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1 Introduction

In 1975, S. M. Voronin discovered [22] a very interesting property of the
Riemann zeta-function ((s), s = o + it. Roughly speaking, he proved that
every analytic non-vanishing function on compact subsets of the strip D =
{seC: % < 0 < 1} can by uniformly approximated with desired accuracy by
shifts {(s +i7). Now this property is called the universality of ((s). Later, it
was observed that other zeta and L-functions are also universal in the above
sense, for results and references, see [1, 3, 4, 12, 15, 19, 20].

The first result on the joint universality also is due to S. M. Voronin. In
[21], he obtained that a collection of shifts of Dirichlet L-functions with pairwise
non-equivalent characters approximate simultaneously on compact subsets of D
with a given accuracy a collection of arbitrary analytic non-vanishing functions.
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It is known, see, for example, [12], that the Hurwitz zeta-function ((s, ),
0 < a < 1, with transcendental parameter « is also universal, however, in this
case an approximated function can be not necessarily non-vanishing.

In [17], the universality of the periodic Hurwitz zeta-function which is a
generalization of the function ((s, ) was began to study. Let a = {a,, : m €
Ny = NU{0}} be a periodic sequence of complex numbers with minimal period
k € N. Then the periodic Hurwitz zeta-function ((s,a;a), 0 < a < 1, is
defined, for o > 1, by

oo
saa E
m+a

m=0
In virtue of the periodicity of the sequence a, for o > 1,

k—1

((s,010) = = > (5, %),
=0

Since the Hurwitz zeta-function (s, «) is meromorphic in the whole complex
plane with a single simple pole at s = 1 with residue 1, the latter equality gives
meromorphic continuation for the function ((s,a;a) with possible simple pole
at s = 1 with residue
1
S

If @ = 0, then the function ((s, «;a) is entire.
For the statement of results, we use the following notation. Denote by
meas{A} the Lebesgue measure of a measurable set A C R, and, for 7" > 0, let

1
vp(...) = —meas{T €0;7]: },
T
where in place of dots a condition satisfied by 7 is to be written.
The universality property of the function ((s, «;a) is contained in the fol-
lowing theorem.

Theorem 1. [18| Suppose that « is transcendental. Let K be a compact subset
of the strip D = {s € C: 3 < o < 1} with connected complement, and let f(s)
be a continuous function on K which is analytic in the interior of K. Then,
for every e > 0,

hmmfzq(sup\((s—i—m- asa) — f(s)] <6) > 0.
seK

A series of works [5, 6, 7, 8, 9, 10] and [11] are devoted to the joint univer-
sality of periodic Hurwitz zeta-functions. The most general result is obtained
in [10]. For j =1,...,7, let a;, 0 < a;; < 1, be a fixed parameter, [; € N,
and, for j = 1,...,r, L =1,...,1;, let aj; = {am; : m € Ny} be a periodic
sequence of complex numbers with minimal period kj;, and ((s, j; aj;) denote
the corresponding periodic Hurwitz zeta-function. Moreover, let

L(al,...,aT):{log(m—i—aj):meNo, jzl,...,r},
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and let k; be the least common multiple of the periods kj1,...,kj,, j=1,...,7.
Define
a1j1 152 e aljlj
asil a2 [N a9l ; .
Bj: J J It J:].,...,r.
ki1 Qkjj2 - Qkjjl;

Theorem 2. [11] Suppose that the system L(av, . .., o) is linearly independent
over the field of rational numbers Q, and that rank(B;) =1;, j=1,...,r. For
every j = 1,...,r and |l = 1,...,1;, let Kj; be a compact subset of the strip
D with connected complement, and let fji(s) be a continuous on K function
which is analytic in the interior of Kj. Then, for every e >0,

liminfrp | sup sup sup |((s+iT, o ;05) — fu(s)] <e] > 0.
T—o0 1<j<r 1<I<l; s€K

The aim of this paper is to consider the joint universality of the Riemann
zeta-function ((s) and the functions ((s,aj;a5), j=1,...,r, 1 =1,...,1;.

