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Abstract. Inverse nodal problem consists in constructing operators from the given
nodes (zeros) of their eigenfunctions. In this work, the Sturm-Liouville problem with
one classical boundary condition and another nonlocal integral boundary condition
is considered. We prove that a dense subset of nodal points uniquely determine
the boundary condition parameter and the potential function of the Sturm-Liouville
equation. We also provide a constructive procedure for the solution of the inverse
nodal problem.
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1 Introduction

Boundary problems with nonlocal conditions are a part of fast developing differ-
ential equations theory. Problems of this type arise in various fields of physics,
biology, biotechnology and etc. Sturm-Liouville problems with integral con-
ditions constitute a very interesting class of problems since they include as
special cases two-, three- and multi-point boundary conditions. Nonlocal con-
ditions come up when value of the function on the boundary is connected to
values inside the domain. Theoretical investigation of problems with various
types of nonlocal boundary conditions is actual problem and recently it is paid
much attention for them in the literature. Originators of such problems were
Samarskii and Bitsadze [2].

Quite a new area, related to problems of this type, deals with investigation
of the spectrum of differential equations with nonlocal conditions. Eigenvalue
problems with nonlocal conditions are closely linked to boundary problems for
diffrential equations with nonlocal conditions [6, 11, 13, 14]. In the papers
[9, 24, 30, 25, 26] the similar problems are investigated for the operators with
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nonlocal condition of Bitsadze-Samarskii or integral type. Albeverio, Hryniv
and Nizhnik [1] solve the inverse spectral problem for a class of Sturm-Liouville
operators with singular non-local potentials and non-local boundary conditions.

Inverse spectral problems consist in recovering operators from their spectral
characteristics. Such problems play an important role in mathematics and have
many applications in natural sciences (see, for example, [19, 21, 23, 32, 33]).
In 1988, the inverse nodal problem was posed and solved for Sturm-Liouville
problems by J. R. McLaughlin [22], who showed that knowledge of a dense sub-
set of nodal points of the eigenfunctions is sufficient to determine the potential
function of the Sturm-Liouville problem up to a constant. Some numerical
schemes were provided by O. H. Hald and J. R. McLaughlin [12] for the recon-
struction of the potential. This is the so-called inverse nodal problem. From
the physical point of view this corresponds to finding, e.g., the density of a
string or a beam from the zero-amplitude positions of their eigenvibrations.
Recently, some authors have reconstructed the potential function for general-
izations of the Sturm-Liouville problem from the nodal points (for example,
refer to [3, 5, 7, 8, 10, 12, 15, 16, 17, 18, 22, 27, 28, 29, 31, 34]). When it comes
to Sturm-Liouville problems with integral conditions, little has been done.

In this work we concern ourselves with the reconstruction of the Sturm-
Liouville equations with nonlocal boundary conditions from nodal data. First,
qualitative behaviour of eigenvalues subject to nonlocal integral boundary con-
ditions and oscillation of the corresponding eigenfunctions are described. Sec-
ond, the asymptotic expression of nodal of eigenfunctions is given. Finally,
we prove the corresponding uniqueness theorem and provide a constructive
procedure for the solution.

2 Main Results

Let us consider the following boundary-value problem for the Sturm-Liouville
operator on segment [0, π]:

−y′′ + q(x)y = λy, λ = s2 (2.1)

with one classical boundary condition

y′(0)− hy(0) = 0, h ∈ R ∪ {∞} (2.2)

and another nonlocal integral boundary condition

y(π) =

∫ π

0

y(x)µ(x)dx (2.3)

where q(x) and µ(x) are real-valued, twice differentiable functions on segment
[0, π]. In particular, if h = ∞, the classical boundary condition is

y(0) = 0.

The differential operation (2.1) together with boundary conditions (2.2) and
(2.3) define a linear (non-self-adjoint) operator in the Hilbert space L2[0, π], and
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Inverse Nodal Problem 385

the problem (2.1)–(2.3) is an eigenvalue problem for this operator. From the
results of [4] it follows that the spectrum of the operator is discrete and consists
of single eigenvalues. Let λ0, λ1, · · · , λn, · · · be the eigenvalues of the problem
(2.1)–(2.3), ordered by increasing modulus.

Let φ(x, λ) be the solution of (2.1) satisfying the following initial conditions

φ(0, λ) = 1, φ′(0, λ) = h.

