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Abstract. The one-dimensional equations governing the formation of viscoelastic
fibers using Giesekus constitutive equation were studied. Existence and uniqueness
of stationary solutions was shown and relation between the stress at the spinneret
and the take-up velocity was found. Further, the value of the Giesekus model param-
eter for which the fibre exhibits Newtonian behaviour was found analytically. Using
numerical simulations it was shown that below this value of the parameter the fluid
shows extension thickening behaviour and above, extension thinning. In this context,
by simulating the non-stationary equations the effect of viscoelasticity on the stability
of the spinning process was studied.
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1 Introduction

Melt spinning is the industrial process of manufacturing long, slender fibres. In
this process, molten polymer is extruded from a pressurized reservoir through a
small circular orifice called the spinneret. The liquid jet undergoes stretching,
cooling and solidification. The solidified filament is then wound up via some
take-up device at a velocity much higher than the extrusion velocity to ensure
that the fibre is stretched. The ratio of the take-up velocity (vL) to the extru-
sion velocity (v0) is called the draw ratio (D = vL/v0 > 1). The draw ratio
is a crucial factor in determining the stability of the spinning process. The
spinning process is said to be unstable when, perturbing the take-up velocity
slightly results in big perturbations in the cross-sectional area of the fibre. This
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is observed to happen when the draw ratio exceeds a critical value. This insta-
bility is called the draw resonance and is characterized by sustained periodic
oscillations in the cross-sectional area of the fibre.

The dynamics of melt spinning has been studied extensively in the past few
decades by several research groups, see [1, 3, 11, 18]. In recent times, more
and more sophisticated models have been developed which take into account
microstructure, crystallization and viscoelastic effects in the simulation of the
spinning process, [2, 4, 5]. There have been many attempts with regard to
understanding the draw resonance mechanism, see [6, 9, 10]. Stability of the
spinning process has been investigated using linear or spectral stability analysis
by several research groups and the effect of various parameters on the stability
has been investigated, as in [7, 9, 10, 11, 15, 16]. However, it has been an
uphill task to investigate the global solvability of these equations. Mechanics
of steady state spinning was investigated first by Matovich and Pearson [14]
for viscous fluid in elongational flow. In recent times Hagen and Renardy
[8] have studied forced elongation of viscous fluids and proved the existence
of non-stationary solutions using semigroup theory. Hagen has also proved
the existence of non-stationary solutions of non-isothermal viscoelastic melt
spinning equations in which the main assumption is that the temperature of
the fibre is monotonically decreasing and reaches a certain value (called the
solidification point). This assumption is crucial to all the results proved in
that paper.

In this study the isothermal case has been considered and the purpose of
this paper is two-fold. First, we investigate stationary solutions of isothermal
melt spinning equations using the Giesekus constitutive equation. The Giesekus
constitutive equation is employed because this model describes both extensional
thickening and extensional thinning behaviour and is employed widely in the
simulation of fibre spinning process. From the analytic solution, the value
of the Giesekus model parameter is got for which the fluid shows Newtonian
behaviour (constant viscosity) and which also serves as the borderline between
extensional thickening and extensional thinning behaviour. It may be added
that in a similar way existence and uniqueness results can be proved for the
spinning equations with any other viscoelastic constitutive equation.

Second, the study of stability of the spinning process translates mathemat-
ically into the study of the stability of the equilibrium solutions. Therefore,
equipped with the existence results of the stationary solutions, stability of
these stationary solutions with respect to changing viscoelasticity is investi-
gated. This is done by simulating the complete system of nonstationary melt
spinning equations with perturbed boundary conditions for different values of
the Deborah number (De). The effect of viscoelasticity on the spinning process
has been studied previously by Lee et al, [13]. White Metzner and PTT fluids
were used in their studies. It was reported by them that for a certain value
of model parameter, the fluid changed its behaviour from extension thickening
to extension thinning. The effect of viscoelasticity on stability of the fibre de-
pended on whether the fluid was extension thickening or extension thinning.
For extension thickening fluids increase in viscoelasticity increased stability
whereas for extension thinning fluids it decreased the stability. In our study
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these results are confirmed and furthermore effect of model parameter on the
stability is also investigated.