Theorem 3. Suppose that aq, ..., a, are algebraically independent over Q, and
that all hypotheses on Kj and fj; of Theorem 2 hold. Moreover, let K be a
compact subset of the strip D with connected complement, and let f(s) be a
continuous non-vanishing on K function which is analytic in the interior of K.
Then, for every e > 0,

lim inf I/T< sup [((s +1i7) — f(s) <,
T—o00 sEK

sup sup sup [C(s+iT,a;5;a5) — f(s)| < 6) > 0.
1<j<r 1<I<l; s€K

2 Limit Theorems

The proof of theorem 3 is based on a joint limit theorem in the space of analytic
functions for the functions ((s) and ((s,a;5a5), j=1,...,r, I=1,...,1;.

Denote by H(D) the space of analytic on D functions equipped with the
topology of uniform convergence on compacta, and let

H"(D) = H(D) x ... x H(D), with k= ilj +1.

j=1

K

Moreover, denote by v the unit circle on the complex plane and define

Q:H'yp and Qzﬁ’ym,
p m=0

where vy, = 7 and v,, = for all primes p and all m € Ny, respectively. By the
Tikhonov theorem, with the product topology and pointwise multiplication, the
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tori £2 and 2 are compact topological Abelian groups. Therefore, on (Q, B (f)))

and (£2,B(£2)) (where B(S) denotes the class of Borel sets of the space S) the
probability Haar measures mpy and my, respectively, can by defined. This
leads to the probability spaces (2, B(£2), ) and (2, B(£2), mg).
Now let
Q:Qx(hx...xm,

where §2; = §2 for j = 1,...,r. Then by then Tikhonov theorem again, {2 is
a compact topological Abelian group, and we obtain a new probability space
(£2,B(£2),my), where m; is the probability Haar measure on ({2, B(£2)). De-
note by @(p) the projection of & € 2 to Yps P € P, P is the set of all prime
numbers, and by w;(m) the projection of w; € 2; to vym, m € Ny. For
brevity, let a = (a1,..., ), a = (@11, ..., 017, -+, 0p1,...,0.,.), and let w =
(W, w1,...,w,) be an element of £2. On the probability space (£2, B(£2),my),
define the H"(D)-valued random element ((s, a,w;a) by the formula

£(87Q7Q7g) = (C(Sva))vc(svalvwl;all)w . ‘7<(svalawl;a1l1)7 sy
C(‘S?aT?w’l‘;aTl)7"'7<(s7aT7wT;a’l‘lr))7
where S 1
. @(p)\—
((s,w) = (1— )
i) ~T1(1- 28
P
and
> A jiw;(m) .
C(svajij;ajl)zynz:omv ]:1,...,7’, l:]'?)lj

Denote by P the distribution of the random element ¢ (s,a,w;a), ie.,
Pe(A)=my (we 2:((s,a,w;a) € A), Ac BH"(D)).
Let
Q(Sag;ﬂ) = (C(S)»C(S»auau), Qs arsan, ),

C(S7 O‘T; aTl)? ctty C(Sv 0‘7"; aTlr))'
The main result of this section is the following statement.

Theorem 4. Suppose that aq,...,«, are algebraically independent over Q.
Then the probability measure

Pr(A) Yoo (s +ir,aia) € A), AeB(HMD)),
converges weakly to Pe as T — oo.

We start the proof of Theorem 4 with a limit theorem on the torus 2.
Define

Qr(A) =vr((p™" :peP),(m+a1) " :meN),...,

(m+a)""" :meNy)) € A), A € B(R2).
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Lemma 1. Suppose that o, .. ., «, are algebraically independent over Q. Then
the measure Qr converges weakly to my as T — oo.