Then the spectra of the boundary-value problem (2.1)–(2.3) are the zero-
sequences {λn}

∞
n=0 of the entire function

φ(π, λ) −

∫ π

0

φ(x, λ)µ(x)dx = 0.

Let φ(x, λn) be the eigenfunction corresponding to the eigenvalue λn of the
Sturm-Liouville operator (2.1)–(2.3). Using an analog of the Sturm oscillation
theorem, for sufficiently large n we get φ(x, λn) has exactly n− 1 nodal points
in (0, π) (h = ∞), and exactly n nodal points in (0, π) (h 6= ∞). Suppose xj

n are
the nodal points of the eigenfunction φ(x, λn). In other words, φ(xj

n, λn) = 0.
Let Ijn = (xj

n, x
j+1
n ), and the nodal length ljn by ljn = xj+1

n −xj
n. We also define

the function jn(x) to be the largest index j such that 0 ≤ xj
n ≤ x.

Denote X := {xj
n}. X is called the set of nodal points of the Sturm-Liouville

operator (2.1)–(2.3). We consider the following inverse problem.

Problem: Given nodal points set X or its subset X0 which is dense in
(0, π), find the boundary condition parameter h and the potential q(x).

The main theorems are the following.

Theorem 1. Fix x ∈ [0, π]. Let {xj
n} ⊂ X be chosen such that limn→∞ xj

n = x.
Then the following finite limits exist and the corresponding equalities hold.

(a) In the case h 6= ∞.

lim
n→∞

[

n2xj
n − n

(

j −
1

2

)

π −
1

2

(

j −
1

2

)

π
]

:= f(x), (2.4)

f(x) = h−
hx

π
−

x

2π

∫ π

0

q(t) dt+
µ(π)x

π
+

x

4
+

1

2

∫ x

0

q(t) dt. (2.5)

(b) In the case h = ∞ and n is chosen even number series.

lim
n→∞

n2

(

xj
n −

jπ

n

)

:= g(x), (2.6)

g(x) =
1

2

∫ x

0

q(t) dt−
x

π

[

µ(0)− µ(π) +
1

2

∫ π

0

q(t) dt
]

. (2.7)

Let us now formulate a uniqueness theorem and provide a constructive
procedure for the solution of the inverse nodal problem.

Theorem 2. Let X0 ⊂ X be a subset of nodal points which is dense in (0, π).
Then, the specification of X0 uniquely determines the potential

q(x) −
1

π

∫ π

0

q(x)dx in (0, π),

Math. Model. Anal., 15(3):383–392, 2010.
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and the coefficient h of the boundary conditions. The number h and the poten-

tial q(x) − 1

π

∫ π

0
q(x)dx can be constructed via the following algorithm:

(1) for each x ∈ [0, π] choose a sequence {xj
n} ⊂ X0 such that xj

n → x as

n → ∞ (note in the case h = ∞ we choose n an even number series);

(2) find the functions f(x) and g(x) via (2.4)–(2.7))and in turn, calculate

(a) In the case h 6= ∞:

µ(π) = f(π)−
π

4
, h = f(0), (2.8)

q(x)−
1

π

∫ π

0

q(t) dt = 2f ′(x) +
2h

π
−

2µ(π)

π
−

1

2
;

(b) In the case h = ∞:

µ(π) − µ(0) = g(π), q(x)−
Q(π)

π
= 2g′(x) +

2

π

[

µ(0)− µ(π)
]

. (2.9)

Using only the nodal data, we can reconstruct the potential. Our recon-
struction formulae are direct and automatically it implies the uniqueness of
this inverse problem (2.1)–(2.3).

3 Proofs

We now proceed with the proof of theorems in the case h 6= ∞. The other
case is treated similarly. First qualitative behaviour of eigenvalues for Sturm-
Liouville operator (2.1)–(2.3) is given.

Lemma 1. For sufficiently large n, qualitative behaviour of eigenvalues λn =
s2n for Sturm-Liouville operator (2.1)–(2.3) is as follows

(a) In the case h 6= ∞:

sn = n−
1

2
+

1

nπ

[

h− µ(π) +
1

2

∫ π

0

q(t) dt
]

+O
( 1

n2

)

.

(b) In the case h = ∞:

sn = n+
1

πn

[

(−1)nµ(0)− µ(π) +
1

2

∫ π

0

q(t) dt
]

+O
( 1

n2

)

.

