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Abstract. A Fokker-Planck framework for the formulation of an optimal control
strategy of stochastic processes is presented. Within this strategy, the control objec-
tives are defined based on the probability density functions of the stochastic processes.
The optimal control is obtained as the minimizer of the objective under the constraint
given by the Fokker-Planck model. Representative stochastic processes are considered
with different control laws and with the purpose of attaining a final target configura-
tion or tracking a desired trajectory. In this latter case, a receding-horizon algorithm
over a sequence of time windows is implemented.
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1 Introduction

Modeling uncertainty is a very active research field with many present and fore-
seen applications. In this framework, the theory of the stochastic processes [7]
provides us established mathematical tools for the description and the analysis
of temporal sequences of random quantities in many practical cases. Further,

∗ Supported in part by the Austrian Science Fund FWF project F3205-N18 “Fast Multigrid
Methods for Inverse Problems".

http://dx.doi.org/10.3846/1392-6292.2010.15.393-407
http://www.vgtu.lt/mma/
mailto:mannunzi@unisa.it
mailto:alfio.borzi@unisannio.it
mailto:alfio.borzi@uni-graz.at


i

i

“MMA15v31” — 2010/11/3 — 9:03 — page 394 — #2
i

i

i

i

i

i

394 M. Annunziato and A. Borzì

the possibility to control sequences of events subject to random disturbances is
highly desirable for real applications. In this paper, we contribute to the field of
control of stochastic processes with the formulation of a framework for the op-
timal control of the probability density function associated to these processes.
We focus on representative continuous time stochastic processes described by
the following model

dXt = b(Xt, t;u) dt+ σ(Xt, t) dWt (1.1)

where the state variable Xt is subject to deterministic infinitesimal increments
of the first addend and to random increments proportional to a Wiener pro-
cess dWt. This is the well-known Itô stochastic differential equation (SDE)
[7], where we consider also the action of a time-dependent control u = u(t)
that allows to drive the random process to follow a desired trajectory. In de-
terministic dynamics, the optimal control is achieved by finding the control
law u that minimizes a given objective given by a cost functional J(X,u). At
least two optimal control design methods are available for this purpose in real
applications. These are the model predictive control (MPC) strategy [22] and
the linear-quadratic-regulator (LQR) control methodologies [1].

In the present non-deterministic case, the state evolution Xt is random and
represents an outcome of a probability space, so that a direct insertion of a
stochastic process into a deterministic cost functional will result into a random
variable. Therefore, when dealing with stochastic optimal control, usually the
average of the cost function is considered [4]. In particular, we have

J(X,u) = E

[

∫ T

0

L
(

t,Xt, u(t)
)

dt+ Ψ [XT ]
]

.

Notice that this functional is deterministic because of the averaging. This is a
Bolza’s type cost functional in the finite-horizon case (T < ∞) and it is sup-
posed that the controller knows the state of the system at each instant of time
(complete observations). For this case, the method of dynamic programming
can be applied [2, 4] in order to write the Hamilton-Jacobi-Bellman (HJB)
equation for infu J with u as optimization function. Some other cases of the
cost structure of J(X,u) are quoted in [2], that have application in finance, en-
gineering, and in production planning and forest harvesting. Each J will lead
to a different form of the HJB equation that can be analyzed with appropriate
methods of partial differential equations [3].

An alternative approach to the HJB formulation for solving the stochastic
control problem, consists in approximating the continuous stochastic process
by a discrete Markov decision chain [16]. Then, in the framework of dynamic
programming, a Bellman equation for this Markov chain is written and solved
by using the policy/value iteration. In this approach the information of the con-
trolled stochastic process, carried by the transition probability density function
of the approximating Markov process, is utilized to solve the Bellman equation;
for details see [20, 32].

However, the common methodology to find an optimal controller of random
processes consists in reformulating the problem from stochastic to determin-
istic. This is a reasonable approach when we consider the problem from a
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statistical point of view, with the perspective to find out the collective behav-
ior of the process. In fact, the average E[·] of the functional of the process Xt

is omnipresent in almost all stochastic optimal control problems considered in
the scientific literature.

