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Abstract. In this article, the author studies the qualitative properties of weak solu-
tions for a sixth-order thin film equation, which arises in the industrial application of
the isolation oxidation of silicon. Based on the Schauder type estimates, we establish
the global existence of classical solutions for regularized problems. After establish-
ing some necessary uniform estimates on the approximate solutions, we prove the
existence of weak solutions. The nonnegativity and the expansion of the support of
solutions are also discussed.
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1 Introduction

In this article, we investigate the sixth-order thin film equation

∂u

∂t
= ∂x

[

m(u)
(

∂5
xu+ ∂x(|u|p−1u)

)]

, in QT , p > 2, (1.1)

where QT = I × (0, T ), I = (0, 1) and m(u) = |u|n, n > 0. On the basis of
physical consideration, as usual the equation (1.1) is supplemented with the
zero-contact-angle, zero-shearing force and zero-flux conditions

∂xu
∣

∣

x=0,1
= ∂3

xu
∣

∣

x=0,1
= ∂5

xu
∣

∣

x=0,1
= 0, t > 0, (1.2)

and the initial condition
u(x, 0) = u0(x). (1.3)

The equation (1.1) is a typical higher order equation, which has a sharp phys-
ical background and a rich theoretical connotation. It arises in the industrial
application of the isolation oxidation of silicon [8, 10].
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During the past years, only a few works have been devoted to the sixth-
order thin film equation [5, 11, 16, 17]. Bernis and Friedman [5] have studied
the initial boundary value problems to the thin film equation

∂u

∂t
+ (−1)m−1∂x

(

f(u)∂2m+1
x u

)

= 0,

where f(u) = |u|nf0(u), f0(u) > 0, n ≥ 1 and proved the existence of weak
solutions preserving nonnegativity. Barrett, Langdon and Nuernberg [1] con-
sidered the above equation with m = 2. A finite element method is presented
which proves to be well posed and convergent. Numerical experiments illustrate
the theory.

Recently, Evans, Galaktionov and King [8, 9] considered the sixth-order
thin film equation containing an unstable (backward parabolic) second-order
term

∂u

∂t
= div

[

|u|n∇∆2u
]

−∆(|u|p−1u), n > 0, p > 1. (1.4)

By a formal matched expansion technique, they show that, for the first critical
exponent p = p0 = n+ 1 + 4

N for n ∈ (0, 5
4 ), where N is the space dimension,

the free-boundary problem with zero-height, zero-contact-angle, zero-moment,
and zero-flux conditions at the interface admits a countable set of continuous
branches of radially symmetric self-similar blow-up solutions

uk(x, t) = (T − t)−(N/(nN+6))fk(y), y =
x

(T − t)1/(nN+6)
,

where T > 0 is the blow-up time. Some other results can be found in [15].

Remark 1. In [8, 9], the authors using a combination of formal asymptotic and
numerical methods, from the point of view of numerical analysis show that the
solutions of problem (1.4) blow up at a finite time when the second-order term
is −∆(|u|p−1u). Our result from the point of view of theoretical analysis shows
that the problem (1.1) has global solutions for the second-order term with the
opposite sign.

We also refer the following relevant equation

∂u

∂t
= −∂x

(

un∂3
xu

)

, (1.5)

which has been extensively studied. Bernis and Friedman [5] have studied the
initial boundary value problems to the thin film equation n > 0 and proved the
existence of weak solutions preserving nonnegativity (see also [2, 13, 18, 20, 22]).
They proved that if n ≥ 2 the support of the solutions u(·, t) is nondecreasing
with respect to t. Some references to unstable fourth order equations can be
found in [21].

Remark 2. In [19], the Lyapunov functional might not exist for the convective
Cahn-Hilliard equation. The author based on uniform Schauder type estimates
via the framework of Campanato spaces proved the global existence of classical
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solutions for regularized problems. In this paper, in order to prove the exis-
tence, we construct a new Lyapunov functional. On the other hand, the Bernis
estimates can not be applied, so we introduce a suitable integral inequalities
which are then used to prove the expansion of the support.

In this paper, we study the problem (1.1)–(1.3). Because of the degeneracy,
the problem does not admit classical solutions in general. So, we introduce the
weak solutions in the following sense.

Definition 1. A function u is said to be a weak solution of (1.1)–(1.3), if the
following conditions are satisfied:

1. u, ∂xu ∈ Cα(QT ), u ∈ L∞(0, T ;H2(0, 1)), |u|n/2∂5
xu ∈ L2(P ).

2. For ϕ ∈ C1(QT ) and QT = Ω × (0, T ),

−
∫ 1

0

u(x, T )ϕ(x, T ) dx+

∫ 1

0

u0(x)ϕ(x, 0) dx +

∫∫

QT

u
∂ϕ

∂t
dx dt

=

∫∫

P

|u|n(∂5
xu+∂x(|u|p−1u))∂xϕdxdt,

where P = QT \({u(x, t) = 0} ∪ {t = 0}).

