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Abstract. An inverse problem to determine time- and space-dependent relaxation
kernels of internal energy and heat flux with first kind boundary conditions by means
of heat flux measurements is considered. The case when observations of the heat
flux are made at the ends of the bar with thermal memory was not studied before.
Existence and uniqueness of a solution to the inverse problem are proved.
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1 Introduction

In the linear theory of heat conduction in materials with thermal memory
appear two memory (or relaxation) kernels [1, 2, 7, 8]. To determine these
unknown kernels the corresponding inverse problems are used.

The memory kernels can be degenerate, i.e. represented as finite sums of
products of known space-dependent functions times unknown time-dependent
coefficients. This is so when either the medium is piecewise continuous or a
problem for a general kernel is replaced by a related problem for an approx-
imated kernel. The unknown coefficients are recovered by a finite number of
measurements of certain time-dependent characteristics of the solution of the
direct problem. Inverse problems of such a type were studied in [3, 4, 5, 6],
[9, 10, 11, 12]. The papers [9, 10, 11, 12] treat an inverse problem for mate-
rial with memory having two relaxation kernels: the kernels of internal energy
and heat flux. As additional information were used the measurements of the
temperature or the heat flux in finite number of interior points of the unit bar.

In the present paper, for the first time is studied the same inverse problem
for two relaxation kernels using additional data at the ends of the bar. As now
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474 E. Pais

the additional information consists only of two measurements we must restrict
us to the case of two unknown functions: one for each memory kernel. So
we can not consider here the general case of degenerate memory kernels. The
main difference is that system of equations in the Laplace domain contains
now the transform of a fractional derivative of one of unknown functions. Also
we need to find some new estimates of the Green function in this case. The
existence and uniqueness are proved for the inverse problem with the first kind
boundary conditions and the heat flux observations. The problem with the
third kind boundary conditions can be treated in a similar manner but some
other estimates of the Green function must be used.

In Section 2 we formulate the direct and inverse problems and in Section 3
apply the Laplace transform to them. In Section 5 we rewrite the transformed
problems in the fixed-point form. Section 4 contains the estimates of the Green
function and Section 6 describes results for the direct problem. Main existence
and uniqueness results for the inverse problem are presented in Section 7 of the
paper.

2 Direct and Inverse Problem

We consider the heat flow in a rigid non-homogeneous bar consisting of a mate-
rial with thermal memory. In the linear approximation the process is described
by the following integro-differential equation of heat conduction

β(x)
∂

∂t
u(x, t) +

∂

∂t

∫ t

0

n(x, t− τ)u(x, τ) dτ =
∂

∂x
(λ(x)ux(x, t))

− ∂

∂x

∫ t

0

m(x, t− τ)ux(x, τ) dτ + r(x, t), x ∈ (0, 1), t > 0. (2.1)

Here u is the temperature of the bar, β the heat capacity, λ the heat conduction
and r the heat supply. The integral terms contain a memory kernel of the
internal energy n and a memory kernel of the heat flux m.

The solution of the equation (2.1) satisfies the initial condition

u(x, 0) = ϕ(x), x ∈ (0, 1) (2.2)

and either the the boundary conditions of the first kind

u(0, t) = f1(t), u(1, t) = f2(t), t > 0 (2.3)

or the boundary conditions of the third kind

−q(0, t) = α1(u(0, t)− f1(t)), q(1, t) = α2(u(1, t)− f2(t)), t > 0, (2.4)

where q(x, t) is the heat flux, ϕ and fj, j = 1, 2 are given functions, αj , j = 1, 2
given constants. The heat flux is given by equality

q(x, t) = −λ(x)ux(x, t) +

∫ t

0

m(x, t− τ)ux(x, τ) dτ, x ∈ (0, 1).
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Equation (2.1) with the initial condition (2.2) and boundary conditions (2.3)
or (2.4) form the direct problem for the temperature u.

Inverse problem has for goal to determine the memory kernels n and m. We
consider here kernels having form of products

n(x, t) = ν(x)n(t), m(x, t) = µ(x)m(t) , (2.5)

where ν(x) and µ(x) are given functions and n(t), and m(t) are unknown
time-dependent coefficients. To recover the functions n(t), and m(t) we use
additional data in form of the observations at the ends of the bar. We can
measure the temperature

u(0, t) = h1(t), u(1, t) = h2(t), t > 0

or the heat flux

q(0, t) = −λ(0)ux(0, t) +

∫ t

0

µ(0)m(t− τ)ux(0, τ) dτ = h1(t), (2.6)

q(1, t) = −λ(1)ux(1, t) +

∫ t

0

µ(1)m(t− τ)ux(1, τ) dτ = h2(t), t > 0.

In case of the first kind boundary conditions only the heat flux observa-
tions can be used, since temperatures are already used as boundary conditions.
In case of the third kind boundary conditions we have relation between the
temperature and the heat flux at the ends of the bar. So the temperature
observation enable us to find the heat flux and vice versa. As a result all
three inverse problems use the same data: temperature and heat flux values
at the ends of the bar. For this reason the inverse problems are similar and
are described by similar equations. We will treat the problem with the first
kind boundary conditions and the heat flux observations which is given by the
relations (2.1)–(2.3), (2.5), (2.6).

3 Problem in Laplace Domain

Applying the Laplace transform to the equation (2.1) we obtain

β(x) [pU(x, p)− ϕ(x)] + pN(p)ν(x)U(x, p) =
∂

∂x
(λ(x)Ux(x, p))

−M(p)
∂

∂x
(µ(x)Ux(x, p)) +R(x, p), (3.1)

where N = Lnj , M = Lmk, R = Lr,

U(x, p) = Lu(x, t) =
∫ ∞

0

e−ptu(x, t) dt, Re p > σ.