The value of the cost functional before averaging is a way to measure the
cost of a single process: each realization of Xt brings with itself a piece of
information of the entire stochastic process modeled by the state equation (1.1).
However, the knowledge of the single realization is not useful for the statistical
analysis, that would require to determine the average, the variance, and other
properties associated to the state of the stochastic process.

On the other hand, the state of a stochastic process can be completely
characterized in many cases by the shape of its statistical distribution which
is represented by the probability density function (PDF). Therefore, a control
methodology defined on the PDF would provide an accurate and flexible control
strategy that could accommodate a wide class of objectives. For this reason,
in [5, 12, 13, 31] probability density function control schemes were proposed,
where the cost functional depends on the PDF of the stochastic state variable.
In this way, a deterministic objective results and no average is needed. In
[12, 13], the objective is defined by the Kullback-Leibler [18] distance between
the state PDF and a desired one. On the other hand, in [5, 31] a square distance
between the state PDF and a desired PDF is considered.

An important step in our framework, is to recognize that the evolution
of the PDF associated to the stochastic process (1.1) is characterized as the
solution of the Fokker-Planck (also Fokker-Planck-Kolmogorov) equation; see,
e.g., [26, 27]. This is a partial differential equation of parabolic type with
Cauchy data given by the initial PDF distribution. Therefore, the formulation
of objectives in terms of the PDF and the use of the Fokker-Planck equa tion
provide a consistent framework to formulate an optimal control strategy of
stochastic processes.

In this paper, our working paradigm for the stochastic optimal control prob-
lem is the following. First, we reasonably assume that the PDF of the state
variable is known at the initial time. We consider that the state variable Xt

evolves according to the SDE (1.1) under a controller u which is explicitly
modeled in the equation. Then, we consider the Fokker-Planck (FP) equation
associated to the process as the governing model. In this way, we have the ad-
vantage to be able to characterize the whole shape of the randomness present
in the system and avoid the technical difficulties of the stochastic Itô’s calculus,
since the problem is now formulated in a weak deterministic sense.

We remark that the use of the Fokker-Planck equation for control purposes
is a less explored topic. In [14, 15], the possibility to control a dynamical
system is discussed based on the assumption that the system can be described
by a FP equation. In [19], a method that uses a discretized FP equation to
solve the HJB equation for the optimal control problem of nonlinear stochastic
dynamical systems is presented.

In our framework, we consider a stochastic process in a time interval, with
given initial PDF and the objective of approximating a desired final PDF tar-
get with the actual PDF of the state variable. Notice that solving the FP

Math. Model. Anal., 15(4):393–407, 2010.
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equation, a time-dependent PDF is obtained that can describe transient and
non-equilibrium statistics. In the time interval, for realistic implementation
purposes, we assume that the control is a constant function to be determined
by our optimal control scheme once and for all the evolution of the process in
the time interval. The cost functional consists of a terminal-time tracking ob-
jective and the control cost. The resulting open-loop optimal control problem is
formulated as the problem to find a controller that minimizes this cost function
within the time interval under the constraint provided by the FP equation.

Further, we use this control strategy applied to a sequence of small time sub-
intervals to construct a fast closed-loop control scheme of the stochastic process
based on the receding horizon (RH) model predictive control (MPC) approach
[22, 23]. Notice that in contrast to LQR-type feedback schemes, employed in,
e.g., [5, 31], the closed-loop schemes based on the RH-MPC approach do not
optimize a true performance index; see [8] for a method to quantify the per-
formance degradation. Nevertheless, these schemes provide robust controllers
that apply equally well to linear and nonlinear models and allow to accommo-
date different control- and state constraints [8, 10]. For this reason, RH-MPC
schemes are among the most widely used control techniques in process control.