We investigate the existence of weak solutions. The main difficulties for
treating the problem (1.1)–(1.3) are caused by the nonlinearity of the principal
part and the lack of maximum principle. Because of the degeneracy, we first
consider the regularized problem. To prove the existence of classical solutions
for the regularized problem, the basic a priori estimates are the L2 norm esti-
mates on u and ∂xu. Our method is based on uniform Schauder type estimates
for local in time solutions. Based on the uniform estimates for the approx-
imate solutions, we obtain the existence. Owing to the background, we are
much interested in the nonnegativity of the weak solutions and the solutions
with the expansion of the support. As it is well known, one of the important
properties of solutions of the porous medium equation is the expansion of the
support. So from the point of view of physical background, it seems to be
natural to investigate this property for thin film equation. On the other hand,
the mathematical description of this property is that if suppu0 is bounded,
then for any t > 0, suppu(·, t) is also bounded. So from the point of view of
mathematics, this problem seems to be quite interesting. The expansion of the
support is completely open for pure sixth order thin film equation. Here we
face a substantial difficulty, which is caused by the nonlinearity of the second-
order term. Comparing the equations (1.1) with (1.5). Bernis and Friedman [5]
replaced un by mσ(u) in (1.5), where mσ(s) = |s|n+4/(σ|s|n + |s|4). Then the
approximating problem of equation (1.5) has a unique positive solution, hence
Bernis’ inequality [4] holds. However, for the problem (1.1)–(1.3) the Bernis
estimates can not be applied. This means that we should find a new approach
to establish the required estimates. This goal would in principle justify intro-
ducing a different approximating scheme in order to obtain a-priori, suitable
integral inequalities which are then used to prove the expansion of the support.

Math. Model. Anal., 15(4):457–471, 2010.
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460 Changchun Liu

This paper is arranged as follows. We first study the regularized problem
in Section 2, and then establish the existence and the nonnegativity of weak
solutions in Section 3. Subsequently, we discuss the expansion of the support
in Section 4.

2 Regularized Problems

To discuss the existence, we adopt the method of parabolic regularization,
namely, the desired solution will be obtained as the limit of some subsequence
of solutions of the following regularized problem

∂uε

∂t
= ∂x

[

mε(uε)
(

∂5
xuε + ∂x(|uε|p−1uε)

)]

, (x, t) ∈ QT , (2.1)

∂xuε

∣

∣

∣

x=0,1
= ∂3

xuε

∣

∣

∣

x=0,1
= ∂5

xuε

∣

∣

∣

x=0,1
= 0, t > 0, (2.2)

uε(x, 0) = u0ε(x), (2.3)

where mε(uε) = (|uε|2 + ε)
n
2 .

Theorem 1. For each fixed ε > 0, p > 2 and

u0ε ∈ C6+α, ∂i
xu0ε(0) = ∂i

xu0ε(1) = 0 (i = 1, 3, 5),

then (2.1)–(2.3) admits a unique classical solution uε ∈ C6+α,1+(α/6)(QT ), for

some α ∈ (0, 1).

From the classical approach [6, 12], it is not difficult to conclude that the
problem (2.1)–(2.3) admits a unique classical solution local in time. So, it is
sufficient to make a priori estimates. As an important step, we give the Hölder
norm estimate on the local in time solutions.

Proposition 1. Assume that uε is a smooth solution of the problem (2.1)–
(2.3). Then there exists a constant C depending only on the known quantities,

such that for any (x1, t1), (x2, t2) ∈ QT and some 0 < α < 1,

|uε(x1, t1)− uε(x2, t2)| ≤ C(|t1 − t2|α/6 + |x1 − x2|α), (2.4)

|∂xuε(x1, t1)− ∂xuε(x2, t2)| ≤ C(|t1 − t2|1/12 + |x1 − x2|1/2).

Proof. Now, we set

Fε(t) =

∫ 1

0

[1

2
(∂2

xuε)
2 +H(uε)

]

dx,

where H(s) = 1
p+1 |s|p+1. Integrating by parts and using the equation (2.1)

itself and boundary value condition (2.2), we see that

dFε(t)

dt
=

∫ 1

0

[

∂2
xuε∂

2
xuεt + |uε|p−1uε

∂uε

∂t

]

dx =

∫ 1

0

[

∂4
xuε + |uε|p−1uε

] ∂uε

∂t
dx

=

∫ 1

0

[

∂4
xuε + |uε|p−1uε

]

∂x
[

mε(uε)(∂
5
xuε + ∂x(|uε|p−1uε))

]

dx

=−
∫ 1

0

[

∂5
xuε + ∂x(|uε|p−1uε)

] [

mε(uε)(∂
5
xuε + ∂x(|uε|p−1uε))

]

dx ≤ 0,
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which implies that
∫ 1

0

|uε|p+1dx ≤ C,

∫ 1

0

(∂2
xuε)

2dx ≤ C. (2.5)

On the other hand, integrating the equation (2.1) on Qt = (0, 1) × (0, t), we
have

∫ 1

0

uε(x, t) dx =

∫ 1

0

u0ε(x) dx.

