τ (t)‖ − ‖wτ (t)‖) (µ |wν (t)| − µρ |wρ,ν (t)|)

+

∫
Γ3

β∗ (|wν (t)| − |wρ,ν (t)|) . (wρ,ν (t)− wν (t)) .

Then, by writing

µ |wν (t)| − µρ |wρ,ν (t)| = (µ− µρ) |wν (t)|+ µρ (|wν (t)| − |wρ,ν (t)|) ,

and by using (2.1), we obtain

J
(
w (t) ,wρ (t)

)
− J (w (t) ,w (t)) + J (wρ (t) ,w (t))− J

(
wρ (t) ,wρ (t)

)
≤ c20 ‖β∗‖L∞(Γ3)

(
‖µρ‖L∞(Γ3)

+ 1
)
‖wρ (t)−w (t)‖2V

+c20 ‖β∗‖L∞(Γ3)
‖µρ − µ‖L∞(Γ3)

‖w (t)‖V ‖wρ (t)−w (t)‖V .
(5.19)

Finally, Cauchy-Schwartz inequality yields

(fρ (t)− f (t) ,wρ (t)−w (t))V ≤ ‖fρ (t)− f (t)‖V ‖wρ (t)−w (t)‖V . (5.20)

Let use the notations

ξρn =
√

2 max {1, ‖M‖} max
r∈[0,n]

‖Bρ (r)− B (r)‖Q∞

∫ n

0

‖u (s)‖V ds, (5.21)

φρ = c20 ‖β∗‖L∞(Γ3)
‖µρ − µ‖L∞(Γ3)

max
s∈[0,n]

‖w (s)‖V , (5.22)

δρ = max
s∈[0,n]

‖fρ (s)− f (s)‖V . (5.23)

Then, we combine (5.21)–(5.23) with inequalities (5.12)–(5.13) and (5.18)–
(5.20) to deduce that[

mA − c20 ‖β∗‖L∞(Γ3)

(
‖µρ‖L∞(Γ3)

+ 1
)]
‖wρ (t)−w (t)‖V

≤ (ξρn + φρ + δρ) + hn
√

2 max {1, ‖M‖}
∫ t
0
‖wρ (s)−w (s)‖V ds.
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Moreover, condition (5.2) yields

(mA −m0) ‖wρ (t)−w (t)‖V ≤ (ξρn + φρ + δρ)

+ hn
√

2 max {1, ‖M‖}
∫ t

0

‖wρ (s)−w (s)‖V ds.

We apply a Gronwall argument to the previous inequality to find

‖wρ (t)−w (t)‖V ≤
1

mA−m0
(ξρn+φρ+δρ) e

hn
√

2max{1,‖M‖}
mA−m0

t
,

and therefore,

max
t∈[0,n]

‖wρ (t)−w (t)‖V

≤ 1

mA −m0
(ξρn + φρ + δρ) e

hn
√

2 max{1,‖M‖}
mA−m0

n
.

(5.24)

Then, we use the convergence definition (2.4) and assumptions (5.3)–(5.6) to
see that

ξρn → 0, φρ → 0, δρ → 0 as ρ→ 0. (5.25)

From (5.24)–(5.25), we conclude that

max
t∈[0,n]

‖wρ (t)−w (t)‖V → 0 as ρ→ 0. (5.26)

Let denote by uρ (t) = S1 wρ (t), u (t) = S1 w (t) the displacement fields
corresponding to the velocity fields wρ (t) and w (t) , where S1 is the operator
given in (4.6). Therefore, (4.7) and (5.26) yield

max
t∈[0,n]

‖uρ (t)− u (t)‖V → 0 as ρ→ 0.

Also, we recall that u̇ρ (t) = wρ (t), u̇ = w (t) and we use (5.26), the previous
inequality as well as (2.5) to get

uρ → u in C1
(
R+, V

)
as ρ→ 0.

Finally, from (5.9)–(5.10) and definitions of σ and θ in (4.12), we deduce that

‖σρ (t)− σ (t)‖Q + ‖θρ (t)− θ (t)‖F ≤ LA ‖wρ (t)−w (t)‖V
+ ‖S2ρwρ (t)− S2w (t)‖Q + ‖M+ 1‖ ‖S3wρ (t)− S3w (t)‖F .

Then, (2.14) implies

‖σρ (t)− σ (t)‖Q + ‖θρ (t)− θ (t)‖F ≤ LA ‖wρ (t)−w (t)‖V
+
√

2 max {1, ‖M‖+ 1} ‖Sρwρ (t)− Sw (t)‖Y .

We use now (5.17) and (5.21) to obtain

‖σρ (t)− σ (t)‖Q + ‖θρ (t)− θ (t)‖F ≤ ξρn + LA ‖wρ (t)−w (t)‖V
+hn
√

2 max {1, ‖M‖+ 1}
t∫
0

‖wρ (s)−w (s)‖V ds.
(5.27)
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We combine (5.26), (5.27) and the convergence ξρn → 0, as ρ → 0 given in
(5.25) to conclude that

max
t∈[0,n]

‖σρ (t)− σ (t)‖Q → 0 as ρ→ 0, (5.28)

max
t∈[0,n]

‖θρ (t)− θ (t)‖F → 0 as ρ→ 0. (5.29)

We use (5.28)–(5.29) and the convergence definition (2.4) to get the follow-
ing convergences

σρ → σ in C (R+, Q) as ρ→ 0,
θρ → θ in C (R+, F ) as ρ→ 0,

which concludes the proof of Theorem 3. ut
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[8] I. Halvácek, J. Haslinger, J. Nečas and J. Lovǐsek. Solution of Variational In-
equalities in Mechanics. Springer, New York, 1988. https://doi.org/10.1007/978-
1-4612-1048-1.

[9] W. Han and M. Sofonea. Quasistatic Contact Problems in Viscoelasticity and
Viscoplasticity- Studies in Advanced Mathematics, volume 30. American Mathe-
matical Society-International Press, 2002. https://doi.org/10.1090/amsip/030.

[10] K. Kazmi, M. Barboteu, W. Han and M. Sofonea. Numerical analysis
of history-dependent quasivariational inequalities with applications in con-
tact mechanics. Esaim Math. Model. Numer. Anal., 48(3):919–942, 2014.
https://doi.org/10.1051/m2an/2013127.

[11] J. J. Massera and J. J. Scha̋ffer. Linear Differential Equations and Function
Spaces. Academic Press, New York, 1966.

https://doi.org/10.1002/zamm.201400304
https://doi.org/10.3934/Math.2017.4.658
https://doi.org/10.4310/MAA.2000.v7.n4.a5
https://doi.org/10.1016/S0895-7177(02)00233-9
https://doi.org/10.1007/BF02410815
https://doi.org/10.1007/978-1-4612-1048-1
https://doi.org/10.1007/978-1-4612-1048-1
https://doi.org/10.1090/amsip/030
https://doi.org/10.1051/m2an/2013127


Analysis of a Thermoviscoelastic Contact Problem 371
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