Based on the RH-MPC formulation, we are able to implement a control
strategy that allows to determine a piecewise control function that drives the
process to follow a desired PDF trajectory, which may include the case of a
desired non-equilibrium configuration. In this strategy, measures of the state
PDF are required at the end of each time sub-interval.

In the next section, we define a class of stochastic processes and introduce
our framework with optimal control problems based on the FP equation. In
Section 3, we discuss the discretization of the FP equation that is required
to extend our framework to the case where the FP equation must be solved
numerically. Section 4 is devoted to illustrate the receding horizon model pre-
dictive control scheme. In Sections 5 and 6, we discuss two basic applications
of our formulation of the optimal control problem in the case where the an-
alytic solution of the FP model is known: the Ornstein-Uhlenbeck and the
geometric-Brownian processes with additive control. Further, in Section 7 we
solve a control problem corresponding to a Shiryaev process. In this case, the
closed form solution of the related FP equation is not known, and the numerical
scheme of Section 3 is needed. Results of numerical experiments are reported
to demonstrate the effectiveness of our FP approach. A section of conclusions
completes this work.

2 Fokker–Planck Optimal Control Formulation of Sto-

chastic Processes

We consider a class of one-dimensional stochastic processes Xt ∈ Ω ⊂ R,
governed by the following stochastic Itô differential equation

{

dXt = b(Xt, t;u) dt+ σ(Xt, t) dWt

Xtk = Xk.
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where Wt is a Wiener process with zero mean and unit variance, σ(Xt, t) > 0 is
a function of variance of the stochastic process, b(Xt, t;u) is a drift term that
includes a control function.

Our control strategy is defined in two steps. First, we consider the optimal
control for the stochastic model evolving in a given time interval to attain
a desired final configuration. We assume that the initial probability density
distribution is given and the control is a constant function in this time interval.
This is a terminal observation control problem. The second step of our strategy
is to consider a sequence of such time intervals (tk, tk+1), k = 0, 1, . . . , N , and
in each of these intervals we consider a terminal observation control problem
where the initial condition for the problem in (tk, tk+1) is given by the PDF
resulting from the controlled evolution of the previous time interval. It is clear
that in this way a piecewise control function is obtained while the evolution of
the PDF results continuous.

Denote by f(x, t) the probability density to find the process at x at time t.
Further, let f̂(x, t; y, s) denotes the transition density probability distribution
for the stochastic process to move from y at time s to x at time t, which means
that f̂(x, s; y, s) = δ(x − y), where δ is the Dirac symbol. Both f(x, t) and
f̂(x, t; y, s) are nonnegative functions and the following holds

∫

Ω

f(x, t) dx = 1 for all t ≥ s.

This is the conservation condition. The domain Ω is chosen large enough such
that f(x, t) = 0 for (x, t) on Σ = Ω × (tk, tk+1).

If ρ(y, s) is the given initial density probability of the process at time s,
then we have that the probability density of the process at time t > s is given
by the following

f(x, t) =

∫

Ω

f̂(x, t; y, s)ρ(y, s) dy. (2.1)

Notice that ρ should be nonnegative and normalized
∫

Ω
ρ(y, s)dy = 1.

Now, we assume to know the initial value of the process at time tk, in the
sense that we give the probability density ρ(x, s) at time s = tk. Our problem
is to determine a control u such that starting with initial distribution ρ the
process evolves such that a desired target probability density fd(x, t) at time
t = tk+1 is matched as close as possible. With this setting, we consider the
following control problem in Q = Ω × (tk, tk+1). We have

min J(f, u) :=
1

2

∥

∥f(·, tk+1)− fd(·, tk+1)
∥

∥

2

L2(Ω)
+
ν

2
|u|2, (2.2)

∂tf̂(x, t; y, tk)−
1

2
∂2x

(

σ(x, t)2f̂(x, t; y, tk)
)

+∂x
(

b(x, t;u)f̂(x, t; y, tk)
)