Applying Poincaré’s inequality and Friedrichs’ inequality [7], we conclude
∫ 1

0

(uε)
2 dx ≤ C,

∫ 1

0

(∂xuε)
2dx ≤ C. (2.6)

By the Sobolev imbedding theorem,

sup
QT

|uε| ≤ C, sup
QT

|∂xuε| ≤ C. (2.7)

Multiplying both sides of the equation (2.1) by ∂4
xuε and then integrating the

resulting relation with respect to x over (0, 1), we get
∫ 1

0

∂uε

∂t
∂4
xuε dx =

∫ 1

0

∂x

[

mε(uε)
(

∂5
xuε + ∂x(|uε|p−1uε)

)]

∂4
xuε dx.

After integration by parts, and used the boundary value conditions, the above
equality becomes

1

2

d

dt

∫ 1

0

(∂2
xuε)

2dx+

∫ 1

0

mε(uε)|∂5
xuε|2dx = −

∫ 1

0

mε(uε)∂x(|uε|p−1uε)∂
5
xuε dx.

Hölder’s inequality and (2.7) give the following result

1

2

d

dt

∫ 1

0

(∂2
xuε)

2dx+

∫ 1

0

mε(uε)|∂5
xuε|2dx ≤ 1

2

∫ 1

0

mε(uε)(∂
5
xuε)

2dx+ C.

Hence
∫∫

QT

mε(uε)(∂
5
xuε)

2dx dt ≤ C. (2.8)

By (2.6) and (2.7), we have
∣

∣uε(x1, t)− uε(x2, t)
∣

∣ ≤ C
∣

∣x1 − x2

∣

∣

α
, 0 < α < 1.

Integrating the equation (2.1) with respect to (x, t) over (y, y+(∆t)1/6)×(t1, t2),
where 0 < t1 < t2 < T , ∆t = t2 − t1, we see that

∫ y+(∆t)1/6

y

[

uε(z, t2)− uε(z, t1)
]

dz =

∫ t2

t1

[

mε

(

uε(y
′, s)

)(

∂5
xuε(y

′, s)

+∂x(|uε|p−1uε)(y
′, s)

)

−mε

(

uε(y, s)
)(

∂5
xuε(y, s)+∂x(|uε|p−1uε)(y, s)

)]

ds.
(2.9)

Math. Model. Anal., 15(4):457–471, 2010.
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For simplicity, set

N(s, y) =mε

(

uε(y
′, s)

)(

∂5
xuε(y

′, s) + ∂x(|uε|p−1uε)(y
′, s)

)

−mε

(

uε(y, s)
)(

∂5
xuε(y, s) + ∂x(|uε|p−1uε)(y, s)

)

,

where y′ = y + (∆t)1/6. Then (2.9) is converted into

(∆t)1/6
∫ 1

0

[

uε(y + θ(∆t)1/6, t2)− uε(y + θ(∆t)1/6, t1)
]

dθ =

∫ t2

t1

N(s, y)ds.

Integrating the above equality with respect to y over (x, x+ (∆t)1/6), we get

(∆t)1/3
(

uε(x
∗, t2)− uε(x

∗, t1)
)

=

∫ t2

t1

∫ x+(∆t)1/6

x

N(s, y) dy ds.

Here, we have used the mean value theorem, where x∗ = y∗ + θ∗(∆t)1/6, y∗ ∈
(x, x+ (∆t)1/6), θ∗ ∈ (0, 1). Therefore, by Hölder’s inequality and (2.7), (2.8),
we end up with

∣

∣uε(x
∗, t2)− uε(x

∗, t1)
∣

∣ ≤ C(∆t)α/6, 0 < α < 1.