Proof. The dual group of {2 is isomorphic to
(@Z )@( D zn).
j=1 meNg

where Z,, = Z and Zj,,, = Zfor allp € P and m € No, 7 =1,...,7, respectively.
An element k = (kp, k,y,) €D, kp = (kp :p € P), kyy, = (kjm :m € No,j =
1,..., r), where only a finite number of integers k, and kj,, are distinct from
zero, acts on {2 by

,
k ~ Ejm
=TT ] I @)
peP 7=1meNy
Therefore, the Fourier transform g7 (k) of the measure Q7 is

/H P I IT whr (macs

pEP j=1meNy

:—/H ks TH H (m + a;)~*mTdr, (2.1)

peEP j=1meNy

where, as above, only a finite number of integers k, and k;,, are distinct from
zero. It is well known that the set {logp : p € P} is linearly independent over
Q. Since the numbers aq, ..., a, are algebraically independent over Q, hence
it follows that the set

L ¥ {(logp:pGP),log(m—i—aj):meNo,jzl,...,r}

is linearly independent over Q. Really, if there exists integers £, and kj;,, not
all zeros such that

kylogpr + ...+ kplogpn + kim, log(mi + 1) + ... + kpym, (M, + 1) + ...
+ kpm, log(m, + ) + ...+ knpm,, log(my, + ) =0,

we obtain that
pY i (1 4 aa)F e (g, 4 )P
(mT + ar)krmr . (mmw + ar)knr7"’n/r — ]_7

and this contradicts the algebraic independence of aq, ..., a,.
We find by (2.1) that

1 ifk=0,
gT(E) = 1—exp {—iT< Zpep kp 10gp+2§:1 Zn,,ENO K jm 10g(m+aj)) }

T(Epep kplog p+327_1 X imeng Fim log(eraj))

ifk#0.

Math. Model. Anal., 15(4):431-446, 2010.
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Thus,

1 ifk=
lim gr(k) = 1 k=0,
T—00 0 ifk=#0.

This and a continuity theorem for probability measures on compact topological
groups, see, for example, [16], Theorem 1.4.2, prove the lemma. 0O

Let 0 > 1/2 be a fixed number, and

Up(m) = exp{ - (%)01}, m,n € N,

. I1
un(m,aj):exp{—<m> }, m,n € Ny.

n+aqj

From the periodicity it follows that the numbers a,,j; are bounded. Therefore,
a standard application of the Mellin formula and contour integration shows
that the series

) = Y o)
m=1

and

[e%S)
CN amjin(m, )
Cn(s,aj,ajl)—ZW, J—].,...,T,

m=0

both are absolutely convergent for o > 1/2. For m € N, define

am) =[] 'O,

ptlim

where p' || m means that p! | m but p'*1 { m, and let

Guls@) = 3 el

m=1 m
. 2 amjiwi(m)u, (m, a;)
Cn(s, 0, wjsa5) = mzzo s (Jm—|—a7;)5 LI =1,
Since |w(m)| = |wj(m)| = 1, the latter series are also absolutely convergent for

o > 1/2. For brevity, let

gn(svg; Q) = (Cn(s)a C’n(sval; all)? ceey C’n(sval; all])v sy
Cn(S,Oér; arl)a ceey Cn(svar; arlr))
and

gn(svgvg7g) = (Cn(S,(Z)),Cn(S,OZ]_,wl; a11)7 .. ‘7(1’7/(87&17‘*)1; alll)v ey

C’I’L(Sv Ay W] aT1)7 LR} C’I’L(Sv Qo Wy a’rlr))~
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On (H"(D),B(H"(D))), define the probability measures
Pra(A) = vr (¢, (s +i7),a0) € 4)
and, for fixed wy = (Wo, w10, - - -, wro),

Pron ., (A) =vr (gn(s +i7), 0, Wp; a) € A).

Lemma 2. Suppose that o, .. ., «, are algebraically independent over Q. Then
the probability measures Pr,, and PT,n,wO both converge weakly to the same

probability measure P, on (H"(D),B(H"(D))) as T — <.

Proof. Since the series (,,(s) and (, (s, a;; a;;) converge absolutely for o > 1/2,
the function h,, : 2 — H"(D) given by the formula

hn(w) = ¢, (s, a,w;a)
is continuous. Moreover,

ho((P™" i p€P), ((m+a1)™ " :meNy),...,
((m +a,) T im e No)) = gn(s +i1,050).

Therefore, we have that Pr, = Qrh; L. This, the continuity of h,, Lemma 1
and Theorem 5.1 from [2] show that Pr, converges weakly to P, = myh, ' as
T — 0.