=0, (2.3)

f̂(x, tk; y, tk) = δ(x− y), (2.4)

where |u| is the absolute value of the (scalar) control and (2.3) is the Fokker-
Planck equation [26, 27], i.e. the forward Kolmogorov equation, for the transi-
tion density probability distribution f̂(x, t; y, tk) of the stochastic process Xt,

Math. Model. Anal., 15(4):393–407, 2010.
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and y ∈ Ω. Notice that the solution of the set of equations (2.3)–(2.4) can be
interpreted as the fundamental solution of the stochastic process such that for
any given ρ the corresponding f is obtained. This problem is as difficult to
compute as the Green function of a partial differential equation. However, in
our case we assume that the initial distribution ρ is given and hence we can
reformulate (2.2)–(2.4) as follows

min J(f, u) :=
1

2

∥

∥f(·, tk+1)− fd(·, tk+1)
∥

∥

2

L2(Ω)
+
ν

2
|u|2, (2.5)

∂tf(x, t)−
1

2
∂2x

(

σ(x, t)2f(x, t)
)

+ ∂x
(

b(x, t;u)f(x, t)
)

= 0, (2.6)

f(x, tk) = ρ(x), (2.7)

where we dropped s in the initial distribution. We consider solutions of the
FP equation that are sufficiently regular [6], i.e. f(x, t) has continuous first
derivative in time, and continuous second derivative in space, jointly to the
conservation condition. However, weaker conditions are possible; see [26].

In the following, we use the optimal control formulation (2.5)–(2.7) to define
our control strategy. To illustrate our framework, we consider different stochas-
tic processes and solve (2.5)–(2.7) to obtain the optimal control function.

For completeness, we remark that the optimal control problem (2.5)–(2.7)
is an infinite-dimensional constrained minimization problem whose solution is
characterized as the solution of the following first-order optimality system:

∂tf(x, t)−
1

2
∂2x

(

σ(x, t)2f(x, t)
)

+∂x

(

b(x, t;u)f(x, t)
)

=0 in Q, (state equation)

f(x, tk) = ρ(x) in Ω, (initial condition)

−∂tp(x, t)−
1

2
σ(x, t)2∂2xp(x, t)−b(x, t;u)∂xp(x, t) = 0 in Q, (adjoint equation)

p(x, tk+1) = fd(x, tk+1)− f(x, tk+1) in Ω, (terminal condition)

f = 0, p = 0 on Σ, (boundary conditions)

ν u+
(

∂x

( ∂b

∂u
f
)

, p
)

= 0 in Q, (optimality equation)

Notice that the state variable evolves forward in time and the adjoint vari-
able evolves backwards in time. In the optimality equation, we have used the
following inner product

(φ, ψ) =

tk+1
∫

tk

∫

Ω

φ(x, t)ψ(x, t) dx dt.

The state equation, represented by the FP model (2.6), is a linear partial
differential equation of a parabolic type. For a given continuous function u,
the solution of the FP model is uniquely determined; see, e.g., [11, 26, 27].
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We denote this dependence by f = f(u) and one can prove that the mapping
u→ f(u) is twice differentiable [21] with respect x.

Therefore, we can introduce the so-called reduced cost functional Ĵ given
by Ĵ(u) = J

(

f(u), u
)

. The gradient of Ĵ with respect to u is given by

∇Ĵ(u) = ν u+
(

∂x

( ∂b

∂u
f
)

, p
)

, (2.8)

where p(u) is the solution of the adjoint equation for the given f(u).
Summarizing, the optimal control problem (2.5)–(2.7) can be reformulated

as solve minu Ĵ(u). For a given u, the solution of the forward model followed by
the solution of the adjoint equation provides the gradient ∇Ĵ(u) given by (2.8)
that can be used in many optimization schemes [24] to compute the optimal
value of the control. However, the use of such optimization schemes becomes
necessary in the case where the control u is a vector valued function or it is
required to be a function of time. In this paper, we focus on modeling issues
and we consider constant control functions such that the solution of minu Ĵ(u)
can be obtained by implementing the mapping u → f(u), i.e. the solution of
the state equation, and using a bisection minimization scheme.