Similar to the discussion above, we have

∣

∣∂xuε(x1, t1)− ∂xuε(x2, t2)
∣

∣ ≤ C
(∣

∣x1 − x2

∣

∣

1/2
+
∣

∣t1 − t2
∣

∣

1/12)
. (2.10)

The proof is complete. ⊓⊔

Proof. [Proof of Theorem 1] The conclusion follows immediately from the
classical theory, since we can transform the equation (2.1) into the form

∂uε

∂t
+ a1(x, t)∂

6
xuε + b1(x, t)∂

5
xuε + a2(x, t)∂

2
xuε + b2(x, t)∂xuε = 0,

where the Hölder norms on

a1(x, t) = −mε(uε(x, t)), b1(x, t) = −m′
ε(uε(x, t))∂xuε(x, t),

a2(x, t) = −pmε(uε(x, t))|uε(x, t)|p−1,

b2(x, t) = −[pm′
ε|uε|p−1 + p(p− 1)mε|uε|p−3uε]∂xuε(x, t)

have been estimated in the above discussion. The proof is complete. ⊓⊔

3 Existence

After the discussion of the regularized problem, we can now turn to the investi-
gation of the existence of weak solutions of the problem (1.1)–(1.3). The main
existence result is the following

Theorem 2. Assume that u0 ∈ H2
0 (I), then the problem (1.1)–(1.3) admits at

least one weak solution.
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Proof. Let uε be the approximate solution of the problem (2.1)–(2.3) con-
structed in the previous section. Using the estimates (2.4), (2.5) and (2.10),
we can extract a subsequence from {uε}, denoted also by {uε}, such that

uε(x, t) → u(x, t), uniformly in QT ,

∂xuε(x, t) → ∂xu(x, t), uniformly in QT ,

and the limiting function u, ∂xu ∈ C1/2,1/12(QT ). By (2.5), we also have u ∈
L∞(0, T ;H2(I)).

Now, let δ > 0 be fixed and set Pδ = {(x, t); |u|n(x, t) > δ}. We choose
ε0(δ) > 0, such that

(

|uε|2(x, t) + ε
)

n
2 ≥ δ/2, (x, t) ∈ Pδ, 0 < ε < ε0(δ),

|uε|n ≤ 2δ, (x, t) ∈ QT \Pδ, 0 < ε < ε0(δ). (3.1)

Then from (2.8)
∫∫

Pδ

(

∂5
xuε

)2
dx dt ≤ C

δ
,

where the constant C is independent of ε and δ. By employing a diagonal
selection, we obtain a subsequence from {uε}, denoted also by {uε}, such that

∂5
xuε(x, t) → ∂5

xu(x, t), weakly in L2(Pδ).

Noting that
∫∫

Pδ

|u|n(∂5
xu)

2dx dt≤
∫∫

Pδ

|u|n∂5
xu(∂

5
xu−∂5

xuε)dx dt+

∫∫

Pδ

|u|n∂5
xu∂

5
xuεdx dt

≤
∫∫

Pδ

|u|n∂5
xu(∂

5
xu−∂5

xuε)dx dt+
1

2

∫∫

Pδ

|u|n(∂5
xu)

2dx dt+
1

2

∫∫

Pδ

|u|n(∂5
xuε)

2dx dt,

hence
∫∫

Pδ

|u|n(∂5
xu)

2dx dt≤ 2
∣

∣

∣

∫∫

Pδ

|u|n∂5
xu(∂

5
xu−∂5

xuε)dx dt
∣

∣

∣
+

∫∫

Pδ

|u|n(∂5
xuε)

2dx dt.

This and the fact that

lim
ε→0

∫∫

Pδ

|u|n∂5
xu(∂

5
xu− ∂5

xuε)dx dt = 0,

lim
ε→0

∫∫

Pδ

∣

∣

∣
(|uε|2 + ε)

n
2 − |u|n

∣

∣

∣
(∂5

xuε)
2dx dt = 0,

yield

∫∫

Pδ

|u|n(∂5
xu)

2dx dt ≤ lim
ε→0

∫∫

Pδ

(

|uε|2 + ε
)

n
2

(∂5
xuε)

2dx dt ≤ C.

Math. Model. Anal., 15(4):457–471, 2010.
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To prove the integral equality in the definition of solutions, it suffices to pass
the limit as ε → 0 in

−
∫ 1

0

uε(x, T )ϕ(x, T )dx+

∫ 1

0

u0εϕ(x, 0)dx +

∫∫

QT

uε
∂ϕ

∂t
dx dt

=

∫∫

QT

(|uε|2 + ε)
n
2 ∂5

xuε∂xϕdxdt+

∫∫

QT

(|uε|2 + ε)
n
2 ∂x(|uε|p−1uε)∂xϕdxdt.

