MATHEMATICAL MODELLING AND ANALYSIS Volume 15 Number 4, 2010, pages 431–446 Doi:10.3846/1392-6292.2010.15.431-446 © Vilnius Gediminas Technical University, 2010

A Mixed Joint Universality Theorem for Zeta-Functions

J. Genys¹, R. Macaitienė¹, S. Račkauskienė² and D. Šiaučiūnas¹

¹Šiauliai University P. Višinskio 19, LT-77156 Šiauliai, Lithuania E-mail(corresp.): siauciunas@fm.su.lt E-mail: genys@fm.su.lt E-mail: renata.macaitiene@mi.su.lt ²Institute of Mathematics and Informatics Akademijos 4, LT-08663 Vilnius, Lithuania E-mail: santa.rackauskiene@gmail.com

Received August 31, 2010; revised September 30, 2010; published online November 15, 2010

Abstract. In the paper, a joint universality theorem for the Riemann zeta-function and a collection of periodic Hurwitz zeta-functions on approximation of analytic functions is obtained.

Keywords: limit theorem, periodic Hurwitz zeta-function, Riemann zeta-function, space of analytic functions, universality.

AMS Subject Classification: 11M06; 11M41.

1 Introduction

In 1975, S. M. Voronin discovered [22] a very interesting property of the Riemann zeta-function $\zeta(s)$, $s = \sigma + it$. Roughly speaking, he proved that every analytic non-vanishing function on compact subsets of the strip $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ can by uniformly approximated with desired accuracy by shifts $\zeta(s + i\tau)$. Now this property is called the universality of $\zeta(s)$. Later, it was observed that other zeta and *L*-functions are also universal in the above sense, for results and references, see [1, 3, 4, 12, 15, 19, 20].

The first result on the joint universality also is due to S. M. Voronin. In [21], he obtained that a collection of shifts of Dirichlet *L*-functions with pairwise non-equivalent characters approximate simultaneously on compact subsets of D with a given accuracy a collection of arbitrary analytic non-vanishing functions.

It is known, see, for example, [12], that the Hurwitz zeta-function $\zeta(s, \alpha)$, $0 < \alpha \leq 1$, with transcendental parameter α is also universal, however, in this case an approximated function can be not necessarily non-vanishing.

In [17], the universality of the periodic Hurwitz zeta-function which is a generalization of the function $\zeta(s, \alpha)$ was began to study. Let $\mathfrak{a} = \{a_m : m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\}$ be a periodic sequence of complex numbers with minimal period $k \in \mathbb{N}$. Then the periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{a}), 0 < \alpha \leq 1$, is defined, for $\sigma > 1$, by

$$\zeta(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s}.$$

In virtue of the periodicity of the sequence \mathfrak{a} , for $\sigma > 1$,

$$\zeta(s,\alpha;\mathfrak{a}) = \frac{1}{k^s} \sum_{l=0}^{k-1} a_l \zeta\left(s, \frac{l+\alpha}{k}\right).$$

Since the Hurwitz zeta-function $\zeta(s, \alpha)$ is meromorphic in the whole complex plane with a single simple pole at s = 1 with residue 1, the latter equality gives meromorphic continuation for the function $\zeta(s, \alpha; \mathfrak{a})$ with possible simple pole at s = 1 with residue

$$a \stackrel{def}{=} \frac{1}{k} \sum_{l=0}^{k-1} a_l.$$

If a = 0, then the function $\zeta(s, \alpha; \mathfrak{a})$ is entire.

For the statement of results, we use the following notation. Denote by meas{A} the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and, for T > 0, let

$$\nu_T(\ldots) = \frac{1}{T} \operatorname{meas} \Big\{ \tau \in [0;T] : \ldots \Big\},\,$$

where in place of dots a condition satisfied by τ is to be written.

The universality property of the function $\zeta(s, \alpha; \mathfrak{a})$ is contained in the following theorem.

Theorem 1. [18] Suppose that α is transcendental. Let K be a compact subset of the strip $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ with connected complement, and let f(s)be a continuous function on K which is analytic in the interior of K. Then, for every $\epsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \Big(\sup_{s \in K} |\zeta(s + i\tau, \alpha; \mathfrak{a}) - f(s)| < \epsilon \Big) > 0.$$

A series of works [5, 6, 7, 8, 9, 10] and [11] are devoted to the joint universality of periodic Hurwitz zeta-functions. The most general result is obtained in [10]. For j = 1, ..., r, let α_j , $0 < \alpha_j \leq 1$, be a fixed parameter, $l_j \in \mathbb{N}$, and, for j = 1, ..., r, $l = 1, ..., l_j$, let $\mathfrak{a}_{jl} = \{a_{mjl} : m \in \mathbb{N}_0\}$ be a periodic sequence of complex numbers with minimal period k_{jl} , and $\zeta(s, \alpha_j; \mathfrak{a}_{jl})$ denote the corresponding periodic Hurwitz zeta-function. Moreover, let

$$\mathcal{L}(\alpha_1,\ldots,\alpha_r) = \Big\{ \log(m+\alpha_j) : m \in \mathbb{N}_0, \ j = 1,\ldots,r \Big\},\$$

and let k_j be the least common multiple of the periods $k_{j1}, \ldots, k_{jl_j}, j = 1, \ldots, r$. Define

$$B_{j} = \begin{pmatrix} a_{1j1} & a_{1j2} & \dots & a_{1jl_{j}} \\ a_{2j1} & a_{2j2} & \dots & a_{2jl_{j}} \\ \dots & \dots & \dots & \dots \\ a_{k_{j}j1} & a_{k_{j}j2} & \dots & a_{k_{j}jl_{j}} \end{pmatrix}, \quad j = 1, \dots, r.$$

Theorem 2. [11] Suppose that the system $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over the field of rational numbers \mathbb{Q} , and that $\operatorname{rank}(B_j) = l_j, j = 1, \ldots, r$. For every $j = 1, \ldots, r$ and $l = 1, \ldots, l_j$, let K_{jl} be a compact subset of the strip D with connected complement, and let $f_{jl}(s)$ be a continuous on K_{jl} function which is analytic in the interior of K_{jl} . Then, for every $\epsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \left(\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} |\zeta(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) - f_{jl}(s)| < \epsilon \right) > 0.$$

The aim of this paper is to consider the joint universality of the Riemann zeta-function $\zeta(s)$ and the functions $\zeta(s, \alpha_j; \mathfrak{a}_{jl}), j = 1, \ldots, r, l = 1, \ldots, l_j$.