3 Discretization of the Fokker–Planck Equation

In application, we consider different representative stochastic processes. For
some of them the analytic solution of the FP equation is known and can be
used to directly solve (2.5)–(2.7). In some other cases, like the Shiryaev process
considered below, a numerical solution of the state equation is required. In this
section, we discuss the numerical solution of the Fokker-Planck equation by
finite differences, when there is no explicit dependence on time of the coefficients
σ and b.

Define a sequence of grids {Ωh}h>0 given by

Ωh =
{

x ∈ R : xj = j h, j ∈ Z
}

∩Ω.

We assume that Ω is a segment which is a multiple of the spatial mesh size h,
i.e. h is chosen such that the boundaries of Ω coincide with grid points. We
call Ωh the mesh, Ωh is the set of interior mesh-points, and Γh is the set of the
two boundary end-points.

With ∂−x (resp. ∂+x ) denotes the backward (resp. forward) difference quo-
tient in the x direction and a discrete function is extended by 0 on grid points
outside of Ω. The second derivative is approximated by the common three-
point stencil and is given by ∆h = ∂−x ∂

+
x ; see [9] for all details.

Let δt be the time step size and Nt denotes the number of time steps. Define

Qh,δt =
{

(x, tm) : x ∈ Ωh, tm = mδt, 0 ≤ m ≤ Nt

}

.

On this grid, ymh denotes a grid function in Ωh at time level m. With uh we
denote the optimal control solution of the discrete problem. The action of the
forward time difference operator on this function is denoted by

∂+t y
m
h = (ym+1

h − ymh )/δt.

Math. Model. Anal., 15(4):393–407, 2010.
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A viable approach to solve (2.6) is to use the mapping fm
h = fm

h (uh) defined
by the solution of the forward model

∂+t f
m
h − 1

2
∆h(σ

2
h f

m
h ) + ∂Cx

(

bh(uh)f
m
h

)

= 0

with the given initial conditions, and σh and bh(uh) are the coefficient of the
FP equation evaluated on the grid Ωh.

For the discretization of the last term we use a conservative approximation
of the spatial derivative ∂Cx [30], that fits with the requirement to preserve the
conservation of the probability. A conservative scheme is obtained by consider-
ing that an approximating polynomial to the flux function φ(x) := b(x;u)f(x, t)
has the same integral average of the flux in the cell Ix. Given the numerical
flux φh = bh(uh)f

m
h , the reconstruction problem Φ of the values of φh on the

boundary of the cell φ̂j−1/2 := Φj−1/2(φh) and φ̂j+1/2 := Φj+1/2(φh) is solved.
Finally, the difference

∂Cx φh := (φ̂j+1/2 − φ̂j−1/2)/h,

gives the conservative approximation to the derivative of the flux to the cell j.
Clearly, the term ∂Cx (bh(uh)f

m
h ) is convective and therefore the direction

of the flux has to be considered in order to have a stable discretization. For
this purpose, we perform a preventive Lax-Friedrichs flux splitting [30] in order
to upwind the derivative in the correct direction. We define the positive and
negative fluxes as follows

φ+(x) =
1

2

(

b(x;u) +B
)

f(x, t), φ−(x) =
1

2

(

b(x;u)−B
)

f(x, t),

where B = maxx,u |b(x;u)|. The corresponding numerical approximation to
these fluxes ia given as follows

φ+h =
1

2

(

bh(uh) +B
)

fm
h , φ−h =

1

2

(

bh(uh)−B
)

fm
h .

For the reconstruction problem, we have taken three cells. Consider the stencil
{j − 1, j, j + 1} with reconstruction coefficients c+ = [−1/6, 5/6, 1/3] for the
positive flux, so that at the right boundary of the cell j, we have

φ̂+j+1/2 = −1/6φ+j−1 + 5/6φ+j + 1/3φ+j+1.