Proof. The solution φ(x, λn) has the following asymptotic formula for n → ∞

uniformly in x [16]:

φ(x, λ) = cos sx+
h

s
sin sx+

sin sx

2s

∫ x

0

q(t) dt+O
(eτπ

s2

)

, τ = |Ims|.

Note that
∫ π

0

y(x)µ(x)dx =

∫ π

0

[

cos sx+
h

s
sin sx+

sin sx

2s

∫ x

0

q(t) dt+O
(eτπ

s2

)]

µ(x) dx

=
sin sπ

s
µ(π) +O

(eτπ

s2

)

.
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Substituting the expression φ(x, λ) into (2.3), we obtain

cos sπ +
h

s
sin sπ +

sin sπ

2s

∫ π

0

q(t) dt−
sin sπ

s
µ(π) +O

(eτπ

s2

)

= 0,

− tan(sπ + π/2) = cot sπ = −
h

s
−

1

2s

∫ π

0

q(t) dt+
1

s
µ(π) +O

( 1

s2

)

,

sn = n−
1

2
+

1

nπ

[

h− µ(π) +
1

2

∫ π

0

q(t) dt
]

+O
( 1

n2

)

.

This proves the lemma. ⊓⊔

Next we prove that an analog of the classical Sturm’s oscillation theorem
for the Sturm-Liouville operator (2.1)–(2.3).

Lemma 2. For sufficiently large n, the eigenfunction φ(x, λn) of the Sturm-

Liouville operator (2.1)–(2.3) has exactly n− 1 nodal points in (0, π) (h = ∞),

and exactly n nodal points in (0, π) (h 6= ∞). Moreover, in the case h 6= ∞:

xj
n =

(j − 1

2
)π

n
+

h

n2
+

(j − 1

2
)π

2n2
−

(j − 1

2
)h

n3
−

(j − 1

2
)

2n3

∫ π

0

q(t) dt (3.1)

+
(j − 1

2
)µ(π)

n3
+

(j − 1

2
)π

4n3
+

1

2n2

∫ xj
n

0

q(t) dt+O

(

1

n3

)

(3.2)

and in the case h = ∞:

xj
n=

jπ

n
+

1

2n2

∫ xj
n

0

q(t)dt−
j

n3

[

(−1)nµ(0)−µ(π)+
1

2

∫ π

0

q(t)dt
]

+O
( 1

n3

)

, (3.3)

uniformly with respect to j ∈ Z
+.

Proof. In the case h 6= ∞, the eigenfunction φ(x, λn) has the following asymp-
totic formula for n → ∞ uniformly in x [16]:

φ(x, λn) = cos(snx) +
h sin(snx)

sn
+

sin(snx)

2sn

∫ x

0

q(t) dt+O
(eτπ

s2n

)

.

Then, for the nodal point xj
n of the eigenfunction φ(x, λn), from

0 = φ(xj
n, λ) = cos(snx) +

h sin(snx)

sn
+

sin(snx)

2sn

∫ x

0

q(t) dt+O
(eτπ

s2n

)

,

we obtain

cot(snx
j
n) = −

h

sn
−

1

2sn

∫ xj
n

0

q(t) dt+O
( 1

n2

)

.

Using Taylor’s expansions, we obtain the following asymptotic formula for nodal
points as n → ∞ uniformly in j ∈ Z

+:

snx
j
n = (j −

1

2
)π +

h

sn
+

1

2sn

∫ xj
n

0

q(t) dt+O
( 1

n2

)

,

Math. Model. Anal., 15(3):383–392, 2010.
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which implies

xj
n =

(j − 1

2
)π

sn
+

h

s2n
+

1

2s2n

∫ xj
n

0

q(t) dt+O
( 1

n3

)

.

Moreover, using the asymptotic formulae

s−1

n =
1

n
+

1

2n2
−

h

n3π
−

∫ π

0
q(t)dt

2n3π
+

µ(π)

n3π
+

1

4n3
+O

( 1

n4

)

, s−2

n =
1

n2
+O

( 1

n3

)

,

thus, we have

xj
n =

(j − 1

2
)π

n
+

h

n2
+

(j − 1

2
)π

2n2
−

(j − 1

2
)h

n3
−

(j − 1

2
)

2n3

∫ π

0

q(t)dt+
(j − 1

2
)µ(π)

n3

+
(j − 1

2
)π

4n3
+

1

2n2

∫ xj
n

0

q(t)dt+O
( 1

n3

)

.