Theorem 3. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , and that all hypotheses on K_{jl} and f_{jl} of Theorem 2 hold. Moreover, let K be a compact subset of the strip D with connected complement, and let f(s) be a continuous non-vanishing on K function which is analytic in the interior of K. Then, for every $\epsilon > 0$,

$$\liminf_{T \to \infty} \nu_T \bigg(\sup_{s \in K} |\zeta(s + i\tau) - f(s) < \epsilon,$$
$$\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} |\zeta(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) - f_{jl}(s)| < \epsilon \bigg) > 0.$$

2 Limit Theorems

The proof of theorem 3 is based on a joint limit theorem in the space of analytic functions for the functions $\zeta(s)$ and $\zeta(s, \alpha_i; \mathfrak{a}_{il}), j = 1, \ldots, r, l = 1, \ldots, l_i$.

Denote by H(D) the space of analytic on D functions equipped with the topology of uniform convergence on compacta, and let

$$H^{\kappa}(D) = \underbrace{H(D) \times \ldots \times H(D)}_{\kappa}, \text{ with } \kappa = \sum_{j=1}^{r} l_j + 1.$$

Moreover, denote by γ the unit circle on the complex plane and define

$$\hat{\Omega} = \prod_p \gamma_p \quad \text{and} \quad \Omega = \prod_{m=0}^{\infty} \gamma_m,$$

where $\gamma_p = \gamma$ and $\gamma_m = \gamma$ for all primes p and all $m \in \mathbb{N}_0$, respectively. By the Tikhonov theorem, with the product topology and pointwise multiplication, the

tori $\hat{\Omega}$ and Ω are compact topological Abelian groups. Therefore, on $(\hat{\Omega}, \mathcal{B}(\hat{\Omega}))$ and $(\Omega, \mathcal{B}(\Omega))$ (where $\mathcal{B}(S)$ denotes the class of Borel sets of the space S) the probability Haar measures \hat{m}_H and m_H , respectively, can by defined. This leads to the probability spaces $(\hat{\Omega}, \mathcal{B}(\hat{\Omega}), \hat{m}_H)$ and $(\Omega, \mathcal{B}(\Omega), m_H)$.

Now let

$$\underline{\Omega} = \hat{\Omega} \times \Omega_1 \times \ldots \times \Omega_r,$$

where $\Omega_j = \Omega$ for j = 1, ..., r. Then by then Tikhonov theorem again, $\underline{\Omega}$ is a compact topological Abelian group, and we obtain a new probability space $(\underline{\Omega}, \mathcal{B}(\underline{\Omega}), \underline{m}_H)$, where \underline{m}_H is the probability Haar measure on $(\underline{\Omega}, \mathcal{B}(\underline{\Omega}))$. Denote by $\hat{\omega}(p)$ the projection of $\hat{\omega} \in \hat{\Omega}$ to $\gamma_p, p \in \mathcal{P}, \mathcal{P}$ is the set of all prime numbers, and by $\omega_j(m)$ the projection of $\omega_j \in \Omega_j$ to $\gamma_m, m \in \mathbb{N}_0$. For brevity, let $\underline{\alpha} = (\alpha_1, \ldots, \alpha_r), \underline{\mathfrak{a}} = (\mathfrak{a}_{11}, \ldots, \mathfrak{a}_{l1}, \ldots, \mathfrak{a}_{r1}, \ldots, \mathfrak{a}_{rl_r})$, and let $\underline{\omega} = (\hat{\omega}, \omega_1, \ldots, \omega_r)$ be an element of $\underline{\Omega}$. On the probability space $(\underline{\Omega}, \mathcal{B}(\underline{\Omega}), \underline{m}_H)$, define the $H^{\kappa}(D)$ -valued random element $\zeta(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$ by the formula

$$\underline{\zeta}(s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) = \left(\zeta(s,\hat{\omega}),\zeta(s,\alpha_1,\omega_1;\mathfrak{a}_{11}),\ldots,\zeta(s,\alpha_1,\omega_1;\mathfrak{a}_{1l_1}),\ldots,\zeta(s,\alpha_r,\omega_r;\mathfrak{a}_{rl_r}),\ldots,\zeta(s,\alpha_r,\omega_r;\mathfrak{a}_{rl_r})\right),$$

where

$$\zeta(s,\hat{\omega}) = \prod_{p} \left(1 - \frac{\hat{\omega}(p)}{p^s}\right)^{-1}$$

and

$$\zeta(s,\alpha_j,\omega_j;\mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}\omega_j(m)}{(m+\alpha_j)^s}, \quad j=1,\ldots,r, \quad l=1,\ldots,l_j.$$

Denote by P_{ζ} the distribution of the random element $\zeta(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$, i.e.,

$$P_{\underline{\zeta}}(A) = \underline{m}_H \left(\underline{\omega} \in \underline{\Omega} : \underline{\zeta}(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A \right), \quad A \in \mathcal{B}(H^{\kappa}(D)).$$

Let

$$\underline{\zeta}(s,\underline{\alpha};\underline{\mathfrak{a}}) = (\zeta(s),\zeta(s,\alpha_1;\mathfrak{a}_{11}),\ldots,\zeta(s,\alpha_1;\mathfrak{a}_{1l_1}),\ldots,\zeta(s,\alpha_r;\mathfrak{a}_{rl_1}),\ldots,\zeta(s,\alpha_r;\mathfrak{a}_{rl_r})).$$

The main result of this section is the following statement.

Theorem 4. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the probability measure

$$P_T(A) \stackrel{def}{=} \nu_T\left(\underline{\zeta}(s+i\tau,\underline{\alpha};\underline{\mathfrak{a}}) \in A\right), \quad A \in \mathcal{B}(H^{\kappa}(D)),$$

converges weakly to P_{ζ} as $T \to \infty$.

We start the proof of Theorem 4 with a limit theorem on the torus $\underline{\Omega}$. Define

$$Q_T(A) = \nu_T(((p^{-i\tau} : p \in \mathcal{P}), ((m + \alpha_1)^{-i\tau} : m \in \mathbb{N}_0), \dots, ((m + \alpha_r)^{-i\tau} : m \in \mathbb{N}_0)) \in A), A \in \mathcal{B}(\underline{\Omega}).$$

Lemma 1. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the measure Q_T converges weakly to \underline{m}_H as $T \to \infty$.