Similarly, for the negative reconstructed flux φ̂−j+1/2 we use the stencil {j, j +
1, j+2} with coefficients c− = [1/3, 5/6,−1/6]. Therefore the total flux for the
right boundary of the cell j is given by

φ̂j+1/2 = φ̂+j+1/2 + φ̂−j+1/2.

The same reconstruction is performed for the cell j − 1 and ∂Cx is calculated.
In order to ensure convergence of the numerical scheme, the following Courant–

Friedrichs–Lewy condition δt = cmin(h2/(2‖σ2
h‖∞), h/B) must be satisfied.

We find that c = 0.8 guarantees stable and accurate numerical results.
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4 A Receding–Horizon Model Predictive Control Scheme

Our purpose is to control the probability density function of a stochastic process
to track a given sequence of desired PDFs in time. Let (0, T ) be the time interval
where the process is considered. We assume time windows of size ∆t = T/N
with N a positive integer. Let tk = k∆t, k = 0, 1, . . . , N . At time t0, we have
a given initial PDF denoted with ρ and with fd(·, tk), k = 1, . . . , N , we denote
the sequence of desired PDFs. Our scheme starts at time t0 and solves the
minimization problem minu J(f(u), u) defined in the interval (t0, t1). Then,
with the probability density function f resulting at t = t1 solving the optimal
control problem, we define the initial PDF for the subsequent optimization
problem defined in the interval (t1, t2). This procedure is repeated by receding
the time horizon until the last time window is reached. This is an instance
of the class of receding horizon model predictive control (RH-MPC) schemes
[23, 22] that is widely used in engineering applications to design closed-loop
algorithms. One important aspect of this approach is that it can be applied to
infinite dimensional evolution systems [10], that is the case of the FP model.

The RH-MPC procedure is summarized in the following algorithm.

Algorithm 1 [RH-MPC Control]. Set k = 0; assign the initial PDF, f(x, tk) =
ρ(x) and the targets fd(·, tk), k = 0, . . . , N − 1;

1. In (tk, tk+1), solve minu J(f(u), u) (bisection).

2. With the optimal solution u compute f(·, tk+1).

3. Assign this PDF as the initial condition for the FP problem in the next
time window.

4. If tk+1 < T , set k := k + 1, go to step 1 and repeat.

5. End.

In the following, we report results of numerical experiments where we com-
pute the control u that solves control problems corresponding to different
stochastic processes. In the numerical RH-MPC procedure, a quadrature is
required for the computation of the norm in (2.5); for this purpose we use a
trapezoidal formula.

In the case of the Ornstein-Uhlenbeck process and the geometric-Brownian
process, we have the analytical solution of the Fokker-Planck equation (2.3) in
closed form. Inserting this solution in (2.1) and using numerical quadrature, we
are able to compute the PDF without solving the FP equation numerically. We
use this fact, to validate our RH-MPC algorithm, while all results presented
in the following sections are obtained by solving the FP equation with our
numerical scheme. In the cases where the analytical solution is known, we
obtain optimal controls that approximate very well optimal controls computed
using the exact FP solution.

Math. Model. Anal., 15(4):393–407, 2010.
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5 An Ornstein–Uhlenbeck Process with Additive Control

The classical problem of a massive particle immersed in a viscous fluid and sub-
ject to random Brownian fluctuations due to interaction with other particles,
is modeled by the Ornstein–Uhlenbeck (OU) process. We focus on the control
of the PDF of the OU process. For this purpose, we set b(Xt, t;u) = −γXt+u,
σ(Xt, t) = σ, where Xt represents the velocity of the particle and u is the
momentum induced by an external force field defining the control mechanism.
With this setting, the Fokker–Planck equation for transition probabilities under
the action of the control u becomes

∂tf̂(x, t; y, tk)−
1

2
σ2 ∂2x f̂(x, t; y, tk) + ∂x

(

(u−γx)f̂(x, t; y, tk)
)

= 0,

f̂(x, tk; y, tk) = δ(x− y). (5.1)

In this case, the solution to the Fokker–Planck equation is well known to be a
Gaussian distribution with mean

µ(t; y, tk;u) = u/γ + (y − u/γ)e−γ(t−tk)

and variance

σ̄2(t, tk) =
σ2

2γ

(

1− e−2γ(t−tk)
)

.