The limits

lim
ε→0

∫ 1

0

uε(x, T )ϕ(x, T )dx =

∫ 1

0

u(x, T )ϕ(x, T )dx,

lim
ε→0

∫ 1

0

u0ε(x)ϕ(x, 0)dx =

∫ 1

0

u0(x)ϕ(x, 0)dx,

lim
ε→0

∫∫

QT

uε
∂ϕ

∂t
dx dt =

∫∫

QT

u
∂ϕ

∂t
dx dt,

lim
ε→0

∫∫

QT

(|uε|2 + ε)
n
2 ∂x(|uε|p−1uε)∂xϕdxdt =

∫∫

QT

|u|n∂x(|u|p−1u)∂xϕdxdt

are obvious. It remains to show

lim
ε→0

∫∫

QT

(|uε|2 + ε)
n
2 ∂5

xuε∂xϕdxdt =

∫∫

P

|u|n∂5
xu∂xϕdxdt. (3.2)

In fact, for any fixed δ > 0,

∣

∣

∣

∫∫

QT

(|uε|2 + ε)
n
2 ∂5

xuε∂xϕdxdt−
∫∫

P

|u|n∂5
xu∂xϕdxdt

∣

∣

∣

≤
∣

∣

∣

∫∫

Pδ

(|uε|2 + ε)
n
2 ∂5

xuε∂xϕdxdt −
∫∫

Pδ

|u|n∂5
xu∂xϕdxdt

∣

∣

∣

+
∣

∣

∣

∫∫

QT \Pδ

(|uε|2 + ε)
n
2 ∂5

xuε∂xϕdxdt
∣

∣

∣
+
∣

∣

∣

∫∫

P\Pδ

|u|n∂5
xu∂xϕdxdt

∣

∣

∣
.

Using Hölder’s inequality and the estimates (2.8), (3.1), we have

∣

∣

∣

∫∫

QT \Pδ

(|uε|2+ε)
n
2 ∂5

xuε∂xϕdxdt
∣

∣

∣
≤
(

∫∫

QT \Pδ

(|uε|2+ε)
n
2

(

∂5
xuε

)2

dx dt
)

1
2×

(

∫∫

QT \Pδ

(|uε|2+ε)
n
2 dx dt

)
1
2

sup |∂xϕ|≤C(δ2+ε)
n
4 sup |∂xϕ|, 0<ε<ε0(δ).

Similarly, we obtain

∣

∣

∣

∫∫

P\Pδ

|u|n∂5
xu∂xϕdxdt

∣

∣

∣
≤ C

√
δ sup |∂xϕ|.
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On the other hand, we see that

∣

∣

∣

∫∫

Pδ

(|uε|2 + ε)
n
2 ∂5

xuε∂xϕdxdt−
∫∫

Pδ

|u|n∂5
xu∂xϕdxdt

∣

∣

∣

≤
∫∫

Pδ

∣

∣

∣
(|uε|2+ε)

n
2 −|u|n

∣

∣

∣
|∂5

xuε||∂xϕ|dx dt+
∣

∣

∣

∫∫

Pδ

|u|n
(

∂5
xuε−∂5

xu
)

∂xϕdxdt
∣

∣

∣

≤ sup |(|uε|2+ε)
n
2 −|u|n||∂xϕ|

C√
δ
+
∣

∣

∣

∫∫

Pδ

|u|n(∂5
xuε−∂5

xu)∂xϕdxdt
∣

∣

∣
.

Hence

lim
ε→0

∣

∣

∣

∫∫

QT

(|uε|2 + ε)
n
2 ∂5

xuε∂xϕdxdt−
∫∫

P

|u|n∂5
xu∂xϕdxdt

∣

∣

∣
≤ C

√
δ sup |∂xϕ|.

By the arbitrariness of δ, we see that the limit (3.2) holds. The proof is com-
plete. ⊓⊔

Theorem 3. The weak solution u satisfies u(x, t) ≥ 0, if u0(x) ≥ 0.

Proof. Suppose the contrary, that is, the set

E = {(x, t) ∈ QT ; u(x, t) < 0}

is nonempty. For any fixed δ > 0, choose a C∞ function Hδ(s) such that
Hδ(s) = −δ for s ≥ −δ, Hδ(s) = −1, for s ≤ −2δ and that Hδ(s) is non-
decreasing for −2δ < s < −δ. Also, we extend the function u(x, t) to be
defined in the whole plane R

2 such that the extension ū(x, t) = 0 for t ≥ T +1
and t ≤ −1. Let α(s) be the kernel of mollifier in one dimension, that is,
α(s) ∈ C∞(R), suppα = [−1, 1], α(s) > 0 in (−1, 1), and

∫ 1

−1
α(s)ds = 1. For

any fixed k > 0, δ > 0, define

uh(x, t) =

∫

R

ū(s, x)αh(t− s) ds, βδ(t) =

∫ +∞

t

α

(

s− T/2

T/2− δ

)

1

T/2− δ
ds,

where αh(s) =
1
hα(s/h). The function ϕh

δ (x, t) ≡
[

βδ(t)Hδ(u
h)
]h

is clearly an
admissible test function, that is, the following integral equality holds

−
∫ 1

0

u(x, T )ϕh
δ (T, x)dx+

∫ 1

0

u0(x)ϕ
h
δ (x, 0)dx+

∫∫

QT

u
∂ϕh

δ

∂t
dx dt

=

∫∫

P

|u|n
(

∂5
xu+ ∂x(|u|p−1u)

)

∂xϕ
h
δ dx dt.