The equality (3.1) holds. It gives

xj+1

n − xj
n := ljn =

π

n
+O

( 1

n2

)

, n → ∞

uniformly with respect to j. In the case h 6= ∞, for j = 0, 1, · · · , n + 1, the
formula (3.1) gives

x0

n =
− 1

2
π

n
+O

( 1

n2

)

, x1

n =
1

2
π

n
+O

( 1

n2

)

, x2

n =
3

2
π

n
+O

( 1

n2

)

,

. . . , xn
n =

(n− 1

2
)π

n
+O

( 1

n

)

, xn+1

n =
(n+ 1

2
)π

n
+O

( 1

n

)

.

Thus, according to the order of xj
n, for large n, the eigenfunction φ(x, λn) of

the Sturm-Liouville operator has exactly n nodes in the interval (0, π), i.e.,
xj
n, j = 1, n. ⊓⊔

In the above results, the order estimate is independent of j. As a result, we
get that ljn = π/n+ o

(

1/n
)

.

Corollary 1. From Lemma 2 it follows that the sets X =
{

xj
n

}

are dense in
[

0, π
]

.

Now we can give the proofs of the theorems.

Proof. [Proof of Theorem 1] Using the asymptotic expansions (3.1) and (3.3)
for nodal points and the fact that lim

n→∞
xj
n = x, we get

lim
n→∞

[

n2xj
n − n(j −

1

2
)π −

1

2
(j −

1

2
)π
]

= lim
n→∞

[

h−
(j − 1

2
)h

n

−
(j − 1

2
)

2n

∫ π

0

q(t)dt+
(j − 1

2
)µ(π)

n
+

(j − 1

2
)π

4n
+

1

2

∫ xj
n

0

q(t)dt+O(
1

n
)
]
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= h−
hx

π
−

x

2π

∫ π

0

q(t)dt+
µ(π)x

π
+

x

4
+

1

2

∫ x

0

q(t)dt , f(x).

This proves the theorem. ⊓⊔

Proof. [Proof of Theorem 2] For a given nodal subset X0, by Theorem 1
we can build up the reconstruction formulae. Formulae (2.8) and (2.9) can be
derived from (2.4) and (2.7) stepwise. We obtain the following procedure.

For the case h 6= ∞:

• Step 1. Take x = π, it follows µ(π) = f(π)− π
4
.

• Step 2. Take x = 0, then it yields h = f(0).

• Step 3. By taking derivatives we obtain

q(x)−
1

π

∫ π

0

q(t) dt = 2f ′(x) +
2h

π
−

2µ(π)

π
−

1

2
.

For the case h = ∞:

• Step 1. Take x = π, it follows µ(π)− µ(0) = g(π).

• Step 2. By taking derivatives we obtain

q(x) −
1

π

∫ π

0

q(t) dt = 2g′(x) +
2

π

[

µ(0)− µ(π)
]

.

Thus these formulae are constructed. Since each nodal data determines one set
of reconstruction formulae which only depend on nodal data, the uniqueness
holds obviously. ⊓⊔

4 Conclusions

In fact, using the methods in this paper we can obtain a extended conclusion.
Consider the following boundary-value problem for the Sturm-Liouville op-

erator on segment [0, π]:
−y′′ + q(x)y = λy (4.1)

with one classical boundary condition

y′(0)− hy(0) = 0, h ∈ R ∪ {∞} (4.2)

and another nonlocal integral boundary condition

y′(π) +Hy(π) =

∫ π

0

y(x)µ(x)dx, H ∈ R (4.3)

where q(x) and µ(x) are real-valued, twice differentiable functions on segment
[0, π]. In particular, if h = ∞, the classical boundary condition is

y(0) = 0.

A uniqueness theorem of the inverse nodal problem (4.1), (4.2) and (4.3) is
the following; its proof is similar to that of Theorem 2.

Math. Model. Anal., 15(3):383–392, 2010.
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Theorem 3. Let X0 be a subset of nodal points which is dense in (0, π) for

the inverse nodal problem (4.1), (4.2) and (4.3). Then, the specification of

X0 uniquely determines the potential q(x) − 1

π

∫ π

0
q(x)dx in (0, π), and the

coefficients h and H of the boundary conditions.
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