Proof. The dual group of $\underline{\Omega}$ is isomorphic to

$$\mathcal{D} = \Big(\bigoplus_{p \in \mathcal{P}} \mathbb{Z}_p\Big) \bigoplus_{j=1}^r \Big(\bigoplus_{m \in \mathbb{N}_0} \mathbb{Z}_{jm}\Big),$$

where $\mathbb{Z}_p = \mathbb{Z}$ and $\mathbb{Z}_{jm} = \mathbb{Z}$ for all $p \in \mathcal{P}$ and $m \in \mathbb{N}_0$, $j = 1, \ldots, r$, respectively. An element $\underline{k} = (\underline{k}_{\mathcal{P}}, \underline{k}_{r\mathbb{N}_0}) \in \mathcal{D}, \underline{k}_{\mathcal{P}} = (k_p : p \in \mathcal{P}), \underline{k}_{r\mathbb{N}_0} = (k_{jm} : m \in \mathbb{N}_0, j = 1, \ldots, r)$, where only a finite number of integers k_p and k_{jm} are distinct from zero, acts on $\underline{\Omega}$ by

$$\underline{\omega} \to \underline{\omega}^{\underline{k}} = \prod_{p \in \mathcal{P}} \hat{\omega}^{k_p}(p) \prod_{j=1}^r \prod_{m \in \mathbb{N}_0} \omega_j^{k_{jm}}(m)$$

Therefore, the Fourier transform $g_T(\underline{k})$ of the measure Q_T is

$$g_{T}(\underline{k}) = \int_{\underline{\Omega}} \prod_{p \in \mathcal{P}} \hat{\omega}^{k_{p}}(p) \prod_{j=1}^{r} \prod_{m \in \mathbb{N}_{0}} \omega_{jm}^{k_{jm}}(m) \mathrm{d}Q_{T}$$
$$= \frac{1}{T} \int_{0}^{T} \prod_{p \in \mathcal{P}} p^{-ik_{p}\tau} \prod_{j=1}^{r} \prod_{m \in \mathbb{N}_{0}} (m + \alpha_{j})^{-ik_{jm}\tau} \mathrm{d}\tau, \qquad (2.1)$$

where, as above, only a finite number of integers k_p and k_{jm} are distinct from zero. It is well known that the set $\{\log p : p \in \mathcal{P}\}$ is linearly independent over \mathbb{Q} . Since the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , hence it follows that the set

$$\mathcal{L} \stackrel{def}{=} \left\{ (\log p : p \in \mathcal{P}), \log(m + \alpha_j) : m \in \mathbb{N}_0, j = 1, \dots, r \right\}$$

is linearly independent over \mathbb{Q} . Really, if there exists integers k_p and k_{jm} not all zeros such that

$$k_1 \log p_1 + \ldots + k_n \log p_n + k_{1m_1} \log(m_1 + \alpha_1) + \ldots + k_{n_1m_n}(m_{n_1} + \alpha_1) + \ldots + k_{rm_r} \log(m_r + \alpha_r) + \ldots + k_{n_rm_{n_r}} \log(m_{n_r} + \alpha_r) = 0,$$

we obtain that

$$p_1^{k_1} \cdots p_n^{k_n} (p_1 + \alpha_1)^{k_{1m_1}} \cdots (m_{n_1} + \alpha_1)^{k_{n_1m_{n_1}}} \cdots (m_r + \alpha_r)^{k_{r_mr_r}} \cdots (m_{n_r} + \alpha_r)^{k_{n_rm_{n_r}}} = 1,$$

and this contradicts the algebraic independence of $\alpha_1, \ldots, \alpha_r$.

We find by (2.1) that

$$g_T(\underline{k}) = \begin{cases} 1 & \text{if } \underline{k} = \underline{0}, \\ \frac{1 - \exp\left\{-iT\left(\sum_{p \in \mathcal{P}} k_p \log p + \sum_{j=1}^r \sum_{m \in \mathbb{N}_0} k_{jm} \log(m + \alpha_j)\right)\right\}}{T\left(\sum_{p \in \mathcal{P}} k_p \log p + \sum_{j=1}^r \sum_{m \in \mathbb{N}_0} k_{jm} \log(m + \alpha_j)\right)} & \text{if } \underline{k} \neq \underline{0}. \end{cases}$$

436 J. Genys, R. Macaitienė, S. Račkauskienė and D. Šiaučiūnas

Thus,

$$\lim_{T \to \infty} g_T(\underline{k}) = \begin{cases} 1 & \text{if } \underline{k} = \underline{0}, \\ 0 & \text{if } \underline{k} \neq \underline{0}. \end{cases}$$

This and a continuity theorem for probability measures on compact topological groups, see, for example, [16], Theorem 1.4.2, prove the lemma. \Box

Let $\sigma > 1/2$ be a fixed number, and

$$u_n(m) = \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_1}\right\}, \quad m, n \in \mathbb{N},$$
$$u_n(m, \alpha_j) = \exp\left\{-\left(\frac{m+\alpha_j}{n+\alpha_j}\right)^{\sigma_1}\right\}, \quad m, n \in \mathbb{N}_0.$$

From the periodicity it follows that the numbers a_{mjl} are bounded. Therefore, a standard application of the Mellin formula and contour integration shows that the series

$$\zeta_n(s) = \sum_{m=1}^{\infty} \frac{u_n(m)}{m^s}$$

and

$$\zeta_n(s,\alpha_j;\mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}u_n(m,\alpha_j)}{(m+\alpha_j)^s}, \quad j=1,\ldots,r,$$

both are absolutely convergent for $\sigma > 1/2$. For $m \in \mathbb{N}$, define

$$\hat{\omega}(m) = \prod_{p^l \parallel m} \hat{\omega}^l(p),$$

where $p^{l}\parallel m$ means that $p^{l}\mid m$ but $p^{l+1}\nmid m,$ and let

$$\zeta_n(s,\hat{\omega}) = \sum_{m=1}^{\infty} \frac{u_n(m)\hat{\omega}(m)}{m^s},$$

and

$$\zeta_n(s,\alpha_j,\omega_j;\mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}\omega_j(m)u_n(m,\alpha_j)}{(m+\alpha_j)^s}, \quad j=1,\ldots,r.$$

Since $|\hat{\omega}(m)| = |\omega_j(m)| = 1$, the latter series are also absolutely convergent for $\sigma > 1/2$. For brevity, let

$$\underline{\zeta}_{n}(s,\underline{\alpha};\underline{\mathfrak{a}}) = \left(\zeta_{n}(s), \zeta_{n}(s,\alpha_{1};\mathfrak{a}_{11}), \dots, \zeta_{n}(s,\alpha_{1};\mathfrak{a}_{1l_{1}}), \dots, \zeta_{n}(s,\alpha_{r};\mathfrak{a}_{rl_{r}}), \dots, \zeta_{n}(s,\alpha_{r};\mathfrak{a}_{rl_{r}})\right)$$

and

$$\frac{\zeta_n(s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) = \left(\zeta_n(s,\hat{\omega}),\zeta_n(s,\alpha_1,\omega_1;\mathfrak{a}_{11}),\ldots,\zeta_n(s,\alpha_1,\omega_1;\mathfrak{a}_{1l_1}),\ldots,\zeta_n(s,\alpha_r,\omega_r;\mathfrak{a}_{rl_r})\right).$$

On $(H^{\kappa}(D), \mathcal{B}(H^{\kappa}(D)))$, define the probability measures

$$P_{T,n}(A) = \nu_T \left(\underline{\zeta}_n(s+i\tau), \underline{\alpha}; \underline{\mathfrak{a}}) \in A\right)$$

and, for fixed $\underline{\omega}_0 = (\hat{\omega}_0, \omega_{10}, \dots, \omega_{r0}),$

$$P_{T,n,\underline{\omega}_0}(A) = \nu_T \Big(\underline{\zeta}_n(s+i\tau), \underline{\alpha}, \underline{\omega}_0; \underline{\mathfrak{a}}) \in A \Big).$$

Lemma 2. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the probability measures $P_{T,n}$ and $P_{T,n,\underline{\omega}_0}$ both converge weakly to the same probability measure P_n on $(H^{\kappa}(D), \mathcal{B}(H^{\kappa}(D)))$ as $T \to \infty$.