The boundary conditions (2.3) are given by

U(0, p) = F1(p), U(1, p) = F2(p), Re p > σ,

Math. Model. Anal., 15(4):473–490, 2010.
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where Fj = Lfj , j = 1, 2 and the additional conditions (2.6) get the form
(

− λ(0) +M(p)µ(0)
)

Ux(0, p) = H1(p), (3.2)
(

− λ(1) +M(p)µ(1)
)

Ux(1, p) = H2(p)

with Hj(p) = Lhi, j = 1, 2.
We represent the equation (3.1) in the form

(LU) (x, p) = pN(p)ν(x)U(x, p) +M(p)
∂

∂x

(

µ(x)Ux(x, p)
)

−R(x, p)− β(x)ϕ(x), (3.3)

where

(LU) (x, p) =
∂

∂x

(

λ(x)Ux(x, p)
)

− β(x)pU(x, p), x ∈ (0, 1)

is the differential operator. We introduce the Green function of operator L
with homogeneous first kind boundary conditions, i.e.

LyG(x, y, p) = δ(x, y), x ∈ (0, 1), y ∈ (0, 1), (3.4)

G(x, 0, p) = G(x, 1, p) = 0, x ∈ (0, 1).

Here Ly is the operator L with respect to the variable y.
The solution of (3.3) is given as

U(x, p) = pN(p)

∫ 1

0

G(x, y, p)ν(y)U(y, p) dy

+M(p)

∫ 1

0

G(x, y, p)
∂

∂y

(

µ(y)Uy(y, p)
)

dy − Φ(x, p), (3.5)

where

Φ(x, p) =

∫ 1

0

G(x, y, p)
[

β(y)ϕ(y) +R(y, p)
]

dy

+ λ(0)Gy(x, 0, p)F1(p)− λ(1)Gy(x, 1, p)F2(p).

Integrating the second integral in (3.5) by parts and observing (3.4) we have

U(x, p) = N(p)

∫ 1

0

pG(x, y, p)ν(y)U(y, p) dy

−M(p)

∫ 1

0

Gy(x, y, p)µ(y)Uy(y, p) dy − Φ(x, p). (3.6)

Differentiating (3.6) with respect to x we obtain the equation for Ux(x, p)

Ux(x, p) =N(p)

∫ 1

0

pGx(x, y, p)ν(y)U(y, p) dy

+M(p)

∫ 1

0

Gx(x, y, p)
∂

∂y

(

µ(y)Uy(y, p)
)

dy − Φx(x, p).
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We split the second integral into two parts, from 0 to x and from x to 1, and
integrate them by parts. From boundary conditions we have

Gx(x, 0, p) = Gx(x, 1, p) = 0, 0 < x < 1.

Using the jump relation (see [13], p. 169)

Gx(x, x − 0, p)−Gx(x, x+ 0, p) =
1

λ(x)
, 0 < x < 1

we get

Ux(x, p) =
1

λ(x)
M(p)µ(x)Ux(x, p) +N(p)

∫ 1

0

pGx(x, y, p)ν(y)U(y, p) dy

−Mk(p)

∫ 1

0

Gxy(x, y, p)µ(y)Uy(y, p) dy − Φx(x, p). (3.7)

(3.6) and (3.7) form a system of integral equations for the direct problem.

4 Functional Spaces and Estimation of Green Function

To analyse the direct and inverse problems we define the spaces

Aγ,σ =
{

V : V (p) is holomorphic on Re p > σ, ‖V ‖γ,σ < ∞
}

,

where ‖V ‖γ,σ = supRe p>σ |p|γ |V (p)| and

(Aγ,σ)
K =

{

V = (V1, . . . , VN ) : Vk(p) ∈ Aγ,σ, k = 1, . . . ,K
}

with the norm ‖V ‖γ,σ =
∑K

k=1 ‖Vk‖γ,σ.
We note that Aγ,σ ⊂ Aγ,σ′ , (Aγ,σ)

K ⊂ (Aγ,σ′)
K and ‖ · ‖γ,σ′ ≤ ‖ · ‖γ,σ if

σ′ > σ.
Let α be a real number such that 1 < α < 3

2 . Moreover, let c = (c1, . . . , cK)
be a given vector. We will introduce the spaces

Mc,α,σ =
{

Z : Z =
c

p
+ V (p), V ∈ (Aα,σ)

K
}

of vectors Z = (Z1, . . . , ZK) and the Banach spaces of x- and p-dependent
functions

Bγ,σ =
{

F (x, p) : F (x, ·) ∈ Aγ,σ for x ∈ [0, 1], F (·, p) ∈ C[0, 1] for Re p > σ
}

with the norms
‖F‖γ,σ = max

0≤x≤1
sup

Re p>σ
|p|γ |F (x, p)|.

We need also the Banach spaces for pairs of functions B = (B1, B2) . These
are spaces Bσ = Bα,σ × Bα− 1

2
,σ with the norm

‖B‖σ = ‖B1‖α,σ + ‖B2‖α− 1

2
,σ .

Math. Model. Anal., 15(4):473–490, 2010.
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We have following first-order asymptotics [3, 5, 9, 10, 12] for the Green
function and its derivatives

G(x, y, p) =
1

d0(p)

1

a(x)a(y)

1

s

{

sh sz · sh s(1− w) +O1 for x ≤ y

sh sw · sh s(1− z) +O2 for y ≤ x.

Gx(x, y, p) =
1

ld0(p)

b(x)

a(y)

{

ch sz · sh s(1− w) +O3 for x ≤ y

sh cw · ch s(1 − z) +O4 for y ≤ x.
(4.1)

Gxy(x, y, p) =
b(x)b(y)

l2d0(p)
s

{

ch sz · ch s(1− w) +O5 for x ≤ y

ch sw · ch s(1− z) +O6 for y ≤ x.

Here s = l
√
p, d0(p) =

1

l
sh s+O

(

es

s

)

, a(x) = 4

√

β(x)λ(x), b(x) = β1/4λ−3/4

z =
1

l

∫ x

0

√

β(η)

λ(η)
dη , w =

1

l

∫ y

0

√

β(η)

λ(η)
dη , l =

∫ 1

0

√

β(η)

λ(η)
dη

and

O1 = O
(es(1−w+z)

s

)

, O2 = O
(es(w+1−z)

s

)

,

for Re p → +∞ holding uniformly in x and y from [0, 1] and Im p ∈ R. O3

and O5 behave like O1 and O4, O6 like O2.
Estimates of the Green function are given in the following lemmas.