Similarly, we find that Pr, . converges weakly to myg, ' as T — oo,
where g, : 2 — H"(D) is related to hy, by gn(w) = hyn(ww,). Since the Haar
measure my; is invariant, this implies the equality m g, ' = myh, !, and the
lemma is proved. 0O

Furthermore, we need a metric on H"(D) which induces its topology of
uniform convergence on compacta. It is known, see, for example [13], that
there exists a sequence {K}, : k € N} of compact subsets of D such that

D= O K,
k=1

K C Ky for all k € N, and, for every compact K C D, there exists k such
that K C K. For f,g € H(D), let

sup [f(s) — g(s)|

’ _ = Q,k seKy, )
lh9) =2 T+ sup [7(5) — 909

Then p is a metric on H (D) which induces its topology of uniform convergence
on compacta. If, for

i: (fovfllv"'7f1[17~"7f7‘17‘~~7f'rl7~)7
g: (9079117‘"791117"'7gT17"'7ng7‘) € HH(D)7

Math. Model. Anal., 15(4):431-446, 2010.
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pe(fsg) = maX(p(fo,go) » jDax max p(fgzaggz)) (2.2)

then p, is a metric on H®(D) inducing its topology.
Now we will approximate the vectors ((s, a; a) and ¢(s, o, w; a) by gn(s7 a;a)
and gn(s, a,w; a), respectively.

Lemma 3. We have

T
1
lim lim sup T /p,{ (g(s +ir,a;a),¢ (s +iT, g)) dr =0.

n—oo T—00

Proof. Tt is known [3] that

n—o0 T _yno

T
lim lim sup % /p (C(s+1i7),Cu(s +iT))dr = 0. (2.3)
0

Moreover, from [11] we have that

T
A 1 ,
lim hmsupf/lrgjaz 1r<nlzi>l< p(((s—i—w w;a), ( (s—i—m—,g,g))dT—O, (2.4)

n—o0 T _yno

where é(s, ;a) and Cn(s,g; a) are obtained from ((s,a;a) and (,(s,a;a) by
removing ((s) and (,(s), respectively. Therefore, the equality of the lemma is
a result of (2.2)- ( 4). O

Lemma 4. Suppose that aq, ..., a, are algebraically independent over Q. Then,
for almost all w € £2,

T
1
lim limsup — /pn (C(S +iT,a,w; a),¢ (s 4147, a,w; g)) dr = 0.
n—=00 T 00 T a -
Proof. In [3], it is obtained that, for almost all @ € £2,

T
lim limsup % /p(((s +iT, @), (o (s + i, of)))dT =0. (2.5)

n—o0 T_ o

Similarly [11], for almost all w = (w1, ...,w,) € 21 X -+ X §2.,

lim i - ( ; : ) —0.
nroo s T / jpax max p(L(s+im a w;a), G, (s+iT 0, 0) )dT=0

(2.6)
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Denote byf)o a subset of §2 for which the relation (2.5) holds. Then we have
that My (£2) = 1. Similarly, if 25 C 21 x --- x 2, is such that, for w € £,
the relation (2.6) holds, then m  (£25) = 1, where m  is the Haar measure on
21 x -+ x (2.. Now let 2, = Qo x £2;. Since the Haar measure my; is the

product of iy and m, , we have that my(£2,) = 1. This, (2.5), (2.6) and the
definition of p, prove the lemma. 0O

Define one more probability measure

Pr(A) = vy (Q(S +iT, Q,w; a) € A), A € B(H"(D)).

Lemma 5. Suppose that g, . . . , o are algebraically independent over Q. Then
the probability measures Pr and Pr both converge weakly to the same probability
measure P on (H*(D),B(H"(D))) as T — 0.