Proof. Since the series $\zeta_n(s)$ and $\zeta_n(s, \alpha_j; \mathfrak{a}_{jl})$ converge absolutely for $\sigma > 1/2$, the function $h_n : \underline{\Omega} \to H^{\kappa}(D)$ given by the formula

$$h_n(\underline{\omega}) = \underline{\zeta}_n(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$$

is continuous. Moreover,

$$h_n\big((p^{-i\tau}: p \in \mathcal{P}), \big((m+\alpha_1)^{-i\tau}: m \in \mathbb{N}_0\big), \dots, \\ \big((m+\alpha_r)^{-i\tau}: m \in \mathbb{N}_0\big)\big) = \zeta_n(s+i\tau, \underline{\alpha}; \underline{\mathfrak{a}}).$$

Therefore, we have that $P_{T,n} = Q_T h_n^{-1}$. This, the continuity of h_n , Lemma 1 and Theorem 5.1 from [2] show that $P_{T,n}$ converges weakly to $P_n = \underline{m}_H h_n^{-1}$ as $T \to \infty$.

Similarly, we find that $P_{T,n,\underline{\omega}_0}$ converges weakly to $\underline{m}_H g_n^{-1}$ as $T \to \infty$, where $g_n : \underline{\Omega} \to H^{\kappa}(D)$ is related to h_n by $g_n(\underline{\omega}) = h_n(\underline{\omega}\underline{\omega}_0)$. Since the Haar measure \underline{m}_H is invariant, this implies the equality $\underline{m}_H g_n^{-1} = \underline{m}_H h_n^{-1}$, and the lemma is proved. \Box

Furthermore, we need a metric on $H^{\kappa}(D)$ which induces its topology of uniform convergence on compacta. It is known, see, for example [13], that there exists a sequence $\{K_k : k \in \mathbb{N}\}$ of compact subsets of D such that

$$D = \bigcup_{k=1}^{\infty} K_k,$$

 $K_k \subset K_{k+1}$ for all $k \in \mathbb{N}$, and, for every compact $K \subset D$, there exists k such that $K \subset K_k$. For $f, g \in H(D)$, let

$$\rho(f,g) = \sum_{k=1}^{\infty} 2^{-k} \frac{\sup_{s \in K_k} |f(s) - g(s)|}{1 + \sup_{s \in K_k} |f(s) - g(s)|}$$

Then ρ is a metric on H(D) which induces its topology of uniform convergence on compacta. If, for

$$\underline{f} = (f_0, f_{11}, \dots, f_{1l_1}, \dots, f_{r1}, \dots, f_{rl_r}),
\underline{g} = (g_0, g_{11}, \dots, g_{1l_1}, \dots, g_{r1}, \dots, g_{rl_r}) \in H^{\kappa}(D),$$

$$\rho_{\kappa}(\underline{f},\underline{g}) = \max\left(\rho(f_0,g_0), \max_{1 \le j \le r} \max_{1 \le l \le l_j} \rho(f_{jl},g_{jl})\right),$$
(2.2)

then ρ_{κ} is a metric on $H^{\kappa}(D)$ inducing its topology.

Now we will approximate the vectors $\underline{\zeta}(s,\underline{\alpha};\underline{\mathfrak{a}})$ and $\underline{\zeta}(s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}})$ by $\underline{\zeta}_n(s,\underline{\alpha};\underline{\mathfrak{a}})$ and $\underline{\zeta}_n(s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}})$, respectively.

Lemma 3. We have

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \rho_{\kappa} \left(\underline{\zeta}(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}) \right) \mathrm{d}\tau = 0.$$

Proof. It is known [3] that

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \rho\left(\zeta(s+i\tau), \zeta_n(s+i\tau)\right) \mathrm{d}\tau = 0.$$
(2.3)

Moreover, from [11] we have that

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \max_{1 \le j \le r} \max_{1 \le l \le l_j} \rho\Big(\underline{\hat{\zeta}}(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}), \underline{\hat{\zeta}}_n(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}})\Big) d\tau = 0, \quad (2.4)$$

where $\underline{\hat{\zeta}}(s,\underline{\alpha};\underline{\mathfrak{a}})$ and $\underline{\hat{\zeta}}_n(s,\underline{\alpha};\underline{\mathfrak{a}})$ are obtained from $\zeta(s,\underline{\alpha};\underline{\mathfrak{a}})$ and $\zeta_n(s,\underline{\alpha};\underline{\mathfrak{a}})$ by removing $\zeta(s)$ and $\zeta_n(s)$, respectively. Therefore, the equality of the lemma is a result of (2.2)–(2.4). \Box

Lemma 4. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then, for almost all $\underline{\omega} \in \underline{\Omega}$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \rho_{\kappa} \left(\underline{\zeta}(s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \right) \mathrm{d}\tau = 0$$

Proof. In [3], it is obtained that, for almost all $\hat{\omega} \in \Omega$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \rho \Big(\zeta(s + i\tau, \hat{\omega}), \zeta_n(s + i\tau, \hat{\omega}) \Big) d\tau = 0.$$
(2.5)

Similarly [11], for almost all $\underline{\underline{\omega}} = (\omega_1, \dots, \omega_r) \in \Omega_1 \times \dots \times \Omega_r$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \max_{1 \le j \le r} \max_{1 \le l \le l_j} \rho\Big(\underline{\hat{\zeta}}(s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}), \underline{\hat{\zeta}}_n(s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})\Big) \mathrm{d}\tau = 0.$$
(2.6)

Denote by $\hat{\Omega}_0$ a subset of $\hat{\Omega}$ for which the relation (2.5) holds. Then we have that $\hat{m}_H(\hat{\Omega}_0) = 1$. Similarly, if $\Omega_0^r \subset \Omega_1 \times \cdots \times \Omega_r$ is such that, for $\underline{\omega} \in \Omega_0^r$, the relation (2.6) holds, then $\underline{m}_H(\Omega_0^r) = 1$, where \underline{m}_H is the Haar measure on $\Omega_1 \times \cdots \times \Omega_r$. Now let $\underline{\Omega}_0 = \hat{\Omega}_0 \times \Omega_0^r$. Since the Haar measure \underline{m}_H is the product of \hat{m}_H and \underline{m}_H , we have that $\underline{m}_H(\Omega_0) = 1$. This, (2.5), (2.6) and the definition of ρ_{κ} prove the lemma. \Box

Define one more probability measure

$$\hat{P}_T(A) = \nu_T \Big(\underline{\zeta}(s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A\Big), \quad A \in \mathcal{B}(H^{\kappa}(D)).$$

Lemma 5. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the probability measures P_T and \hat{P}_T both converge weakly to the same probability measure P on $(H^{\kappa}(D), \mathcal{B}(H^{\kappa}(D)))$ as $T \to \infty$.