Lemma 1. Let λ, β ∈ C2[0, 1] and λ, β > 0 in [0, 1]. Then

C1 = sup
0≤x≤1

Re p>0

|p|
∫ 1

0

|G(x, y, p)| dy < ∞, (4.2)

C2 = sup
0≤x≤1

Re p>0

√

|p|
∫ 1

0

|Gx(x, y, p)| dy < ∞, (4.3)

C3 = sup
0≤x≤1

Re p>0

√

|p|
∫ 1

0

|Gy(x, y, p)| dy < ∞, (4.4)

C4 = sup
0≤x≤1

Re p>0

∫ 1

0

|Gxy(x, y, p)| dy < ∞. (4.5)

Moreover,

√

|p| |G(x, 0, p)| ≤ C̄1e
−C̄2

√
|p|x ∀x ∈ [0, 1], Rep > 0 , (4.6)

√

|p| |G(x, 1, p)| ≤ C̄3e
−C̄4

√
|p|(1−x) ∀x ∈ [0, 1], Rep > 0,

where C̄1, C̄2, C̄3, C̄4 are certain positive constants.

The assertions (4.2)–(4.5) were proved in [3, 5], the assertions (4.6) in [12]
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Lemma 2. Let λ, β ∈ C2[0, 1], λ, β > 0 in [0, 1] and v ∈ C1[0, 1]. Then for

k = 1, 2

sup
Re p>0

∣

∣

∣

√

|p|
(

∫ 1

0

√
pGx(xk, y, p)v(y) dy −

(−1)kv(xk)
√

λ(xk)β(xk)

)∣

∣

∣
≤C5‖v‖C1[0,1],

where x1 = 0, x2 = 1 and C6 is independent of x .

Proof. From asymptotic representation (4.1) of the derivative Gx we have

Gx(0, y, p) =
1

ld0(p)
b(0)

[ 1

a(y)
sh s(w − 1) +O

(es(1−w)

s

)]

,

Gx(1, y, p) =
1

ld0(p)
b(1)

[ 1

a(y)
sh sw +O

(esw

s

)]

.

As
√
p = s/l we get

∫ 1

0

√
pGx(0, y, p)v(y) dy =

sb(0)

l2d0(p)

∫ 1

0

v(y)

a(y)

1

sw′(y)

∂

∂y
ch s(w − 1) dy +O

(1

s

)

.

Since d0(p) has the asymptotic ld0(p) = shs + O
(

esw

s

)

we derive for the last
term
∣

∣

∣

1

ld0(p)

∫ 1

0

es(1−w) dy
∣

∣

∣
=

∣

∣

∣

1

ld0(p)

1

s

∫ 1

0

1

w′(y)

∂

∂y
es(1−w) dy

∣

∣

∣

≤ C

s

∣

∣

∣

∣

1

ld0(p)
es(1−w)

∣

∣

∣

1

0

∣

∣

∣

∣

=
C

s

1− es

sh s+O
(

es/s
) = O

(1

s

)

.

Integrating by parts and observing the equality
1

a(y)w′(y)
= lb̄(y) we obtain

∫ 1

0

√
pGx(0, y, p)v(y) dy =

b(0)

ld0(p)

[

b̄(y)v(y)ch s(w − 1)
∣

∣

∣

1

0

−
∫ 1

0

(

b̄(y)v(y)
)′
ch s(w−1) dy

]

+O
(1

s

)

=
b(0)

ld0(p)

[

b̄(1)v(1)− b̄(0)v(0)ch s
]

+O
(1

s

)

=
b(0)

sh s+O
(

es

s

)

[

b̄(1)v(1)− b̄(0)v(0)ch s
]

+O
(1

s

)

= −v(0)/
√

λ(0)β(0) +O
(

1/s
)

.

Here b(0)b̄(0) = 1/a(0)2 = 1/
√

λ(0)β(0). Similarly we have
∫ 1

0

√
pGx(1, y, p)v(y)dy =

b(1)

ld0(p)

[

b̄(y)v(y)ch sw
∣

∣

∣

1

0
−
∫ 1

0

(

b̄(y)v(y)
)′

ch sw dy
]

+O
(1

s

)

=
b(0)

ld0(p)

[

b̄(1)v(1)ch s− b̄(0)v(0)
]

+O
(1

s

)

=
v(1)

√

λ(1)β(1)
+O

(1

s

)

.

The lemma is proved. ⊓⊔

Math. Model. Anal., 15(4):473–490, 2010.



i

i

“MMA15v36” — 2010/11/3 — 9:20 — page 480 — #8
i

i

i

i

i

i

480 E. Pais

Lemma 3. Let λ, β ∈ C2[0, 1], λ, β > 0 in [0, 1] and v ∈ C1[0, 1]. Then

sup
Re p>0

∣

∣

∣

√

|p|
(

∫ 1

0

Gxy(xk, y, p)v(y) dy −
v(xk)

λ(xk)

)∣

∣

∣
≤ C6‖v‖C1[0,1],

where x1 = 0, x2 = 1 and C6 is independent of x.

Lemma 3 was proved in [3, 5].

5 Fixed-Point System for the Inverse Problem

We deduce here a fixed-point system for the inverse problem in the Laplace
domain. Using additional conditions (3.2) we obtain from (3.7)

N(p)

∫ 1

0

pGx(xk, y, p)ν(y)U(y, p) dy −M(p)

∫ 1

0

Gxy(xk, y, p)µ(y)Uy(y, p) dy

= Φx(xk, p)−
Hk(p)

λ(xk)
, k = 1, 2; x1 = 0, x2 = 1.