Therefore the solution is as follows

f̂(x, t; y, tk;u) =
1

√

2πσ̄2(t, tk)
exp

(

−
(

x− µ(t; y, tk;u)
)2

2 σ̄2(t, tk)

)

. (5.2)

This solution defines a mapping f̂ = f̂(u). Now, assuming an initial distribution
ρ at t = tk, and having f̂(x, tk+1; y, tk;u), the final distribution f(x, tk+1;u)
is given by integration as defined in (2.1). This procedure provides a mapping
f = f(u) and thus the following reduced cost functional is obtained

J(f(u), u) =
1

2

∥

∥

(

f(u)
)

(·, tk+1)− fd(·, tk+1)
∥

∥

2

L2(Ω)
+
ν

2
|u|2.

We obtain the one–parameter optimization problem minu J(f(u), u). This
problem is solved efficiently by a bisection minimization procedure [24].

In Figure 1, we show the optimal solution for the problem (5.1) correspond-
ing to the Ornstein–Uhlenbeck process. These results are obtained by solving
(2.6) with our numerical scheme and appear to be very accurate compared to
the results obtained using (5.2) and (2.1).

In this experiment, the parameters are γ = 1, σ = 0.8, ν = 0.1. The initial
distribution (see Figure 1, black dotted line) is a Gaussian with zero mean and
variance σ = 0.1. The target is also Gaussian as follows

fd(x, t) =
1√
2πσ2

exp
(

−
(

x− v(t)
)2

2 σ2

)

,
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with mean value following the law v(t) = 2 sin(πt/5) and variance σ = 0.2, for
t = t1, . . . , tN − 1, where the optimal distribution (see Figure 1, solid line) is
calculated at steps of ∆t = 0.5 until time T = 5, with u in the set u ∈ [−4, 4].
At the right-hand side of Figure 1 the time evolution of the control u is shown.
The spatial mesh size is h = 0.05 and δt = 1.6 · 10−3.

−5 0 5
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2
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4

5

6

x

t,f

0 1 2 3 4 5
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−0.5
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0.5

1

1.5

2

t

u

Figure 1. The optimal control of the Ornstein–Uhlenbeck process. Left–hand side: com-
puted PDF (solid line) and desired PDF (dotted–dashed line) at different time windows.
Right–hand side: The optimal control function.

6 A Geometric–Brownian Process with Additive Drift

Control

The Geometric–Brownian motion is the most widely used stochastic process
in financial modeling; see, e.g., [17]. The classical Merton’s portfolio problem
models the wealth as an Itô stochastic process that generates a Geometrical–
Brownian (GB) motion. Further, its properties are building blocks for modeling
a wide variety of exotic options and other derivative contracts. In this case,
control may be required to drive a portfolio to a given value.

In the GB control problem, we have b(Xt, t;u) = (µ+u)Xt, σ(Xt, t) = σXt.
As an example of application, we assume that Xt is the wealth, µ is the average
market price of return including the fraction of the portfolio invested in risky
market, σ is the volatility parameter. In this model, we insert the controller
u as a fraction of the portfolio invested in risk free and constant interest rate
market, such as a government bond. The following Fokker–Planck equation
results

∂tf̂(x, t; y, tk)−
1

2
σ2∂2x

(

x2f̂
(

x, t; y, tk)
)

+ (µ+ u)∂x

(

x f̂(x, t; y, tk)
)

= 0,

f̂(x, tk; y, tk) = δ(x − y) (6.1)

where x, y ≥ 0. In this case, the analytical solution for the transition probability

Math. Model. Anal., 15(4):393–407, 2010.
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function is known as the following log–normal distribution

f̂(x, t; y, t0;u)=
1

x
√

2πσ2(t− t0)
exp

(

− [log(x/y)−(µ+ u−σ2/2)(t−t0)]2
2σ2(t− t0)

)

.