To proceed further, we analyze the properties of the test function ϕh
δ (x, t). The

remaining part of the proof can be done in the same way as that in the proof
of Theorem 3.1 in [22] (or [19]). ⊓⊔

Math. Model. Anal., 15(4):457–471, 2010.
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4 Expansion of the support

Let us observe again the physical phenomenon described by the thin film. Sup-
pose that at the initial time, the oil film occupies the domain Ω0. Then as the
time evolves, due to the effect of gravity, a touching domain Ωt will expand. So
from the point of view of physical background, this problem seems to be quite
interesting. On the other hand, the mathematical description of this property
is that the set suppu(·, t) increases with t. Therefore, in this section, we study
the expansion of the support.

Theorem 4. Assume 0 < n < 1, u0 ∈ H2
0 (I), u0 ≥ 0, suppu0 ⊂ [x1, x2],

0 < x1 < x2 < 1, and u is the weak solution of the problem (1.1)–(1.3), then

for any fixed t > 0, we have

suppu(x, ·) ⊂ [x1(t), x2(t)] ∩ [0, 1],

where x1(t), x2(t) can be expressed by x1(t) = x1 − C1t
γ, x2(t) = x2 + C2t

γ,

with positive constants C1, C2, γ depending only on p and u0.

We need a series of uniform estimates on such approximate solutions uε.

Lemma 1. Let u be the weak solution of the problem (1.1)–(1.3). If 0 < n < 1,
then the following integral inequality holds

∫ 1

0

u2−ndx+ (1− n)(2 − n)

∫∫

Qt

(∂3
xu)

2dx ds ≤
∫ 1

0

u2−n
0 dx.

Proof. Let uε be the solution of the problem (2.1)–(2.3). Denote

gε(u) =

∫ u

0

dr

(|r|2 + ε)n/2
, Gε(u) =

∫ u

0

gε(r)dr.

Multiplying both sides of the equation (2.1) by gε(uε), and then integrating
over Qt, we obtain
∫ 1

0

Gε(uε)(x, t)dx+

∫∫

Qt

(∂3
xuε)

2dx ds+p

∫∫

Qt

|uε|p−1(∂xuε)
2dxds=

∫ 1

0

Gε(u0ε(x))dx.

Letting ε → 0 and using the fact that Gε(uε) → u2−n/(1−n)(2−n) and uε → u
pointwise and the lower semi-continuity of the integrals, we immediately get
the conclusion of the lemma. The proof is complete. ⊓⊔

Lemma 2. Let u be the weak solution of the problem (1.1)–(1.3). If 0 < n < 1,
then for any α > 4 and y ∈ R

+, the following integral inequality holds

∫ 1

0

(x− y)α+u
2−ndx+

∫∫

Qt

(x − y)α+(∂
3
xu)

2dx ds≤C

∫∫

Qt

(x− y)α−4
+ (∂xu)

2dx ds

+ C

(
∫ 1

y

|u0|2−ndx

)

2−n
4

+ C

∫∫

Qt

(x− y)α−2
+ (∂2

xu)
2dxds,

where C depends only on n, u0 and (x− y)+ denotes the positive part of x− y.
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Proof. Let gε(u) and Gε(u) be defined as in the proof of Lemma 1. Let uε be
the approximate solutions derived from the problem (2.1)–(2.3). Then, using
the equation (2.1) and integrating by parts, we get

∫ 1

0

(x− y)α+Gε(uε)dx −
∫ 1

0

(x− y)α+Gε(u0)dx

= −
∫∫

Qt

(

|uε|2 + ε
)

n
2
(

∂5
xuε + ∂x(|uε|p−1uε)

)

∂x
[

(x− y)α+gε(uε)
]

dx ds

= −
∫∫

Qt

(

∂5
xuε + ∂x(|uε|p−1uε)

)

(x− y)α+∂xuε dx ds

−
∫∫

Qt

(

|uε|2 + ε
)

n
2
(

∂5
xuε + ∂x(|uε|p−1uε)

)[

α(x − y)α−1
+ gε(uε)

]

dx ds

≡ I1 + I2.