Multiplying the both sides by p and separating the principal part of the equa-
tion we have

√
pN(p)

ν(xk)ϕ(xk)
√

λ(xk)β(xk)
+M(p)

µ(xk)ϕ
′(xk)

λ(xk)

=
√
pN(p)

∫ 1

0

√
pGx(xk, y, p)ν(y)

[

pU(y, p)− ϕ(y)
]

dy

−M(p)

∫ 1

0

pGxy(xk, y, p)µ(y)
[

pUy(y, p)− ϕ′(y)
]

dy

+
√
pN(p)

[

∫ 1

0

√
pGx(xk, y, p)ν(y)ϕ(y) dy +

ν(xk)ϕ(xk)
√

λ(xk)β(xk)

]

−M(p)
[

∫ 1

0

Gxy(xk, y, p)µ(y)ϕ
′(y)dy − µ(xk)ϕ

′(xk)

λ(xk)

]

− p
[

Φx(xk, p)−
Hk(p)

λ(xk)

]

= Fk(N,M), k = 1, 2; x1 = 0, x2 = 1. (5.1)

Here

Φx(xk, p) =

∫ 1

0

Gx(xk, y, p)
[

β(y)ϕ(y) +R(y, p)
]

dy + λ(0)Gxy(xk, 0, p)F1(p)

− λ(1)Gxy(xk, 1, p)F2(p), x1 = 0, x2 = 1. (5.2)

We will write this system in a matrix form ΓZ = F(Z) introducing matrix

Γ =











ν(0)ϕ(0)
√

λ(0)β(0)

µ(0)ϕ′(0)

λ(0)

− ν(1)ϕ(1)
√

λ(1)β(1)

µ(1)ϕ′(1)

λ(1)











(5.3)
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and vectors

Z =

( √
pN(p)
M(p)

)

, F(Z) =

(

F1(Z)
F2(Z)

)

.

The product
√
pN(p) is the image by Laplace transform of a half-order

derivative of the function n(t), L d
1

2

dt
1

2

n(t) =
√
pN(p), where this derivative is

given by
d

1

2

dt
1

2

n(t) =
d

dt

1

Γ (12 )

∫ t

0

n(τ)√
t− τ

dτ.

We introduce the functions

B1[Z](x, p) = pU [Z](x, p)− ϕ(x), B2[Z](x, p) = pUx[Z](x, p)− ϕ′(x),

where U [Z](x, p) is the solution of (5.1), (5.2) with the given vector Z.
Now we can rewrite the system in the fixed-point form

Z = Γ−1F(Z), (5.4)

where

Fk[Z](p) =
√
pN(p)

[

∫ 1

0

√
pGx(xk, y, p)ν(y)B1[Z](y, p) dy (5.5)

+

∫ 1

0

√
pGx(xk, y, p)ν(y)ϕ(y) dy +

ν(xk)ϕ(xk)
√

λ(xk)β(xk)

]

−M(p)
[

−
∫ 1

0

Gxy(xk, y, p)µ(y)B2[Z](y, p) dy

+

∫ 1

0

Gxy(xk, y, p)µ(y)ϕ
′(y) dy−µ(xk)ϕ

′(xk)

λ(xk)

]

+Ψk(p), k = 1, 2,

Ψk(p) = −p
[

Φx(xk, p)−
Hk(p)

λ(xk)

]

, x1 = 0, x2 = 1. (5.6)

We form also equations for B1[Z](x, p) and B2[Z](x, p) rewriting the system
(3.6), (3.7) in terms of these functions

B1[Z](x, p) =
√
pN(p)

∫ 1

0

√
pG(x, y, p)ν(y)

[

B1[Z](y, p) + ϕ(y)
]

dy

−M(p)

∫ 1

0

Gy(x, y, p)µ(y)
[

B2[Z](y, p) + ϕ′(y)
]

dy − Φ(x, p)− ϕ(x),

B2[Z](x, p) =
√
pN(p)

∫ 1

0

√
pGx(x, y, p)ν(y)

[

B1[Z](y, p) + ϕ(y)
]

dy

+M(p)
{µ(x)

λ(x)
B2[Z](x, p)−

∫ 1

0

Gxy(x, y, p)µ(y)
[

B2[Z](y, p) + ϕ′(y)
]

dy
}

+M(p)
µ(x)ϕ′(x)

λ(x)
− Φx(x, p) − ϕ′(x).

Math. Model. Anal., 15(4):473–490, 2010.
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We obtain the following fixed-point equation for the vector

B[Z] = A[Z]B[Z] + b[Z], (5.7)

where A[Z] = (A1[Z], A2[Z]) is the Z-dependent linear operator of B with the
components

(A1[Z]B) (x, p) =
√
pN(p)

∫ 1

0

√
pG(x, y, p)ν(y)B1(y, p) dy

−M(p)

∫ 1

0

Gy(x, y, p)µ(y)B2(y, p) dy, (5.8)

(A2[Z]B) (x, p) =
√
pN(p)

∫ 1

0

√
pGx(x, y, p)ν(y)B1(y, p) dy

+M(p)
[µ(x)

λ(x)
B2(x, p)−

∫ 1

0

Gxy(x, y, p)µ(y)B2(y, p) dy
]

and b[Z] = (b1[Z], b2[Z]) is the Z-dependent B-free term with the components

b1[Z](x, p) =
√
pN(p)

∫ 1

0

√
pG(x, y, p)ν(y)ϕ(y) dy

−M(p)

∫ 1

0

Gy(x, y, p)µ(y)ϕ
′(y) dy − Φ(x, p) − ϕ(x), (5.9)

b2[Z](x, p) =
√
pN(p)

∫ 1

0

√
pGx(x, y, p)ν(y)ϕ(y) dy

+M(p)
[µ(x)ϕ′(x)

λ(x)
−
∫ 1

0

Gxy(x, y, p)µ(y)ϕ
′(y) dy

]

−Φx(x, p)−ϕ′(x).

6 Analysis of Direct Problem

Here we study the equation (5.7) under assumptions

λ, β ∈ C2[0, 1], λ, β > 0;

Φ(x) and Φx(x) belong to B1,σ0
and B 1

2
,σ0

respectively with some σ0 ≥ 0;

ν(x) ∈ C[0, 1], µ(x) ∈ C[0, 1], ϕ(x) ∈ C1[0, 1].



