Proof. Define on a certain probability space ({2, B({2),P) a random variable
6 uniformly distributed on [0, 1]. Let X7, be an H"(D)-valued random element
on the probability space (£20,B(£2y),P) given by

XT,n(S) = (XT,n(S)a XT7n7171(S), ‘e ’XTJLJJl (S), ‘e aXT,n,r,l(S)a ey

XT,n,r,lr (S)) = gn(s + ’LGT, (o Q)

Then, by Lemma 2,
Xpa(s) =5 X, (s), (2.7)

where
X, () =(Xn(8),Xn1,1(8), s Xn1,:(8)s oo, X 1(8)s - oo, Xirt,. (5))

is an H"(D)-valued random element with the distribution P, (P, is the limit
measure in Lemma 2), and L, means convergence in distribution. Since the

series for (,(s) and (,(s,@;;a;) converges absolutely for ¢ > 1/2, we have
that, for o > 1/2,

T
.1 NE = u?(m) =1
Jin 7 [ o) a=Y 2 <Y o @)

0 m=1 m=1

for all n € N, and

T

i L
Tl—{I;oT

0

(oo +it, aua )‘th i |amgi*uz (m, ) _ i |@mji|?
o+it,o.a; = — < SRR
n J — (m+aj)20 5

for all n € Ng.

Math. Model. Anal., 15(4):431-446, 2010.
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Using the Caushy integral formula, contour integration, and (2.8), we find
that, for n € N,

T

. 1 /
limsup —= [ sup
T—o0 A sEK

Cols +iT ’dT < Ck< f: )% (2.10)

m=1

m20'k

and similarly, by (2.9), for all n € Ny,
T

1 - m 3
limsupf/ sup Cn(s—i—iT,aj;ajl)‘dT SC’“(Z la gl‘ )27 (2.11)

)2
T—o0 €K, (m + ayj)2ok
0

m=0

WlthSOHleCk>0 Ci >0 and o), > ,O’k>%
Let € > 0 be an arbitrary number, and
. 01 N3 = |@m i1 |? 2
o= (5 L) R (30
mz::l m2ox / mz::() (m + a)?ox
Then, taking Mj, = Cj,R,2 e and My, = CrRj2" e, we deduce from
(2.10) and (2.11) that

limsup P (( sup
T—00 se Ky,

V35,1 ( sup
se Ky

XT,,L(S)‘ > Mk)

XT,n,j,l(S)’ > Mjlk))

< lim sup IP’( sup

XT,,L(S)] > Mk)

T—00 se Ky
+ZthsupIP’( sup | Xrn,j,(s )‘ > Mjlk)
J=11=1 T—o0 seKy,
T
< /Sup Cn (s +1i7) ‘d’]’
Mj, neN T—oo J seKy
T
1
+ZZ sup limsup—/ sup |Gn(s + 17, a3 ajy) |dT
=4 M1k neNy, T—oo To sk,
CkRk " Ck:lek € € _ €
ZZ = onT Tont T

J=11=1 Mju

This together with (2.7) leads, for all n € N, to the inequality
. ) €
P(( sup Xn(s)‘>Mk) VEI/NE ( sup Xn,j’l(s)’ > Mjlk))gg. (2.12)
seEKy, seEKy,
Define a set

HE = { (90,011, sg10s 191y 19, ) € HE (D) + sup [go(s)| < M,
seEKy

sup |gji(s)| < M, j=1,...,r1l=1,...,l;, k € N}.
se Ky
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Then the set HF is compact in the space H"(D), and, in view of (2.12),
K - 1
]P’(XH(S)GHE) >l-e) g=1-c
=1

for all n € N. This and the definition of X, (s) shows that
P, (H"“) >1-¢

for all n € N. Thus, we obtained that the family of probability measures
{P, : n € N} is tight. Therefore, by the Prokhorov theorem, it is relatively
compact, and thus, there exists a subsequence {P,,} C {P,} such that P,,
converges weakly to a certain probability measure P on (H"(D),B(H"(D)))
as k — oo. In other words,

X, (s) = P (2.13)

=k k—o0

Let Xr(s) = ((s + 10T, a;a) be one more H"(D)-valued random element
on the probability space (£29, B(£29),P). Then, by Lemma 3, we have that, for
every € > 0,

lim limsup]P’<pH (XT(S),XT’H(S)) > e)

n—00 T_yno

= lim limsuva<pm (C(sHT,g;g),C (8+i7,g;g)) > 6)

n—o0 T 300 - -

T
1
< lim limsup—/pK(C(s+iT,g;g),C (s—i—iT,g;g))dT:O.
Te =
0

n—0o0 T_y~o -n

This, (2.13) and (2.7) together with Theorem 4.2 of [1] imply the relation

X, (s) = P (2.14)

T—o0

which is equivalent to the weak convergence of Pr to P as T'— oo. Moreover,
it follows from (2.14) that the measure P is independent of the choice of the
sequence {P,, }. Thus, we have that

X, (5) > P (2.15)

n—roo

Now consider the measure Pr. For this, define

and )
Xop(s) =((s +i0T, a,w; a).