2 Description of the System

A polymer fibre is modelled as a uniaxial, extensional flow of a viscoelastic
fluid. Considering the geometry of the fibre, usually a cylindrical coordinate
system is used to describe the flow with the z coordinate in the direction
of the flow. When the polymer melt exits the spinneret, it swells to several
times its diameter size. This is a characteristic behaviour of non-newtonian
fluids, [17]. While modelling the fibre mathematically however, this "die-swell"
phenomenon has been neglected. Considering the conservation laws of mass
and momentum of a polymer jet and averaging over the cross-section of the
fibre, the following one-dimensional (1-d) equations are got: [12].

∂A

∂t
+

∂

∂z
(Avz) = 0, (2.1)

ρA

(

∂vz
∂t

+ vz
∂vz
∂z

)

=
∂

∂z
(Aτzz). (2.2)

A detailed derivation of the 1-d spinning equations done by integrating the
equations of conservation of mass and momentum over the cross sectional area
of the fibre can be found in [12]. In the above equations, z denotes the coordi-
nate along the spinline, t is the time, A the cross sectional area of the fibre, vz
the axial velocity and τzz the axial stress. In the momentum equation, force
due to gravity, surface tension and force due to air drag have been neglected for
simplicity. Later, the force due to inertia will also be neglected. Radial stress
variable is not considered. The energy equation has been neglected in order to
get the isothermal process.

The constitutive equation of the Giesekus fluid has the form, [17]:

τ + λ

(

Dτ

Dt
−D.τ − τ .DT

)

+ ατ .τ = 2µǫ̇,

where τ denotes the stress tensor, D represents the deformation rate tensor, λ
is the relaxation time of the polymer (time taken for the fluid to get back its
original state after being stretched), µ is the zero-shear viscosity, α is a material
constant and ǫ̇ = (D+D

T )/2 denotes the rate-of-strain or extensional rate
tensor. In the above equation D

Dt denotes the material derivative:

D

Dt
=

∂

∂t
+ v.∆.

For simplicity, considering only the axial stress variable τzz , and integrating
over the cross-sectional area, we get the following form of the Giesekus consti-
tutive equation

τzz + λ

(

∂τzz
∂t

+ vz
dτzz
dz

− 2τzz
dvz
dz

)

+ ατ2zz = 2µ
dvz
dz

. (2.3)

Math. Model. Anal., 15(3):287–298, 2010.
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The system (2.1), (2.2) and (2.3) is subject to the following boundary conditions

A = A0, vz = v0, at z = 0 for all t; vz = vL at z = L for all t,

where L denotes the length of the fibre, A0 and v0 denote the cross sectional
area and axial velocity of the fibre at the spinneret and vL denotes the take-up
velocity of the fibre.

2.1 Dimensionless form

Introducing the dimensionless quantities,

a∗ =
A

A0

, v∗ =
vz
v0

, t∗ =
tv0
L

, τ∗ =
τzzL

2µv0
, z∗ =

z

L
, De =

λv0
L

and dropping the star, the following dimensionless transport equations govern-
ing the melt spinning process along with the Giesekus constitutive equation are
obtained

∂a

∂t
+

∂(av)

∂z
= 0, (2.4)

d(aτ)

dz
= 0, (2.5)

∂τ

∂t
+ v

∂τ

∂z
−
(

2τ + 1/De
)∂v

∂z
= −

τ

De

(

1 + 2αDeτ
)

, (2.6)

a = 1, v = 1, z = 0, (2.7)

v = D > 1, z = 1, (2.8)

where D = vL/v0 is the draw ratio. The parameter α is such that 0 < α ≤ 1. In
the momentum equation (2.5), the inertia term has been dropped for simplicity.
In Eq.(2.6), De denotes the Deborah number which is the ratio of the relaxation
time of the fluid to the characteristic time scale of the flow. For De ≪ 1, the
fluid relaxes relatively quickly and behaves like a viscous fluid, and for De ≫ 1,
the fluid does not relax on the time scale of the flow, and therefore behaves
more like an elastic solid, [17].

3 Existence of Stationary Solutions

From the system (2.4)–(2.6), we can easily read off the stationary system of
melt spinning equations.

d(av)

dz
= 0,

d(aτ)

dz
= 0, (3.1)

v
dτ

dz
−

(

2τ +
1

De

)

dv

dz
= −

τ

De
(1 + 2αDeτ) (3.2)

The boundary conditions are given by (2.7) and (2.8).
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Proposition. Under the assumption that v(z) > 0 ∀z ∈ [0, 1], De > 0 and

τ0 > 0, there exists a unique solution for equations (3.1)–(3.2) along with (2.7)
and (2.8) such that v is monotonically increasing.