(6.1)

Lemma 4. Let the assumptions (6.1) hold. If Z = c/p+ V ∈ Mc,α,σ then the

vector function b[Z], given by (5.9), belongs to Bσ0
and satisfies the estimate

∥

∥

∥
b[Z]

∥

∥

∥

σ
≤ Const

(

1 +
|c|√
σ
+

‖V ‖α,σ
σα− 1

2

)

with any σ ≥ σ0, where |c| = |c1| + |c2|. Moreover, for every σ ≥ σ0 and

Z1 = c/p+V 1, Z2 = c/p+V 2 ∈ Mc,α,σ the difference of the vector b[Z] fulfils

the estimate
∥

∥

∥
b[Z1]− b[Z2]

∥

∥

∥

σ
≤ Const

1

σα− 1

2

∥

∥

∥
V 1 − V 2

∥

∥

∥

α,σ
(6.2)
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with some constant.

Proof. Taking Z = c/p+ V in (5.9) and multiplying by |p| we have

∣

∣p
∣

∣

∣

∣b1[Z](x, p)
∣

∣ ≤ 1√
p

(

|c1
∣

∣+
|p|α|V1(p)|
|p|α−1

)

∣

∣p
∣

∣

∫ 1

0

∣

∣G(x, y, p)
∣

∣dy‖ν · ϕ‖C[0,1]

+
1√
p

(

|c2|+
|p|α|V2(p)|
|p|α−1

)

√

|p|
∫ 1

0

∣

∣Gy(x, y, p)
∣

∣dy
∥

∥µ · ϕ′
∥

∥

C[0,1]

+ |p|
∣

∣Φ(x, p) + ϕ(x)
∣

∣. (6.3)

Using the assertions (4.2), (4.4) of Lemma 1 and the definitions of the norms
‖ · ‖γ,σ, ‖ · ‖σ we obtain

‖b1[Z]‖1,σ ≤
(

|c1|+
‖V1‖α,σ
σα−1

) C1√
σ
‖ν · ϕ‖C[0,1]

+
(

|c2|+
‖V2‖α,σ
σα−1

) C3√
σ

∥

∥

∥
µ · ϕ′

∥

∥

∥

C[0,1]
+
∥

∥

∥
Φ+ ϕ

∥

∥

∥

1,σ0

for Re p > σ, σ ≥ σ0, x ∈ [0, 1]. We get

∥

∥

∥
b1[Z]

∥

∥

∥

1,σ
≤ Const√

σ

(

|c|+ ‖V ‖α,σ
σα−1

)

+
∥

∥

∥
Φ+ ϕ

∥

∥

∥

1,σ0

, σ ≥ σ0 (6.4)

with some constant. Performing similar transformations with b2[Z] we have

√

|p|
∣

∣b2[Z](x, p)
∣

∣ ≤ 1
√

|p|

(

|c1|+
|p|α|V1(p)|
|p|α−1

)

√

|p|
∫ 1

0

∣

∣Gx(x, y, p)
∣

∣dy

×
∥

∥ν · ϕ
∥

∥

C[0,1]
+

1
√

|p|

(

|c2|+
|p|α|V2(p)|
|p|α−1

)[∣

∣

∣

µ(x)ϕ′(x)

λ(x)

∣

∣

∣

+

∫ 1

0

∣

∣Gxy(x, y, p)
∣

∣ dy
∥

∥µ · ϕ′
∥

∥

]

+
√

|p|
∣

∣Φx(x, p) + ϕ′(x)
∣

∣,

∥

∥

∥
b2[Z]

∥

∥

1

2
,σ

≤
(

|c1|+
‖V1‖α,σ
σα−1

) C2√
σ
‖ν · ϕ‖C[0,1] +

1√
σ

(

|c2|+
‖V2‖α,σ
σα−1

)

×
( 1

λ0
+ C4

)

‖µ · ϕ′‖C[0,1] +
∥

∥Φx + ϕ′
∥

∥

1

2
,σ0

for σ ≥ σ0, where λ0 := min
0≤x≤1

λ(x) > 0. And we get

∥

∥b2[Z]
∥

∥

1

2
,σ

≤ Const√
σ

(

|c|+ ‖V ‖α,σ
σα−1

)

+
∥

∥Φx + ϕ′
∥

∥

1

2
,σ0

, σ ≥ σ0. (6.5)

Inequalities (6.4) and (6.5) yield b[Z] = (b1[Z], b2[Z]) ∈ Bσ for σ ≥ σ0 and the
estimate (6.3). To prove (6.2) we take Z = Z1 − Z2. Then the components
of the vector b[Z] = b[Z1] − b[Z2] are expressed by the formulas (5.9) with
Φ(x) + ϕ(x) = 0. Using the estimates (6.4) and (6.5) for the components of
b[Z] and observing that Z1 − Z2 = V 1 − V 2 we deduce (6.3). The lemma is
proved. ⊓⊔

Math. Model. Anal., 15(4):473–490, 2010.
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Lemma 5. Let the assumptions (6.1) hold. If Z = c/p+ V ∈ Mc,α,σ then the

linear operator A[Z], defined by (5.8) is well-defined and bounded in Bσ and

satisfies the estimate

∥

∥A[Z]
∥

∥

L (Bσ)
≤ C0

[

|c|/σ 3

2 + ‖V ‖α,σ/σα+ 1

2

]

(6.6)

for any σ ≥ σ0 with a constant C0. Moreover, taking Z1 = c/p + V 1, Z2 =
c/p+ V 2 ∈ Mc,α,σ, the estimate for difference

∥

∥

∥
(A[Z1]−A[Z2])

∥

∥

∥

L (Bσ)
≤ C0

1

σα+ 1

2

∥

∥

∥
V 1 − V 2

∥

∥

∥

α,σ
(6.7)

holds for any σ ≥ σ0 with a constant C0.