As for I1, integrating by parts, we have

I1 = −
∫∫

Qt

[

∂5
xuε + p|uε|p−1∂xuε

]

(x− y)α+∂xuεdx ds

=

∫∫

Qt

∂4
xuε∂x

[

(x− y)α+∂xuε

]

dx ds−
∫∫

Qt

p|uε|p−1(x− y)α+(∂xuε)
2dx ds

=

∫∫

Qt

∂4
xuε(x− y)α+∂

2
xuεdx ds+

∫∫

Qt

∂4
xuε∂xuεα(x − y)α−1

+ dx ds

−
∫∫

Qt

p|uε|p−1(x− y)α+(∂xuε)
2dx ds= −

∫∫

Qt

∂3
xuε∂x[(x− y)α+∂

2
xuε]dx ds

−
∫∫

Qt

∂3
xuε∂x[∂xuεα(x − y)α−1

+ ]dx ds−
∫∫

Qt

p|uε|p−1(x− y)α+(∂xuε)
2dx ds

= −
∫∫

Qt

(x − y)α+(∂
3
xuε)

2dx ds−
∫∫

Qt

α(x − y)α−1
+ ∂3

xuε∂
2
xuεdx ds

−
∫∫

Qt

∂3
xuε∂

2
xuεα(x − y)α−1

+ dx ds−
∫∫

Qt

p|uε|p−1(x− y)α+(∂xuε)
2dx ds

−
∫∫

Qt

∂3
xuε∂xuεα(α − 1)(x− y)α−2

+ dx ds.

In addition, I2 yields, by integrating by parts,

I2 =−
∫∫

Qt

(

|uε|2 + ε
)

n
2
[

∂5
xuε + p|uε|p−1∂xuε

][

α(x − y)α−1
+ gε(uε)

]

dx ds

=−
∫∫

Qt

(

|uε|2 + ε
)

n
2 D5uεgε(uε)α(x − y)α−1

+ dx ds

−
∫∫

Qt

α(x− y)α−1
+

(

|uε|2 + ε
)

n
2 p|uε|p−1gε(uε)∂xuεdx ds.

Therefore
∫ 1

0

(x− y)α+Gε(uε)dx −
∫ 1

0

(x− y)α+Gε(u0)dx+

∫∫

Qt

(x− y)α+(∂
3
xuε)

2dx ds

Math. Model. Anal., 15(4):457–471, 2010.
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+p

∫∫

Qt

|uε|p−1(x− y)α+(∂xuε)
2dx ds= − 2

∫∫

Qt

α(x − y)α−1
+ ∂3

xuε∂
2
xuεdx ds

−
∫∫

Qt

∂3
xuεα(α−1)(x−y)α−2

+ ∂xuεdx ds

−
∫∫

Qt

(|uε|2+ε)
n
2 ∂5

xuεgε(uε)α(x−y)α−1
+ dx ds

−
∫∫

Qt

α(x − y)α−1
+ (|uε|2+ε)

n
2 p|uε|p−1gε(uε)∂xuεdxds≡Ia + Ib + Ic + Id.

Hölder’s inequality yields

|Ia| ≤
1

8

∫∫

Qt

(x− y)α+(∂
3
xuε)

2dx ds+ C

∫∫

Qt

(x− y)α−2
+ (∂2

xuε)
2dx ds.

Similarly, the |Ib| can be handled,

|Ib| ≤
1

8

∫∫

Qt

(x− y)α+(∂
3
xuε)

2dx ds+ C

∫∫

Qt

(x− y)α−4
+ (∂xuε)

2dx ds.

Noticing that
(

|uε|2 + ε
)

n
2 |gε(uε)| ≤ 2|uε|/(1− n),

using (2.8), we have

|Ic| ≤
(

∫∫

Qt

(|uε|2 + ε)
n
2 (∂5

xuε)
2dx ds

)
1
2

×
(

∫∫

Qt

(|uε|2 + ε)
n
2 α2(x− y)2α−2

+ (gε(uε))
2dx ds

)
1
2

≤ C
(

∫∫

Qt

(x−y)2α−2
+ (|uε|2+ε)−

n
2 |uε|2dx ds

)
1
2 ≤ C

(

∫∫

Qt

|uε|2−ndx ds
)

1
2

.

By Hölder’s inequality, Poincaré’s inequality and Friedrichs’s inequality, we
obtain

|Ic| ≤ C

(
∫∫

Qt

(uε)
2dx ds

)
2−n
4

≤ C

(
∫∫

Qt

(∂3
xuε)

2dx ds

)
2−n
4

,

|Id| ≤ C

∫∫

Qt

|∂xuε|2(x− y)α−4
+ dx ds.