Repeating the above arguments for the random elements X 7.,(8) and X (),

and using Lemmas 2 and 4 as well as (2.15), we obtain that the measure Pr
also converges weakly to P as T — oo. 0O

Math. Model. Anal., 15(4):431-446, 2010.
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In virtue of Lemma 5, for the proof of Theorem 4 it suffices to show that
the limit measure P in Lemma 5 coincides with P;. To prove this, we need
some results from ergodic theory. Let a. = {(p™" : p € P),((m + a1)™" :
m € Ng),...,((m+ )" :m € Ng)}, 7 € R. Define & (w) = a,w, w € 2.
Then {@_: 7 € R} is a one-parameter group of measurable measure preserving
transformations on 2. A set A € B({2) is called invariant with respect to the
group {@, : 7 € R} if, for every 7 € R, the sets A and @_(A) may differ one
from another only by mj-measure zero. The group {@, : 7 € R} is ergodic if
its o-field of invariant sets consists only of the sets of m -measure zero or one.

Lemma 6. Suppose that o, .. ., «, are algebraically independent over Q. Then
the one-parameter group {®. : 7 € R} is ergodic.

Proof of the lemma is given in [9], Lemma 7.

Proof of Theorem 4. We fix a continuity set A of the limit measure P in
Lemma 5. Then, by Lemma 5 and Theorem 2.1 of [2],

lim vp (c(s FiT,a,w ) € A) = P(A). (2.16)
T—o00 -
Consider a random variable £ defined on (£2, B(£2),m) by

0 otherwise.

1 if {(s,a,w;a) € A,
ﬂ@:{ < )
Clearly, its expectation

B¢ =my (we 2: (s, a,wia) € 4) = Pe(A). (2.17)

In view of Lemma 6, the process {(@,(w)) is ergodic. Therefore, the Birkhoft-
Khintchine theorem, see, for example, [14], implies that, for almost all w € £2,
T

lim %/g(@T(g))dT — E¢. (2.18)

T—o0
0

On the other hand, the definitions of ¢ and @_ yield

I .
T/o §(§T(g))d7 = VT<£(5 +it,a,w;a) € A).
Thus, by (2.17) and (2.18), for almost all w € £2,
Jim VT(Q(S +iT, , w; @) € A) = Pc(A).
Combining this with (2.16), we obtain that P(A) = P¢(A) for all continuity

sets A of the measure P. Hence, P(A) = P¢(A) for all A € B(H"(D)) because
the continuity sets form a determining class, see [2]. The theorem is proved. OJ
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3 The Support of F

In this section, we give explicitly the support of the measure P:. We recall
that the support of P; is a minimal closed subset Sp, of H %(D) such that
P¢(Sp.) = 1. We also note that Sp, consists of all points g € H"*(D) such that
P¢(G) > 0 for every neighbourhood G of g.

Define S = {g € H(D) :g(s) #0or g(s) = 0}.

Theorem 5. Suppose that aq, ..., a, are algebraically independent over Q, and
that rank(B;) = l;, j =1...,r. Then the support of P is the set S x H"(D).