Proof. Multiplying A1[Z] in (5.8) by |p| and taking Z = c/p+ V we get

|p|
∣

∣

(

A1[Z]B
)

(x, p)
∣

∣ ≤
( |c1|
|p| 32

+
|p|α|V1(p)|
|p|α+ 1

2

)

|p|
∫ 1

0

∣

∣

∣
G(x, y, p)

∣

∣

∣
dy

× ‖ν‖C[0,1] |p| max
0≤x≤1

|B1(x, p)|+
( |c2|
|p| 32

+
|p|α|V2(p)|
|p|α+ 1

2

)

×
√

|p|
∫ 1

0

|Gy(x, y, p)| dy‖µ‖C[0,1] |p| max
0≤x≤1

|B2(x, p)| .

Using Lemma 1 and taking the supremum over Re p > σ, x ∈ [0, 1] we deduce

‖A1[Z]B‖α,σ ≤
( |c1|
σ

3

2

+
‖V1‖α,σ
σα+ 1

2

)

C1 ‖νk‖C[0,1] ‖B1‖1,σ

+

( |c2|
σ

3

2

+
‖V2‖α,σ
σα+ 1

2

)

C3 ‖µ‖C[0,1] ‖B2‖1,σ

for σ ≥ σ0. This implies

‖A1[Z]B‖α,σ ≤ Const

( |c|
σ

3

2

+
‖V ‖α,σ
σα+ 1

2

)

‖B‖1,σ , σ ≥ σ0. (6.8)

For A2[Z] we derive similarly

√

|p|
∣

∣

(

A2[Z]B
)

(x, p)
∣

∣ ≤
( |c1|
|p| 32

+
|p|α|V1(p)|
|p|α+ 1

2

)

√

|p|
∫ 1

0

∣

∣

∣
Gx(x, y, p)

∣

∣

∣
dy

× ‖ν‖C[0,1] |p| max
0≤x≤1

∣

∣B1(y, p)
∣

∣+
( |c2|
|p| 32

+
|p|α|V2(p)|
|p|α+ 1

2

)

×
( 1

λ0
+

∫ 1

0

∣

∣

∣
Gxy(x, y, p)

∣

∣

∣
dy

)

‖µ‖C[0,1] |p| max
0≤x≤1

∣

∣B2(x, p)
∣

∣ ,

where λ0 = min
0≤x≤1

λ(x) > 0. So we get

‖A2[Z]B‖ 1

2
,σ ≤ Const

( |c|
σ

3

2

+
‖V ‖α,σ
σα+ 1

2

)

‖B‖1,σ , σ ≥ σ0 (6.9)
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with some constant. Estimates (6.8) and (6.9) together give us

‖A[Z]B‖σ ≤ Const

( |c|
σ

3

2

+
‖V ‖α,σ
σα+ 1

2

)

‖B‖1,σ , σ ≥ σ0. (6.10)

This relation shows that A[Z] is well-defined and bounded in Bσ and (6.6)
holds. Taking Z = Z1−Z2 the components of the vector A[Z] = A[Z1]−A[Z2]
are expressed by the formulas (5.8) where Z = Z1 − Z2 = V 1 − V 2. Using the
estimate (6.10) for A[Z] with c = 0 and V = V 1 − V 2 we deduce (5.9). The
lemma is proved. ⊓⊔

Due to the last two lemmas and the contraction principle, the equation (5.7)
has a unique solution B = B[Z] ∈ B1,σ provided Z = c/p + V ∈ Mc,α,σ and
σ ≥ σ0 satisfy the relation

η(Z, σ) :=
|c|
σ

3

2

+
‖V ‖α,σ
σα+ 1

2

≤ 1

2C0
. (6.11)

From (5.7) we have

‖B[Z]‖1,σ ≤
(

1− ‖A[Z]‖L (Bσ)

)−1 ‖b[Z]‖σ.
This, taking into consideration (6.3), (6.6) and (6.11) gives the estimate for the
solution of (5.7)

∥

∥B[Z]
∥

∥

1,σ
≤ Const

(

1 +
|c|√
σ
+

‖V ‖α,σ
σα− 1

2

)

(6.12)

with some constant.
Now we will find an estimate for B[Z1] − B[Z2]. Let σ ≥ σ0 and Z1 =

c/p + V 1, Z2 = c/p + V 2 be such that (6.11) is valid, i.e. η(Zj , σ) ≤ 1/2C0,
j = 1, 2. Subtracting equation (5.7) for Z2 from the corresponding equation
for Z1 we get

B[Z11]−B[Z2] = A[Z2] (B[Z1]−B[Z2])+(A[Z1]−A[Z2])B[Z1]+b[Z1]−b[Z2].

This implies

|B[Z1]−B[Z2]‖1,σ ≤
(

1− ‖A[Z2]‖L (Bσ)

)−1

×
[

‖A[Z1]−A[Z2]‖L (Bσ)‖B[Z1]‖1,σ + ‖b[Z1]− b[Z2]‖σ
]

.

Using in this relation the estimates (6.2), (6.6), (6.7), (6.11), (6.12) we obtain

∥

∥B[Z1]−B[Z2]
∥

∥

1,σ
≤Const

σα− 1

2

[

1+
1

σ

(

1+
|c|√
σ
+

‖V 1‖α,σ
σα− 1

2

)]

∥

∥V 1−V 2
∥

∥

α,σ
. (6.13)

Summing up, we have proved the following theorem.

Theorem 1. Let the assumptions (6.1) hold. Then for any σ ≥ σ0 and Z =
c/p+ V ∈ Mc,α,σ, satisfying the inequality (6.11), equation (5.7) has a unique

solution B[Z] = (B1[Z], B2[Z]) in B1,σ. This solution satisfies estimate (6.12).
Moreover, for every σ ≥ σ0 and Z1 = c/p+ V 1, Z2 = c/p+ V 2 ∈ Mc,α,σ such

that η(Zj , σ) ≤ 1/2C0, j = 1, 2, the difference B[Z1]−B[Z2] fulfils estimate

(6.13).