From what are discussed above, we have
∫ 1

0

(x− y)α+Gε(uε)dx −
∫ 1

0

(x− y)α+Gε(u0)dx+

∫∫

Qt

(x− y)α+(∂
3
xuε)

2dx ds

+ p

∫∫

Qt

|uε|p−1(x− y)α+(∂xuε)
2dx ds ≤ C

∫∫

Qt

(x− y)α−4
+ (∂xuε)

2dx ds

+ C

(
∫∫

Qt

(∂3
xuε)

2dx ds

)
2−n
4

+ C

∫∫

Qt

(x− y)α−2
+ (∂2

xuε)
2dx ds.
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Letting ε → 0, and using Lemma 1, we immediately get the desired conclusion
and complete the proof of the lemma. ⊓⊔

Proof. [Proof of Theorem 4] For any y ≥ x2, Lemma 2 and Hardy’s inequality
[14] imply that for any t ∈ [0, T ],

∫ 1

0

(x− y)α+u
2−ndx+

∫∫

Qt

(x− y)α+|∂3
xu|2dx ds

≤ C

∫∫

Qt

(x− y)α−4
+ |∂xu|2dx ds+ C

∫∫

Qt

(x− y)α−2
+ |∂2

xu|2dx ds

≤ C

∫∫

Qt

(x− y)α−2
+ |∂2

xu|2dx ds. (4.1)

For any positive number m, define

fm(y) =

∫ t

0

∫ 1

0

(x − y)m+ |∂3
xu(x, s)|2dx ds, f0(y) =

∫ t

0

∫ 1

y

|∂3
xu|2dx ds.

Then, the weighted Nirenberg’s inequality [3] and the estimate (4.1) imply that

f2p+1(y) ≤ C

∫∫

Qt

(x− y)2p−1
+ |∂2

xu|2dx ds

≤ C

∫ t

0

(

∫ 1

0

(x − y)2p−1
+ |∂3

xu|2dx
)a(

∫ 1

0

(x− y)2p−1
+ |u|qdx

)2(1−a)/q

ds

≤ C sup
0<s<t

(

∫ 1

0

(x−y)2p−1
+ |u|qdx

)

2(1−a)

q

t1−a
(

∫∫

Qt

(x−y)2p−1
+ |∂3

xu|2dx ds
)a

.

Using (4.1) and Hardy’s inequality, we have

sup
0<s<t

∫ 1

0

(x − y)2p−1
+ |u|qdx ≤ C

∫∫

Qt

(x− y)2p−1
+ |∂3

xu|2dx ds

and hence

f2p+1(y) ≤ Ct1−a
(

∫∫

Qt

(x− y)2p−1
+ |∂3

xu|2dx ds
)a+2(1−a)/q

,

where q = 2 − n and a = (12 − 1
p − 1

q )/(
1
2 − 3

2p − 1
q ). Denote λ = 1 − a, µ =

a+ 2(1− a)/q, then λ > 0, 1 < µ. Applying Hölder’s inequality, we have

f2p+1(y) ≤ Ctλ
[

∫∫

Qt

(x− y)2p−1
+ |∂3

xu|2dx ds
]µ

≤ Ctλ
[

∫∫

Qt

(x− y)2p+1
+ |∂3

xu|2dx ds
]

(2p−1)µ

(2p+1)
[

∫ t

0

∫ 1

y

|∂3
xu|2dx ds

]

2µ

2p+1

≤ Ctλ
[

f2p+1(y)
](2p−1)µ/(2p+1)[

f0(y)
]2µ/(2p+1)

.
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Therefore

f2p+1(y) ≤ Ctλ/σ
[

f0(y)
]2µ/(2p+1)σ

, σ = 1− 2p− 1

2p+ 1
µ > 0.

Using Hölder’s inequality again, we get

f1(y) ≤
[

f0(y)
]2p/2p+1[

f2p+1(y)
]1/2p+1 ≤ Ctγ

[

f0(y)
]1+θ

,

where
γ =

λ

(2p+ 1)σ
, θ =

2µ

(2p+ 1)2σ
− 1

2p+ 1
> 0.

Noticing that f ′
1(y) = −f0(y), we obtain

f ′
1(y) ≤ −Ct−γ/(θ+1)

[

f1(y)
]1/(θ+1)

.

If f1(x2) = 0, then suppu ⊂ [0, x2]. If f1(x2) > 0, then there exists a maximal
interval (x2, x

∗
2) in which f1(y) > 0 and

[

f1(y)
θ/(θ+1)

]′

=
θ

θ + 1

f ′
1(y)

[f1(y)]1/(θ+1)
≤ −Ct−γ/(θ+1).

Integrating the above inequality over (x2, x
∗
2), we have

f1(x
∗
2)

θ/(θ+1) − f1(x2)
θ/(θ+1) ≤ −Ct−γ/(θ+1)(x∗

2 − x2),

which implies that
x∗
2 ≤ x2 + Ctγ

(

f0(x2)
)θ
.

Lemma 1 implies that f0(y) can be controlled by a constant C independent of
y. Therefore

sup suppu(·, t) ≤ x2 + Ctγ ≡ x2(t).

We have thus completed the proof of Theorem 4. ⊓⊔
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