Proof. Define on a certain probability space $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$ a random variable θ uniformly distributed on [0, 1]. Let $X_{T,n}$ be an $H^{\kappa}(D)$ -valued random element on the probability space $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$ given by

$$\underline{X}_{T,n}(s) = \left(X_{T,n}(s), X_{T,n,1,1}(s), \dots, X_{T,n,1,l_1}(s), \dots, X_{T,n,r,1}(s), \dots, X_{T,n,r,l_r}(s)\right) = \underline{\zeta}_n(s+i\theta T, \underline{\alpha}; \underline{\mathfrak{a}}).$$

Then, by Lemma 2,

$$\underline{X}_{T,n}(s) \xrightarrow[T \to \infty]{\mathcal{D}} \underline{X}_n(s), \tag{2.7}$$

where

$$\underline{X}_{n}(s) = (X_{n}(s), X_{n,1,1}(s), \dots, X_{n,1,l_{1}}(s), \dots, X_{n,r,1}(s), \dots, X_{n,r,l_{r}}(s))$$

is an $H^{\kappa}(D)$ -valued random element with the distribution P_n (P_n is the limit measure in Lemma 2), and $\xrightarrow{\mathcal{D}}$ means convergence in distribution. Since the series for $\zeta_n(s)$ and $\zeta_n(s, \alpha_j; \mathfrak{a}_{jl})$ converges absolutely for $\sigma > 1/2$, we have that, for $\sigma > 1/2$,

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left| \zeta_n(\sigma + it) \right|^2 \mathrm{d}t = \sum_{m=1}^{\infty} \frac{u_n^2(m)}{m^{2\sigma}} \le \sum_{m=1}^{\infty} \frac{1}{m^{2\sigma}}$$
(2.8)

for all $n \in \mathbb{N}$, and

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left| \zeta_n(\sigma + it, \alpha; \mathfrak{a}_{jl}) \right|^2 \mathrm{d}t = \sum_{m=0}^{\infty} \frac{|a_{mjl}|^2 u_n^2(m, \alpha_j)}{(m + \alpha_j)^{2\sigma}} \le \sum_{m=0}^{\infty} \frac{|a_{mjl}|^2}{(m + \alpha_j)^{2\sigma}}$$
(2.9)

for all $n \in \mathbb{N}_0$.

Using the Caushy integral formula, contour integration, and (2.8), we find that, for $n \in \mathbb{N}$,

$$\limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \sup_{s \in K_k} \left| \zeta_n(s+i\tau) \right| \mathrm{d}\tau \leq \hat{C}_k \Big(\sum_{m=1}^{\infty} \frac{1}{m^{2\hat{\sigma}_k}} \Big)^{\frac{1}{2}}$$
(2.10)

and similarly, by (2.9), for all $n \in \mathbb{N}_0$,

$$\limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \sup_{s \in K_k} \left| \zeta_n(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) \right| \mathrm{d}\tau \leq C_k \Big(\sum_{m=0}^{\infty} \frac{|a_{mjl}|^2}{(m + \alpha_j)^{2\sigma_k}} \Big)^{\frac{1}{2}}, \quad (2.11)$$

with some $\hat{C}_k > 0$, $C_k > 0$ and $\hat{\sigma}_k > \frac{1}{2}$, $\sigma_k > \frac{1}{2}$. Let $\epsilon > 0$ be an arbitrary number, and

$$\hat{R}_k = \left(\sum_{m=1}^{\infty} \frac{1}{m^{2\hat{\sigma}_k}}\right)^{\frac{1}{2}}, \quad R_{jlk} = \left(\sum_{m=0}^{\infty} \frac{|a_{mjl}|^2}{(m+\alpha_j)^{2\sigma_k}}\right)^{\frac{1}{2}}.$$

Then, taking $\hat{M}_k = \hat{C}_k \hat{R}_k 2^{l+1} \epsilon^{-1}$ and $M_{jlk} = C_k R_{jlk} 2^{l+1} \epsilon^{-1}$, we deduce from (2.10) and (2.11) that

$$\begin{split} \limsup_{T \to \infty} \mathbb{P}\Big(\Big(\sup_{s \in K_k} \left| X_{T,n}(s) \right| > \hat{M}_k\Big) \\ & \vee \exists j, l: \Big(\sup_{s \in K_k} \left| X_{T,n,j,l}(s) \right| > M_{jlk}\Big)\Big) \\ & \leq \limsup_{T \to \infty} \mathbb{P}\Big(\sup_{s \in K_k} \left| X_{T,n}(s) \right| > \hat{M}_k\Big) \\ & + \sum_{j=1}^r \sum_{l=1}^{l_j} \limsup_{T \to \infty} \mathbb{P}\Big(\sup_{s \in K_k} \left| X_{T,n,j,l}(s) \right| > M_{jlk}\Big) \\ & \leq \frac{1}{\hat{M}_k} \sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K_k} \left| \zeta_n(s+i\tau) \right| d\tau \\ & + \sum_{j=1}^r \sum_{l=1}^{l_j} \frac{1}{M_{jlk}} \sup_{n \in \mathbb{N}_0} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K_k} \left| \zeta_n(s+i\tau,\alpha_j;\mathfrak{a}_{jl}) \right| d\tau \\ & \leq \frac{\hat{C}_k \hat{R}_k}{\hat{M}_k} + \sum_{j=1}^r \sum_{l=1}^{l_j} \frac{C_k R_{jlk}}{M_{jlk}} = \frac{\epsilon}{2^{l+1}} + \frac{\epsilon}{2^{l+1}} = \frac{\epsilon}{2^l}. \end{split}$$

This together with (2.7) leads, for all $n \in \mathbb{N}$, to the inequality

$$\mathbb{P}\left(\left(\sup_{s\in K_k} \left|X_n(s)\right| > \hat{M}_k\right) \lor \exists j, l: \left(\sup_{s\in K_k} \left|X_{n,j,l}(s)\right| > M_{jlk}\right)\right) \leq \frac{\epsilon}{2^l}.$$
 (2.12)

Define a set

$$H_{\epsilon}^{\kappa} = \left\{ \left(g_{0}, g_{11}, \dots, g_{1l_{1}}, \dots, g_{r1}, \dots, g_{rl_{r}} \right) \in H^{\kappa}(D) : \sup_{s \in K_{k}} |g_{0}(s)| \leq \hat{M}_{k}, \\ \sup_{s \in K_{k}} |g_{jl}(s)| \leq M_{jlk}, \ j = 1, \dots, r, \ l = 1, \dots, l_{j}, \ k \in \mathbb{N} \right\}.$$