Math. Model. Anal., 15(4):473–490, 2010.
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7 Existence and Uniqueness for Inverse Problem

Here we study the inverse problem in the fixed-point form (5.4) in the Laplace
domain and then formulate the result for the corresponding inverse problem in
the time domain.

Theorem 2. Assume that (6.1) holds. Let detΓ 6= 0 for Γ , given by (5.3) and

Ψj = dj/p+ Yj ∈ Md,α,σ0
, j = 1, 2 (7.1)

with some constant vector d = (d1, d2). Then there exists σ1 ≥ σ0 such that

equation (5.4) has a unique solution Z = c/p+ V ∈ Mc,α,σ1
. Here c = Γ−1d.

The solution is unique in the union of spaces
⋃

σ≥σ1,c∈R

Mc,α,σ.

Proof. Setting c = Γ−1d the problem (5.4) is equivalent to the equation

V = F (V ), (7.2)

where V ∈ (Aα,σ)
2 and F = Γ−1F . From (5.5), (5.6) we have

F = L0

(

c/p+ V, B[Z]
)

+ L1

(

c/p+ V
)

+ Y, (7.3)

where L0 is a bilinear operator of Z ∈ Mc,α,σ, B = (B1, B2) ∈ B1,σ given by

(

L0(Z,B)
)

k
(p) =

√
pN(p)

∫ 1

0

√
pGx(xk, y, p)ν(y)B1[Z](y, p) dy

−M(p)

∫ 1

0

pGxy(xk, y, p)µ(y)B2[Z](y, p) dy, k = 1, 2; x1 = 0, x2 = 1 (7.4)

and L1 is a linear operator of Z ∈ Mc,α,σ defined by

(

L1(Z)
)

k
(p) =

√
pN(p)

[

∫ 1

0

√
pGx(xk, y, p)ν(y)ϕ(y) dy +

(−1)kν(xk)ϕ(xk)
√

λ(xk)β(xk)

]

−M(p)
[

∫ 1

0

Gxy(xk, y, p)µ(y)ϕ
′(y) dy − µ(xk)ϕ

′(xk)

λ(xk)

]

, k=1, 2; x1=0, x2=1.

(7.5)

We make use of the fixed-point argument for the equation (7.2) in the balls:

Dα,σ(ρ) =
{

V ∈ (Aα,σ)
2 : ‖V ‖α,σ ≤ ρ

}

.

First we deduce some estimates for L0 and L1. Multiplying in (7.4) by |p|α we
have

|p|α
∣

∣

∣

(

L0

( c

p
+ V,B

))

k
(p)

∣

∣

∣
≤

( |c1|
|p|2−α

+
|p|α|V1(p)|

|p|
)

×
√

|p|
∫ 1

0

∣

∣Gx(xk, y, p)
∣

∣ dy ‖ν‖C[0,1] |p| max
0≤x≤1

∣

∣B1(x, p)
∣

∣

+
( |c2|
|p|2−α

+
|p|α|V2(p)|

|p|
)

∫ 1

0

∣

∣Gxy(xk, y, p)
∣

∣ dy ‖µ‖C[0,1]

× |p| max
0≤x≤1

∣

∣B2(x, p)
∣

∣, k = 1, 2; x1 = 0, x2 = 1.
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Using the assumptions (6.1) the assertions (4.3), (4.5) of Lemma 1 and the
definition of the norms ‖ · ‖γ,σ we obtain

|p|α
∣

∣

∣

(

L0

( c

p
+ V,B

))

k
(p)

∣

∣

∣
≤

( |c1|
|p|2−α

+
‖V1‖α,σ

|p|
)

C2 ‖ν‖C[0,1] ‖B1‖1,σ

+
( |c2|
|p|2−α

+
‖V2‖α,σ

|p|
)

C4 ‖µ‖C[0,1] ‖B2‖1,σ, k = 1, 2

for Re p > σ, σ ≥ σ0. Taking the supremum over Re p > σ we get

∥

∥

∥
L0

( c

p
+ V,B

)∥

∥

∥

α,σ
≤ Const

( |c|
σ2−α

+
‖V ‖α,σ

σ

)

‖B‖1,σ, σ ≥ σ0 . (7.6)

Similarly we deduce for the operator L1

|p|α
∣

∣

∣

(

L1

( c

p
+ V,B

))

k
(p)

∣

∣

∣
≤

( |c1|
|p| 32−α

+
|p|α|V1(p)|

√

|p|

)

√

|p|

×
∣

∣

∣

∫ 1

0

√
pGx(xk, y, p)ν(y)ϕ(y)dy+

(−1)kν(xk)ϕ(xk)
√

λ(xk)β(xk)

∣

∣

∣
+
( |c2|
|p| 32−α

+
|p|α|V2(p)|

√

|p|

)

×
√

|p|
∣

∣

∣

∫ 1

0

Gxy(xk, y, p)µ(y)ϕ
′(y) dy − µ(xk)ϕ

′(xk)

λ(xk)

∣

∣

∣
, k = 1, 2

for Re p > σ, σ ≥ σ0. Using Lemma 2 and 3 we get

|p|α
∣

∣

∣

(

L1

( c

p
+ V,B

))

k
(p)

∣

∣

∣
≤

( |c1|
|p| 32−α

+
‖V1‖α,σ
√

|p|

)

C5 ‖ν · ϕ‖C[0,1]

+
( |c1|
|p| 32−α

+
‖V2‖α,σ
√

|p|

)

C6 ‖µ · ϕ′‖C[0,1] σ ≥ σ̄0.