Proof. We write
H"(D)=H(D) x H" (D),

where
T
R1 = E lj.
Jj=1

Since the spaces H(D) and H"'(D) are separable, it suffices [2] to consider
P:(A) with A = Ay x A,,, A € B(H(D)), Ax, € B(H"(D)). Let 2" =
21 x ... x £, where 2; = 2 for all j = 1,...,r, and let m’; by the Haar
measure on (27, B((2")). Then the Haar measure my is the product of the
Haar measures gy and mp;. Hence, we find that

PQ(A) :mH(g € 2:((s,a,w;a) € A)
:mH(QGQ:((s,cD) 6A1,(((s,al,wl;au),...,((s,al,wl;alll),...,
C(s, arywri@r1), ., C(s, o, wrs 4y, ) € A,ﬂ)
:mH(aefzzg(s,a) eAl)
X mg((wl,...,wr) € 2" (¢(s, o, wi5011), ..., C(s, 0, w15 017,), - - -

C(Sa Qs Wr a’f‘l)v ety C(SvavaT‘; a’f‘lr)) € Aﬁl)' (31)

In [11], it is obtained that the support of the H(D)-valued random element
C(s,w) is the set S, that is, S is a minimal closed set such that

g (w € 0:((s,0) € s) ~1. (3.2)

Similarly, in [11], under the hypotheses of the theorem, it was obtained that
H"'(D) is a minimal closed set such that

m%((wlv"'awT) SO (C(S,al,W1;a11),.~~,C(S,a1,UJ1;a1[1),~.-,

C(s, rywr;ar1), -, C(8, iy Wi arlr)) e H™ (D)) =1.

This, (3.1) and (3.2) complete the proof. O

Math. Model. Anal., 15(4):431-446, 2010.



444 J. Genys, R. Macaitiené, S. Rackauskiené and D. Siauciunas
4 Proof of Theorem 3

A proof of Theorem 3 is based on Theorems 4 and 1 as well as on the Mergelyan
theorem [23], and is standard.

First suppose that the functions f(s) and f;;(s) have analytic continuations
to the whole strip D, and the analytic continuation of f(s) is non-zero. Define

G = {(QOagllv"'aglllv"'vg’r‘lv"'vg’f‘lr) € HK(D) :
sup lgo(s) = F(5)| < ¢, sup sup sup [giu(s) — fu(s)| < .
seK 1<<r 1<I<l; s€ K},

The set G is open in H"(D). Therefore, Theorem 4 together with Theorem 2.1
of [2] (an equivalent of weak convergence in terms of open sets) implies

lim inf v (g(s +ir,aia) € G) > P(G). (4.1)

However, by Theorem 5, (f, fi1,---, fiy,--+, fr1,--+, fri,) 1S a point of the
support of the measure Pr. Thus, P;(G) > 0, and the definition of G and (4.1)
yield B B

liminfl/T(sup [C(s+i1) — f(s)] <€,
T—o0 seK

sup sup sup [C(s+iT,a;5;5a5) — f(s)| < 6) > 0. (4.2)
1<j<r 1<I<l; s€Ky
Now let the functions f(s) and fj;(s) satisfy the hypotheses of the theorem.
Then, by the Mergelyan theorem, there exist polynomials p(s), p(s) # 0 on K,
and pj;(s) such that

sup [/(s) = p(s)| < (4.3)
seK
and .

sup sup sup |fji(s) —pjl(s)‘ <3 (4.4)

1<j<r 1<I<l; se Ky

Since p(s) # 0 on K, we can define a continuous branch of the function log p(s)
in K which will be analytic in the interior of K. By the Mergelyan theorem
again, we can find a polynomial ¢(s) such that

sup ‘p(s) — et < £,
seK 4
This together with (4.3) shows that
bél]g ’f(s) — et < % (4.5)

However, e4(8) = 0, therefore, the functions e4(*) and pji(s) satisty all hypothe-
ses under which (4.2) holds. So, we have that

liminf vp ( sup ‘((s—i—zﬁ-)—eq(s) <£,
T—o0 scK 2
sup sup sup |[((s+iT,ay; aﬂ)—pjl(s)‘<§) >0. (4.6)

1<<r 1<I<l; s€ K,
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Clearly, in view of (4.5) and (4.4),

)

{T € [0,77] : sup ‘C s +i7) — 1)
seK

sup sup sup
1<j<r 1<I<l; seKj

- {T €10,7] : sup ‘( (s +i1) — f(s)‘ < e,
seK

C(S + iT, Q] Cljl) — f]l(s)’ < 6}.

(s +imagsaz) = pa(s)] < 5}

sup sup sup
1<<r 1<I<l; s€ K,

This and (4.6) prove the theorem.
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