Proof. From equations (3.1) we readily obtain

av = 1, aτ = τ0(D), (3.3)

where τ0 is the value of stress at the spinneret. This value is unknown and
dependent on the draw ratio D. From the above equations we get τ = τ0(D)v.
Substituting this into (3.2), we get the following differential equation in variable
v(z).

dv

dz
(De vτ0(D) + 1) = vτ0(D)(1 + 2αDe vτ0(D)). (3.4)

Solving the above differential equation and applying the boundary condition
v(0) = 1, we get the solution in the following form

v

(

1 + 2αDevτ0(D)

1 + 2αDeτ0(D)

)

1−2α

2α

= exp(zτ0(D)). (3.5)

Let

g(v) = v

(

1 + 2αDevτ0(D)

1 + 2αDeτ0(D)

)

1−2α

2α

− exp(zτ0(D)), ∀z ∈ (0, 1).

We observe that,

lim
v→0

g(v) = − exp(τ0(D)z) < 0,

g(v) → ∞ as v → ∞.

This shows that the function g has at least one zero in the domain [0,∞). But
before we can claim the existence of the solution to the spinning equations we
need to prove that given D, there exists τ0 such that v(1) = D. For this we first
find the relationship between τ0 and D which is easily obtained by substituting
the boundary condition v(1) = D in (3.5):

D

(

1 + 2αDeDτ0
1 + 2αDeτ0

)
1−2α

2α

= exp(τ0). (3.6)

Therefore, finding τ0 is equivalent to the problem of finding a zero of the func-
tion f , where

f(τ0) = D

(

1 + 2αDeDτ0
1 + 2αDeτ0

)
1−2α

2α

− exp(τ0).

We readily obtain that

lim
τ0→0

f(τ0) = D − 1 > 0 for D > 1,

f(τ0) → −∞ as τ0 → ∞.

Math. Model. Anal., 15(3):287–298, 2010.
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Again, applying the intermediate value theorem, f has at least one zero in
[0 ∞). Therefore, we can find τ0 > 0 such that there exists at least one solution
v(z) which fulfils the boundary condition v(1) = D.

To prove the uniqueness of the solution it is enough to prove that g(v) 6= 0
for v ∈ (0,∞) for all z ∈ [0, 1]. First, we note that g is continuous and
differentiable for v ∈ (0,∞).

dg

dv
=

(

1 + 2αDeτ0v

2αDeτ0

)β (

1 +
vβ2αDeτ0

1 + 2αDeτ0v

)

,

where β = 1−2α
2α . It can be easily seen that for v > 0, De > 0, τ0 > 0, dg

dv 6= 0.
This proves that there can exist only one v such that g(v) = 0. From Eq.(3.4)
it is easy to see that dv

dz > 0 ∀z ∈ [0, 1]. This implies that v is monotonically
increasing in the fibre domain. ⊓⊔

Equation (3.6) is an important one because it gives the relation between the
stress at the spinneret and the draw ratio. Usually, the boundary conditions
prescribed are the diameter and velocity at the spinneret and the take-up ve-
locity at the end of the fibre. The boundary value problem is then solved using
a shooting method, where the stress at the spinneret has to be guessed. A re-
lation such as (3.6) eliminates the need for a shooting method hence improves
the efficiency of numerics.

3.1 Qualitative behaviour of Giesekus fluid as a function of the

parameter α

The motivation of this section is based on the studies done by Lee et al [13],
on the effect of fluid viscoelasticity on stability of the spinning process. They
conducted their studies using White-Metzner and PTT fluids. According to
their studies the effect of increasing viscoelasticity depended on whether the
fluid was extension thickening or extension thinning. This in turn depends on
the parameters of the viscoelastic models. They found numerically the value
of the parameter below which the fluid showed extension thickening behaviour
and above which the fluid showed extension thinning behaviour.

In our work we find analytically that value of the Giesekus model parameter
α for which the fluid becomes Newtonian (with constant viscosity). This value
of the parameter serves as the borderline between extension thickening and
extension thinning fluids.

Let η denote the extensional viscosity of the fluid and let ε̇ = dv/dz denote
the extension rate of the fibre. Then,

η(ε̇) = τ/ε̇. (3.7)

For uniaxial extensional flow of Non-newtonian fluids, the extensional viscosity
depends on the extension rate. If this viscosity increases with increasing elonga-
tion rate the fluid is known as extension thickening fluid and if it decreases with
increasing extension rate the fluid is called extension thinning. Here, we derive
the solution when the viscosity is constant. For such fluid, the relation between
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the stress and the extension rate is linear. Hence, τ = ηε̇ = K
dv

dz
where η is

constant. But from Eqns. (3.3), we also know that τ = τ0v. Therefore,

τ = η
dv

dz
⇐⇒ τ0v = η

dv

dz
.