Then the set H_{ϵ}^{κ} is compact in the space $H^{\kappa}(D)$, and, in view of (2.12),

$$\mathbb{P}\Big(\underline{X}_n(s) \in H_{\epsilon}^{\kappa}\Big) \ge 1 - \epsilon \sum_{l=1}^{\infty} \frac{1}{2^l} = 1 - \epsilon$$

for all $n \in \mathbb{N}$. This and the definition of $\underline{X}_n(s)$ shows that

$$P_n\left(H_{\epsilon}^{\kappa}\right) \ge 1 - \epsilon$$

for all $n \in \mathbb{N}$. Thus, we obtained that the family of probability measures $\{P_n : n \in \mathbb{N}\}$ is tight. Therefore, by the Prokhorov theorem, it is relatively compact, and thus, there exists a subsequence $\{P_{n_k}\} \subset \{P_n\}$ such that P_{n_k} converges weakly to a certain probability measure P on $(H^{\kappa}(D), \mathcal{B}(H^{\kappa}(D)))$ as $k \to \infty$. In other words,

$$\underline{X}_{n_k}(s) \xrightarrow[k \to \infty]{\mathcal{D}} P.$$
(2.13)

Let $X_T(s) = \underline{\zeta}(s + i\theta T, \underline{\alpha}; \underline{\mathfrak{a}})$ be one more $H^{\kappa}(D)$ -valued random element on the probability space $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$. Then, by Lemma 3, we have that, for every $\epsilon > 0$,

$$\begin{split} \lim_{n \to \infty} \limsup_{T \to \infty} \mathbb{P}\Big(\rho_{\kappa}\Big(\underline{X}_{T}(s), \underline{X}_{T,n}(s)\Big) \geq \epsilon\Big) \\ &= \lim_{n \to \infty} \limsup_{T \to \infty} \nu_{T}\Big(\rho_{\kappa}\Big(\underline{\zeta}(s+i\tau,\underline{\alpha};\underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+i\tau,\underline{\alpha};\underline{\mathfrak{a}})\Big) \geq \epsilon\Big) \\ &\leq \lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T\epsilon} \int_{0}^{T} \rho_{\kappa}\Big(\underline{\zeta}(s+i\tau,\underline{\alpha};\underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+i\tau,\underline{\alpha};\underline{\mathfrak{a}})\Big) \mathrm{d}\tau = 0. \end{split}$$

This, (2.13) and (2.7) together with Theorem 4.2 of [1] imply the relation

$$\underline{X}_T(s) \xrightarrow[T \to \infty]{\mathcal{D}} P \tag{2.14}$$

which is equivalent to the weak convergence of P_T to P as $T \to \infty$. Moreover, it follows from (2.14) that the measure P is independent of the choice of the sequence $\{P_{n_k}\}$. Thus, we have that

$$\underline{X}_n(s) \xrightarrow[n \to \infty]{\mathcal{D}} P.$$
 (2.15)

Now consider the measure \hat{P}_T . For this, define

$$\underline{\hat{X}}_{T,n}(s) = \underline{\zeta}_n(s + i\theta T, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$$

and

$$\underline{\hat{X}}_{T}(s) = \underline{\zeta}(s + i\theta T, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}).$$

Repeating the above arguments for the random elements $\underline{\hat{X}}_{T,n}(s)$ and $\underline{\hat{X}}_{T}(s)$, and using Lemmas 2 and 4 as well as (2.15), we obtain that the measure \hat{P}_{T} also converges weakly to P as $T \to \infty$. \Box

In virtue of Lemma 5, for the proof of Theorem 4 it suffices to show that the limit measure P in Lemma 5 coincides with $P_{\underline{\zeta}}$. To prove this, we need some results from ergodic theory. Let $\underline{a}_{\tau} = \{(p^{-i\tau} : p \in \mathcal{P}), ((m + \alpha_1)^{-i\tau} : m \in \mathbb{N}_0)\}, \tau \in \mathbb{R}$. Define $\underline{\Phi}_{\tau}(\underline{\omega}) = \underline{a}_{\tau}\underline{\omega}, \underline{\omega} \in \underline{\Omega}$. Then $\{\underline{\Phi}_{\tau} : \tau \in \mathbb{R}\}$ is a one-parameter group of measurable measure preserving transformations on $\underline{\Omega}$. A set $A \in \mathcal{B}(\underline{\Omega})$ is called invariant with respect to the group $\{\underline{\Phi}_{\tau} : \tau \in \mathbb{R}\}$ if, for every $\tau \in \mathbb{R}$, the sets A and $\underline{\Phi}_{\tau}(A)$ may differ one from another only by \underline{m}_H -measure zero. The group $\{\underline{\Phi}_{\tau} : \tau \in \mathbb{R}\}$ is ergodic if its σ -field of invariant sets consists only of the sets of \underline{m}_H -measure zero or one.

Lemma 6. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the one-parameter group $\{\underline{\Phi}_{\tau} : \tau \in \mathbb{R}\}$ is ergodic.

Proof of the lemma is given in [9], Lemma 7.

Proof of Theorem 4. We fix a continuity set A of the limit measure P in Lemma 5. Then, by Lemma 5 and Theorem 2.1 of [2],

$$\lim_{T \to \infty} \nu_T \left(\underline{\zeta}(s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A \right) = P(A).$$
(2.16)

Consider a random variable ξ defined on $(\underline{\Omega}, \mathcal{B}(\underline{\Omega}), \underline{m}_H)$ by

$$\xi(\underline{\omega}) = \begin{cases} 1 & \text{if } \underline{\zeta}(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, its expectation

$$\mathbb{E}\xi = \underline{m}_H \left(\underline{\omega} \in \underline{\Omega} : \underline{\zeta}(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A \right) = P_{\underline{\zeta}}(A).$$
(2.17)

In view of Lemma 6, the process $\xi(\underline{\Phi}_{\tau}(\underline{\omega}))$ is ergodic. Therefore, the Birkhoff– Khintchine theorem, see, for example, [14], implies that, for almost all $\underline{\omega} \in \underline{\Omega}$,

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \xi\left(\underline{\varPhi}_{\tau}(\underline{\omega})\right) \mathrm{d}\tau = \mathbb{E}\xi.$$
(2.18)

On the other hand, the definitions of ξ and $\underline{\Phi}_{\tau}$ yield

$$\frac{1}{T}\int_0^T \xi\Big(\underline{\varPhi}_\tau(\underline{\omega})\Big) \mathrm{d}\tau = \nu_T\Big(\underline{\zeta}(s+i\tau,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) \in A\Big).$$

Thus, by (2.17) and (2.18), for almost all $\underline{\omega} \in \underline{\Omega}$,

$$\lim_{T \to \infty} \nu_T \Big(\underline{\zeta}(s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A \Big) = P_{\underline{\zeta}}(A).$$

Combining this with (2.16), we obtain that $P(A) = P_{\underline{\zeta}}(A)$ for all continuity sets A of the measure P. Hence, $P(A) = P_{\underline{\zeta}}(A)$ for all $A \in \mathcal{B}(H^{\kappa}(D))$ because the continuity sets form a determining class, see [2]. The theorem is proved. \Box

3 The Support of P_{ζ}

In this section, we give explicitly the support of the measure $P_{\underline{\zeta}}$. We recall that the support of $P_{\underline{\zeta}}$ is a minimal closed subset $S_{P_{\underline{\zeta}}}$ of $H^{\kappa}(\overline{D})$ such that $P_{\underline{\zeta}}(S_{P_{\underline{\zeta}}}) = 1$. We also note that $S_{P_{\underline{\zeta}}}$ consists of all points $\underline{g} \in H^{\kappa}(D)$ such that $P_{\zeta}(G) > 0$ for every neighbourhood G of g.