Taking the supremum over Re p > σ we get

∥

∥

∥
L1

( c

p
+ V,B

)∥

∥

∥

α,σ
≤ Const

( |c|
σ

3

2
−α

+
‖V ‖α,σ√

σ

)

‖B‖1,σ, σ ≥ σ0 (7.7)

with some constant.
Returning to the equation (7.2) with F = Γ−1F , taking into consideration

(7.6), (7.7) and the inequality ‖Y ‖α,σ ≤ ‖Y ‖α,σ0
, we obtain

‖F(V )‖α,σ ≤ Const

(

1

σ
3

2
−α

+
‖V ‖α,σ√

σ

)(‖B[Z]‖1,σ√
σ

+ 1

)

+ ‖Y ‖α,σ0
(7.8)

with σ ≥ σ̄0 and some constant depending on |c|.
Further, let us suppose that V ∈ Dα,σ(ρ), where σ and ρ satisfy the relation

η0(ρ, σ) :=
|c|
σ

3

2

+
ρ

σα+ 1

2

≤ 1

2C0
(7.9)

for σ ≥ σ0. Then from (7.8) we see that F ∈ (Aα,σ)
2. Furthermore, due to (7.9)

the inequality (6.11) holds, hence we can apply estimate (6.12) of Theorem 1

Math. Model. Anal., 15(4):473–490, 2010.
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for ‖B[Z]‖1,σ. Using this estimate and that ‖V ‖α,σ ≤ ρ in the ball Dα,σ(ρ) we
get

‖F(V )‖α,σ ≤ Const

(

1

σ
3

2
−α

+
ρ√
σ

)(

1 +
1

σ
+

ρ

σα

)

+ ‖Y ‖α,σ0
(7.10)

with some constant depending on ρ and σ. From (7.10) due to the equality
F = Γ−1F we see that for every ρ > ρ0 :=

∣

∣Γ−1
∣

∣ ‖Y ‖α,σ0
there exists σ2 =

σ2(ρ) ≥ σ̄0 such that the inequalities η0(ρ, σ) ≤ 1
2C0

and ‖F (V )‖α,σ ≤ ρ hold
for any σ ≥ σ2(ρ). Consequently,

F : Dα,σ(ρ) → Dα,σ(ρ) for ρ > ρ0, σ ≥ σ2(ρ). (7.11)

Next, we prove that F is a contraction. From (7.3) using the bilinearity of
L0 and linearity of L1, we have

F(V 1)−F(V 2) = L0(V
1 − V 2, B[Z1]) + L0

( c

p
+ V 2, B[Z1]− B[Z2]

)

+ L1(V
1 − V 2),

where Z1 = c/p+ V 1 and Z2 = c/p+ V 2. Using here (7.6) and (7.7) we get

‖F(V 1)−F(V 2)‖α,σ ≤Const
[‖V 1 − V 2‖α,σ√

σ

(‖B[Z]‖1,σ√
σ

+ 1
)

+
( 1

σ2−α
+

‖V 2‖α,σ
σ

)

‖B[Z1]−B[Z2]‖1,σ
]

, σ ≥ σ0

with some constant. Supposing V 1, V 2 ∈ Dα,σ(ρ) with σ ≥ σ0 and ρ such
that (7.9) hold and using the estimates (6.12) and (6.13) of Theorem 1 we
obtain
∥

∥

∥
F(V 1)−F(V 2)

∥

∥

∥

α,σ
≤Const

[ 1√
σ
+
1

σ
+
( 1

σ
3

2

+
ρ

σα+ 1

2

)(

2+
1

σ
+

1

σ
3

2

+
ρ

σα+ 1

2

)]

×
∥

∥V 1 − V 2
∥

∥

α,σ
.

The coefficient of ‖V 1 − V 2‖α,σ on the right-hand side of this estimate ap-
proaches zero as σ → ∞ for a fixed ρ > 0. Hence, for every ρ > 0 there exists
σ3 = σ3(ρ) ≥ σ̄0, such that the inequality η0(ρ, σ) ≤ 1

2C0
holds and F = Γ−1F

is a contraction in the ball Dα,σ(ρ) for ρ > 0 and σ ≥ σ3(ρ). This together
with (7.11) shows that equation (7.2) has a unique solution V in every ball
Dα,σ(ρ), where ρ > ρ0 and σ ≥ σ4(ρ) = max{σ2(ρ);σ3(ρ)}. This proves the
existence assertion with σ1 = σ4(2ρ0).

To prove uniqueness we show that the equation (5.4) has no solution in any
space in the whole space Mc̄,α,σ where c̄ 6= c = Γ−1d and σ ≥ σ1. Suppose
contrary that (5.4) has a solution Z = c̄/p + V in some of such spaces.Then
observing (5.5), (7.1) we see that component V ∈ (Aα,σ)

2 of this solution
satisfies the equation

ΓV = L0

( c

p
+ V, B[Z]

)

+ L1

( c

p
+ V

)

+ Y +
c̄− c

p
, (7.12)
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where L0 and L1 are given by (7.4), (7.5). Observing the assumption (7.1)
and the estimates (7.6), (7.7) we see that all terms in (7.12) except the last one
(c̄− c)/p are estimated by quantities of the form Const/|p|α in the half-plane
Re p > σ0, where the constant is independent of p and α > 1. This is not
possible in the case c̄ − c 6= 0. We reached the contradiction. The uniqueness
is proved.

Finally, we deduce from Theorem 2 the existence and uniqueness for the
initial inverse problem in the time domain. From

Z1(p) =
√
pN(p) =

c1
p

+ V1(p)

we get image of the kernel of the internal energy N(p) = c1/p
3

2 + ˜V1(p). Using
the inverse Laplace transform we obtain the following result. ⊓⊔

Theorem 3. Let the assumptions (6.1) hold and detΓ 6= 0 for Γ , given by

(5.3). Then the inverse problem (2.1)–(2.3), (2.5), (2.6) with flux observations

in the time domain has the unique solution

n(t) =
2c1√
π

√
t+

1

2πi

∫ ξ+i∞

ξ−i∞

etp ˜V1(p) dp, m(t) = c2 +
1

2πi

∫ ξ+i∞

ξ−i∞

etpV2(p) dp,

(7.13)
where ck ∈ R, Vk ∈ Aα,σ, k = 1, 2. The functions n(t) and m(t) are continuous

for t ≥ 0. Moreover, the vector c = (c1, c2) in the formulas (7.13) is expressed

by c = Γ−1d, where d is component of Ψ in the assumption (7.1) and c2 = m(0).
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