From Eq.(3.4), we get

η =
1+Devτ0

1 + 2αDevτ0
. (3.8)

Our claim that η is constant is true if and only if α = 0.5. The solution for
α = 0.5 is given by

v(z) = Dz . (3.9)

Therefore, the Giesekus fluid shows Newtonian behaviour for α = 0.5. This
is supported by numerical evidence as shown in Fig. 1, where the extensional
viscosities at various spinline positions have been plotted against the extension
rates at the same positions.
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Figure 1. Extensional viscosity versus Extension rate.

The extensional viscosities have been calculated by simulating the station-
ary equations (3.1)–(3.2) and (2.7)–(2.8). From the figure, we see that for
α = 0.5, the extensional viscosity is constant with respect to the extensional
rate showing Newtonian behaviour. For α < 0.5, the extensional viscosity in-
creases with increasing extension rate hence showing that the fluid exhibits
extension thickening behaviour. For α > 0.5, the extensional viscosity is seen
to be decreasing with increasing extension rate thus showing that the fluid
exhibits extension thinning behaviour.

4 Non-Stationary Equations

In this section, equipped with the existence results of the stationary solutions we
study the stability of these stationary solutions by simulating the nonstation-

Math. Model. Anal., 15(3):287–298, 2010.



i

i

“MMA15v24” — 2010/7/6 — 10:36 — page 294 — #8
i

i

i

i

i

i

294 R. Dhadwal and S.K. Kudtarkar

ary equations as given by Eqs. (2.4)–(2.6) along with the following boundary
conditions.

t = 0 : a = as, v = vs, τ = τs for 0 < z < 1,

t > 0 : a = a0 = 1, v = v0 = 1, at z = 0,

t > 0 : v = D(1 + ǫ) at z = 1.

Here vs, as and τs represent the steady state profiles of velocity, cross sectional
area and stress respectively. The disturbance in the draw ratio is represented
by ǫ < 1.

4.1 Note on the numerical method

The numerical method used to solve the system of equations is the method of
lines. We first discretise the equations in time. This results in the reduction
of the partial differential equation (pde) system to an ordinary differential
equation (ode) system with spinlength as the independent variable. We set
h = 1/N , tn = n/N , 0 ≤ n ≤ N and define

an(z) = a(tn, z), vn(z) = v(tn, z), τn(z) = τ(tn, z), 0 ≤ n ≤ N.

Let un(z) = [an(z) vn(z) τn(z)]
′. The discretization of Eqns. (2.4)–(2.6) in the

time variable gives

dun

dz
= B−1

n

(

fn −A

(

un − un−1

h

))

1 ≤ n ≤ N, (4.1)

where

Bn =





vn an 0
τn 0 an
0 −(2τn + 1/De) vn



 , A =





1 0 0
0 0 0
0 0 1



 ,

fn =





0
0

−τn(1/De+ 2ατn)





In addition we impose the initial condition u0(z) = us, where us is the steady
state solution, and the boundary conditions

a(n, 0) = 1, v(n, 0) = 1, v(n, 1) = D(1 + ǫ).

This system of ordinary differential equations is treated using standard
differential algebraic solvers. At each time step the shooting method is used
to match the axial velocity at the fibre end with the prescribed final velocity
in order to solve the boundary value problem. It is worthwhile to note that
although we found the relation between the stress at the spinneret and the take
up velocity for the stationary equations, for the non-stationary equations this
stress would be dependent on time too and hence the need for shooting method
at each time step. The steady state solutions are got by solving the stationary
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equations (3.1)-(3.2) with the boundary conditions (2.7) and (2.8) using the
MATLAB ode solver ode23tb. The convergence of both the stationary and
non-stationary simulations depends crucially on the guessed value of τ0. In the
stationary case, this is done by the relation (3.6). In the non-stationary case,
at every time step two values of τ0 are guessed and the system (4.1) is solved.
Then a secant method is used to get a new value of τ0. This is continued till
the value of τ0 converges to a prescribed tolerance. The transient solutions
were computed for 1000 time steps.