Define
$$S = \left\{ g \in H(D) : g(s) \neq 0 \text{ or } g(s) \equiv 0 \right\}.$$

Theorem 5. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , and that rank $(B_j) = l_j, j = 1, \ldots, r$. Then the support of P_{ζ} is the set $S \times H^r(D)$.

Proof. We write

$$H^{\kappa}(D) = H(D) \times H^{\kappa_1}(D),$$

where

$$\kappa_1 = \sum_{j=1}^r l_j.$$

Since the spaces H(D) and $H^{\kappa_1}(D)$ are separable, it suffices [2] to consider $P_{\underline{\zeta}}(A)$ with $A = A_1 \times A_{\kappa_1}$, $A \in \mathcal{B}(H(D))$, $A_{\kappa_1} \in \mathcal{B}(H^{\kappa_1}(D))$. Let $\mathcal{Q}^r = \Omega_1 \times \ldots \times \Omega_r$, where $\Omega_j = \Omega$ for all $j = 1, \ldots, r$, and let m_H^r by the Haar measure on $(\mathcal{Q}^r, \mathcal{B}(\mathcal{Q}^r))$. Then the Haar measure \underline{m}_H is the product of the Haar measures \hat{m}_H and m_H^r . Hence, we find that

$$P_{\underline{\zeta}}(A) = \underline{m}_{H} \left(\underline{\omega} \in \Omega : \underline{\zeta}(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \in A \right)$$

$$= \underline{m}_{H} \left(\underline{\omega} \in \Omega : \zeta(s, \hat{\omega}) \in A_{1}, \left(\zeta(s, \alpha_{1}, \omega_{1}; \mathfrak{a}_{11}), \dots, \zeta(s, \alpha_{1}, \omega_{1}; \mathfrak{a}_{1l_{1}}), \dots, \zeta(s, \alpha_{r}, \omega_{r}; \mathfrak{a}_{rl_{r}}) \right)$$

$$= \hat{m}_{H} \left(\hat{\omega} \in \hat{\Omega} : \zeta(s, \hat{\omega}) \in A_{1} \right)$$

$$\times m_{H}^{r} \left((\omega_{1}, \dots, \omega_{r}) \in \Omega^{r} : \left(\zeta(s, \alpha_{1}, \omega_{1}; \mathfrak{a}_{11}), \dots, \zeta(s, \alpha_{1}, \omega_{1}; \mathfrak{a}_{1l_{1}}), \dots, \zeta(s, \alpha_{r}, \omega_{r}; \mathfrak{a}_{rl_{r}}) \right) \in A_{\kappa_{1}} \right).$$
(3.1)

In [11], it is obtained that the support of the H(D)-valued random element $\zeta(s,\hat{\omega})$ is the set S, that is, S is a minimal closed set such that

$$\hat{m}_H \left(\hat{\omega} \in \hat{\Omega} : \zeta(s, \hat{\omega}) \in S \right) = 1.$$
(3.2)

Similarly, in [11], under the hypotheses of the theorem, it was obtained that $H^{\kappa_1}(D)$ is a minimal closed set such that

$$m_{H}^{r}\Big((\omega_{1},\ldots,\omega_{r})\in\Omega^{r}:\left(\zeta(s,\alpha_{1},\omega_{1};\mathfrak{a}_{11}),\ldots,\zeta(s,\alpha_{1},\omega_{1};\mathfrak{a}_{1l_{1}}),\ldots,\zeta(s,\alpha_{r},\omega_{r};\mathfrak{a}_{rl_{r}})\right)\in H^{\kappa_{1}}(D)\Big)=1.$$

This, (3.1) and (3.2) complete the proof. \Box

4 Proof of Theorem 3

A proof of Theorem 3 is based on Theorems 4 and 1 as well as on the Mergelyan theorem [23], and is standard.

First suppose that the functions f(s) and $f_{jl}(s)$ have analytic continuations to the whole strip D, and the analytic continuation of f(s) is non-zero. Define

$$G = \left\{ \left(g_0, g_{11}, \dots, g_{1l_1}, \dots, g_{r1}, \dots, g_{rl_r} \right) \in H^{\kappa}(D) : \\ \sup_{s \in K} |g_0(s) - f(s)| \le \epsilon, \sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} |g_{jl}(s) - f_{jl}(s)| < \epsilon \right\}.$$

The set G is open in $H^{\kappa}(D)$. Therefore, Theorem 4 together with Theorem 2.1 of [2] (an equivalent of weak convergence in terms of open sets) implies

$$\liminf_{T \to \infty} \nu_T \left(\underline{\zeta}(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}) \in G \right) \ge P_{\underline{\zeta}}(G).$$
(4.1)

However, by Theorem 5, $(f, f_{11}, \ldots, f_{1l_1}, \ldots, f_{r1}, \ldots, f_{rl_r})$ is a point of the support of the measure $P_{\underline{\zeta}}$. Thus, $P_{\underline{\zeta}}(G) > 0$, and the definition of G and (4.1) yield

$$\liminf_{T \to \infty} \nu_T \Big(\sup_{s \in K} |\zeta(s+i\tau) - f(s)| < \epsilon,$$

$$\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} |\zeta(s+i\tau, \alpha_j; \mathfrak{a}_{jl}) - f_{jl}(s)| < \epsilon \Big) > 0.$$
(4.2)

Now let the functions f(s) and $f_{jl}(s)$ satisfy the hypotheses of the theorem. Then, by the Mergelyan theorem, there exist polynomials p(s), $p(s) \neq 0$ on K, and $p_{jl}(s)$ such that

$$\sup_{s \in K} \left| f(s) - p(s) \right| < \frac{\epsilon}{4} \tag{4.3}$$

and

$$\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} \left| f_{jl}(s) - p_{jl}(s) \right| < \frac{\epsilon}{2}.$$
(4.4)