Proceeding as in the previous OU case, we obtain an one–parameter optimiza-
tion problem that can be solved efficiently by bisection.
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0
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t
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Figure 2. The optimal control of the geometric Gauss process. Left–hand side: computed
PDF (solid line) and desired PDF (dotted-dashed line) at different time windows. Right–hand
side: The optimal control function.

In Figure 2, we show the results obtained with the Geometric–Brownian
process. We compute the numerical solution to the FP equation. In this
experiment, the parameters are µ = 1, σ = 0.1 and ν = 0.1. The initial and
target distributions are in the following log–normal form

fd(x, t) =
1

x
√
2πσ2

exp
(

−
[

log(x) − µ̃(t)
]2

2σ2

)

. (6.2)

Specifically, the initial distribution (see Figure 2, dotted-dashed line) ρ(x) =
fd(x, t0) is log–normal with µ̃(t0) = 0.8, σ = 0.1. The target distribution (see
Figure 2, solid line) fd(x, t) is log–normal with µ̃(t) = 1+sin(πt/5) and σ = 0.1
for t = t1, . . . , tN −1, where the optimal distribution is calculated at time steps
∆t = 0.25, until the time T = 2.5. The step size for space is h = 0.0625, and
time δt = 2.4752 · 10−4. The search set for the control is u ∈ [−1, 0.5]. The
plot at the right-hand side of Figure 2 shows the time evolution of the control.

7 The Shiryaev Process

An interesting setting in application is b(Xt, t;u) = u + µXt, σ(Xt, t) = σXt.
In this case, the control is not multiplying Xt in the drift term. This model
is known in the literature as the Shiryaev process [25] and it can be found in
applications in sequential analysis and financial mathematics [25, 28, 29]. This
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setting can be considered as the sum of absolute fixed income from risk-free
market and outcome of consumption. The Fokker–Planck equation correspond-
ing to the Shiryaev process is as follows

∂tf̂(x, t; y, tk)−
1

2
σ2∂2x

(

x2f̂(x, t; y, tk)
)

+ ∂x
(

(u+ µx)f̂(x, t; y, tk)
)

= 0,

f̂(x, tk; y, tk) = δ(x − y).

Although close to the GB case (6.1), the analytical solution to the FP equation
is not known in closed form; however some series expansion can be obtained
[25]. Therefore, we solve the following FP equation numerically. We have

∂tf(x, t)−
1

2
σ2∂2x

(

x2f(x, t)
)

+ ∂x

(

(u+ µx)f(x, t)
)

= 0.
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Figure 3. Optimal control of the Shiryaev process. Left–hand side: computed PDF (solid
line) and desired PDF (dotted–dashed line) at different time windows. Right–hand side:
optimal control function.

In Figure 3, we plot results of our calculation with σ = 0.1, µ = 0.5, spatial
mesh h = 0.0625 and time δt = 2.4752 · 10−4 size, u ∈ [−1, 3]. Initial and
desired PDF functions are chosen as in the Geometric-Brownian process case;
see (6.2). The plot at the right-hand side of Figure 3 shows the time evolution
of the control.

8 Concluding Remarks

In this paper, a Fokker–Planck framework for determining controls of stochastic
processes was presented. The control objective was defined based on the prob-
ability density function. The control strategy is based on a receding–horizon
model predictive control framework where optimal controls were obtained min-
imizing the objective under the constraint given by the Fokker–Planck equation

Math. Model. Anal., 15(4):393–407, 2010.
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that models the evolution of the probability density function. Representative
stochastic processes with different control laws were considered. Results of nu-
merical experiments demonstrated the effectiveness of the proposed approach.
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