4.2 Results of numerical simulation and discussion

The results of the numerical simulations of the non-stationary equations can be
seen in Fig. 2, where the cross-sectional areas and the the spinline tensions of
the fibre at the take-up position (z = 1) have been plotted against time for two
different values of α representing extension thickening (α = 0.2) and extension
thinning (α = 0.8) fluids.
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Figure 2. Transient response of the cross sectional area (left) and spinline tension (right)
at take-up for extension thickening fluids (α = 0.2, D = 40) and extension thinning fluids
(α = 0.8,D = 30).

We observe that consistent with results reported by Lee [13], increase in vis-
coelasticity increases stability for extension thickening fluids and it decreases
stability for extension thinning fluids. In their work they explained that stabil-
ity depended on the spinline tension sensitivity. Higher the tension, lower is the
tension sensitivity and vice versa. This tension sensitivity in turn is responsible
for the cross sectional area sensitivity. It is mainly the latter which determines
the stability of the spinning process. In order to understand how the increase
in viscoelasticity can increase or decrease the spinline tension we again take a
look at Eq. (3.8).

η = (1 +Devτ0)/(1 + 2αDevτ0).

From the above it can easily be seen that η increases as De increases for α < 1

2

(extension thickening fluids) and that η decreases as De increases for α > 1

2

(extension thinning fluids). This is also supported by Fig. 1, where the exten-
sional viscosity has been plotted against extension rate for two different De for

Math. Model. Anal., 15(3):287–298, 2010.
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different values of α. High extensional viscosities generate high spinline ten-
sion, which aid in stabilizing the spinning process. Low extensional viscosities
generate low spinline tensions, which tend to destabilize the process. From the
right figure in Fig. 2, we see that for extension thickening fluids (α = 0.2),
increase in De results in higher tension but lower tension sensitivity as seen
in the dampening of the oscillations of the spinline tension. In the extension
thinning case (α = 0.8), increase in De results in lower tension but with in-
creasing amplitude of the oscillations of the spinline tension showing unstable
behaviour. For a detailed description of the physics behind the mechanism
of draw resonance please refer to [13]. Moreover, from Eq. (3.8), it can be
seen that keeping all other parameters constant, η is a decreasing function of
α. Higher the value of α, lower is the extensional viscosity, generating lower
spinline tensions which lead to more and more unstable behaviour. This is
supported by Fig. 3, where cross-sectional areas and spinline tensions of the
fibre at take-up for different values of α have been plotted against time.
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Figure 3. Transient response of the cross sectional area (left) and spinline tension (right)
at take-up for different values of α.

Different values of draw ratio D have been taken for extension thickening
and extension thinning fluids because for extension thickening fluids the critical
draw ratio where the instability sets in is much higher than for extension thin-
ning fluids. From the right figure we see that the spinline tensions decrease as
α increases. Lower the spinline tensions, higher is the tension sensitivity lead-
ing to higher cross-sectional area sensitivity as seen in the left figure. Hence,
Giesekus fluids with α close to 0 are the most stable and the stability decreases
as α increases. By the above comparison of stability it is meant that the critical
draw ratio where the draw resonance sets in would be the highest for Giesekus
fluids with α approaching 0 and would keep decreasing as α increases. This is
also consistent with the observation that extension thickening fluids show more
stability than extension thinning fluids.

5 Conclusion

In this study, we have investigated the existence and uniqueness of stationary
solutions of isothermal viscoelastic melt spinning equations. We have shown
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the relation between the boundary conditions of stress at the spinneret and the
take-up velocity. The solution gives an insight into the rheological behaviour
of the Giesekus fluid under elongation. For α = 0.5, we have shown that the
fluid exhibits Newtonian behaviour and serves as a borderline between exten-
sion thickening and extension thinning behaviour. To the knowledge of the
authors, this is the first time that analytic stationary solutions to the isother-
mal viscoelastic melt spinning equations have been furnished. By simulating
the complete system of non-stationary equations we have studied the effect of
viscoelasticity on stability of the equilibrium solutions. We have also studied
numerically the effect of the Giesekus model parameter on the stability of the
spinning equations. Giesekus fluids with α close to 0 are the most stable and
the stability decreases as α increases. The effect of increasing viscoelasticity
on stability is such that for Giesekus fluids with α < 0.5, increase in viscoelas-
ticity leads to stability where as for α > 0.5, increase in viscoelasticity leads to
instability which is also in confirmation with previous studies done on different
viscoelastic fluids.
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