Since $p(s) \neq 0$ on K, we can define a continuous branch of the function $\log p(s)$ in K which will be analytic in the interior of K. By the Mergelyan theorem again, we can find a polynomial q(s) such that

$$\sup_{s \in K} \left| p(s) - e^{q(s)} \right| < \frac{\epsilon}{4}.$$

This together with (4.3) shows that

$$\sup_{s \in K} \left| f(s) - e^{q(s)} \right| < \frac{\epsilon}{2}.$$
(4.5)

However, $e^{q(s)} \neq 0$, therefore, the functions $e^{q(s)}$ and $p_{jl}(s)$ satisfy all hypotheses under which (4.2) holds. So, we have that

$$\lim_{T \to \infty} \inf \nu_T \left(\sup_{s \in K} \left| \zeta(s + i\tau) - e^{q(s)} \right| < \frac{\epsilon}{2}, \\
\sup_{1 \le j \le r} \sup_{1 \le l \le l_j} \sup_{s \in K_{jl}} \left| \zeta(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) - p_{jl}(s) \right| < \frac{\epsilon}{2} \right) > 0.$$
(4.6)

Clearly, in view of (4.5) and (4.4),

$$\begin{split} \Big\{ \tau \in [0,T] : \sup_{s \in K} \Big| \zeta(s+i\tau) - \mathrm{e}^{q(s)} \Big| &< \frac{\epsilon}{2}, \\ \sup_{1 \leq j \leq r} \sup_{1 \leq l \leq l_j} \sup_{s \in K_{jl}} \Big| \zeta(s+i\tau,\alpha_j;\mathfrak{a}_{jl}) - p_{jl}(s) \Big| &< \frac{\epsilon}{2} \Big\} \\ &\subseteq \Big\{ \tau \in [0,T] : \sup_{s \in K} \Big| \zeta(s+i\tau) - f(s) \Big| < \epsilon, \\ &\sup_{1 \leq j \leq r} \sup_{1 \leq l \leq l_j} \sup_{s \in K_{jl}} \Big| \zeta(s+i\tau,\alpha_j;\mathfrak{a}_{jl}) - f_{jl}(s) \Big| < \epsilon \Big\}. \end{split}$$

This and (4.6) prove the theorem.

References

- B. Bagchi. The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. PhD Thesis, Calcutta, Indian Statistical Institute, 1981. Doi:10.1007/s10625-005-0242-y.
- [2] P. Billingsley. Convergence of Probability Measures. Wiley and Sons, New York, 1968. Doi:10.1007/s10625-005-0242-y.
- [3] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer, Dordrecht, 1996. Doi:10.1007/s10625-005-0242-y.
- [4] A. Laurinčikas. The universality of zeta-functions. Acta Appl. Math., 78(1-3):251-271, 2003. Doi:10.1007/s10625-005-0242-y.
- [5] A. Laurinčikas. The joint universality for periodic Hurwitz zeta-functions. Analysis (Munich), 26(3):419–428, 2006. Doi:10.1007/s10625-005-0242-y.
- [6] A. Laurinčikas. Voronin-type theorem for periodic Hurwitz zeta-functions. Matem Sb., 198(2):91–102, 2007 (in Russian) = Sb. Math., 198(2):231–242, 2007. Doi:10.1007/s10625-005-0242-y.
- [7] A. Laurinčikas. On joint universality of periodic Hurwitz zeta-functions. Lith. Math. J., 48(1):79–91, 2008. Doi:10.1007/s10625-005-0242-y.
- [8] A. Laurinčikas. The joint universality for periodic Hurwitz zeta-functions. Izv. RAN, Ser. Matem., 72(4):121–140, 2008 (in Russian) = Izv. Math., 72(4):741– 760, 2008. Doi:10.1007/s10625-005-0242-y.
- [9] A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. *Izv.* RAN, Ser. Matem., **74**(3):79–102, 2010 (in Russian) = Izv. Math. **74**(3):515–539, 2010. Doi:10.1007/s10625-005-0242-y.
- [10] A. Laurinčikas and S. Skerstonaitė. A joint universality theorem for periodic Hurwitz zeta-functions. I. Lith. Math. J, 48(3):287–296, 2008. Doi:10.1007/s10625-005-0242-y.
- [11] A. Laurinčikas and S. Skerstonaitė. Joint universality for periodic Hurwitz zetafunctions. II. In R. Steuding and J. Steuding(Eds.), New Directions in Value-Distribution Theory of Zeta and L-functions, pp. 161–170, Aachen, 2009. Shaker Verlag. Doi:10.1007/s10625-005-0242-y.
- [12] A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer, Dordrecht, 2002. Doi:10.1007/s10625-005-0242-y.

- [13] J.B. Conway. Functions of One Complex Variable. Springer-Verlag, New York, 1973. Doi:10.1007/s10625-005-0242-y.
- [14] H. Cramér and M. R. Leadbetter. Stationary and Related Stochastics Processes. Wiley, New York, 1967. Doi:10.1007/s10625-005-0242-y.
- [15] S. M. Gonek. Analytic properties of zeta and L-functions. Ph. D. Thesis, University of Michigan, 1979. Doi:10.1007/s10625-005-0242-y.
- [16] H. Heyer. Probability Measures on Locally Compact Groups. Springer-Verlag, Berlin, Heidelberg, New York, 1977. Doi:10.1007/s10625-005-0242-y.
- [17] A. Javtokas and A. Laurinčikas. On the periodic Hurwitz zeta-function. Hardy-Ramanujan J., 29:18–36, 2006. Doi:10.1007/s10625-005-0242-y.
- [18] A. Javtokas and A. Laurinčikas. The universality of the periodic Hurwitz zetafunction. Integral Transforms and Special Functions, 17(10):711-722, 2006. Doi:10.1007/s10625-005-0242-y.
- [19] K. Matsumoto. Probababilistic value-distribution theory of zeta-functions. Sugaku Expositions, 17(1):51–71, 2004. Doi:10.1007/s10625-005-0242-y.
- [20] J. Steuding. Value-Distribution of L-Functions, Lecture Notes in Math, vol. 1877. Springer-Verlag, Berlin, Heidelberg, New York, 2007. Doi:10.1007/s10625-005-0242-y.
- [21] S. M. Voronin. On the functional independence of Dirichlet L-functions. Acta Arith., 27:493–503, 1975 (in Russian). Doi:10.1007/s10625-005-0242-y.
- [22] S. M. Voronin. Theorem on the "universality" of the Riemann zeta-function. Izv. Akad. Nauk. SSSR, Ser. Matem., 39(3):475–486, 1975 (in Russian)=Math. USSR Izv., 9(3):443–453, 1975. Doi:10.1007/s10625-005-0242-y.
- [23] J. L. Walsh. Interpolation and approximation by rational functions in the complex domain. Amer. Math. Soc. Colloq. Publ., 20, 1960. Doi:10.1007/s10625-005-0242-y.