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Abstract. In this paper, the Homotopy Perturbation Method (HPM), is introduced
for elastic stability analysis of tilt-buckled columns with variable flexural stiffness.
Buckling loads and corresponding mode shapes are determined considering different
types of variations in flexural stiffness of columns. The proposed approach is an
efficient technique for the elastic stability analysis of specified problems.
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1 Introduction

In most of the real world engineering applications, stability analysis of the
compressed members is very important. There have been lots of researches
related to the buckling behaviour of the axially compressed members. On the
other hand, finding a closed-form solution for the buckling of elastic columns
with variable cross-section subjected to complicated load configurations is very
difficult in most of the cases.

The problems of buckling of columns under variably distributed axial loads
were solved in detail by Vaziri and Xie [30] and others. Some analytical closed-
form solutions are given by Dinnik [8], Karman and Biot [14], Morley [20],
Timoshenko and Gere [29] and others. One of the detailed reference related to
the structural stability topic is written by Simitses and Hodges [26] with de-
tailed discussions. Iyengar [21] made some analysis on buckling of uniform beam
with several elastic support. Wang et al. [31] gave exact solutions for buck-
ling of structural members for various cases of columns, beams, arches, rings,
plates and shells. Ermopoulos [9] found the solution for buckling of tapered
bars, axially compressed by concentrated loads applied at various locations
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along their axes. Li [18] gave the exact solution for buckling of non-uniform
columns under axial concentrated and distributed loading. Lee and Kuo [17]
established an analytical procedure to investigate the elastic stability of a col-
umn with elastic supports at the ends under uniformly distributed follower
forces. Furthermore, Gere and Carter [10] investigated and established exact
analytical solutions for buckling of several special types of tapered columns
with simple boundary conditions. Solution of the problem of the buckling of
elastic columns with step varying thickness is established by Arbabei and Li
[1]. Stability problems of uniform bar with several elastic supports using the
moment-distribution method were analyzed by Kerekes [16]. Research of Sig-
iner [25] was about the stability of a column, which flexural stiffness has a
continuous linear variation along the column. Moreover, the analytical solu-
tions of a multi-step bar with varying cross section were obtained by Li et al.
[18, 19] and papers cited therein. The energy method was used by Sampaio et
al. [22] to find the solution for the problem of buckling behaviour of inclined
beam-column. Some of the important researchers who studied the mechanical
behavior of beams/columns are Keller [15], Tadjbakhsh and Keller [27] and
Taylor [28]. Atanackovic [2] examined the stability problems and equilibrium
states of elastic rods in detail with Euler energy and dynamical methods for a
number of problems. Coşkun and Atay [7] and Atay and Coşkun [4] studied
column buckling problems for the columns with variable flexural stiffness and
for the columns on elastic foundation by using variational iteration method.

Homotopy Perturbation Method (HPM) is a coupling of the traditional per-
turbation method and homotopy in topology was proposed and improved by
He [11, 12, 13]. The method was applied to nonlinear oscillators with discon-
tinuities, nonlinear wave equations, boundary value problems, solid and fluid
mechanics [23, 24]. Atay [3] and Coşkun [6] successfully applied the method for
the determination of critical buckling loads for variable stiffness Euler columns,
and Euler columns of variable flexural stiffness on an elastic foundation. These
studies showed that the HPM was capable of analyzing elastic stability prob-
lems of Euler columns with variable stiffness.

In this study, homotopy perturbation method is introduced for the analysis
of tilt-buckling of variable stiffness Euler columns. By the use of the method,
an approximate continuous polynomial function is obtained as the solution for
the problem at hand for which an analytical solution is not available. Once
the buckling loads are obtained, corresponding modeshapes can be produced
easily. The study presents an easy-to-use and efficient solution algorithm for
the problems for which an analytical solution is difficult to obtain.

2 Tilt Buckling of Columns

Simitsis and Hodges [26] discussed tilt-buckling of columns and shafts for Euler
columns with constant flexural stiffness theoretically. A tilt-buckled column is
shown in Fig. 1. The governing equation and associated boundary conditions
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Figure 1. Tilt-buckled column.

for such a column are given as follows:

(EIw,xx),xx + Pw,xx = 0, (2.1)

w(0) = 0, w,x(0) = 0, (2.2)

w,xx(L) = 0, −[EIw,xxx(L) + Pw,x(L)] = −P
[

−

w(L)

a

]

. (2.3)

Solution of Eq. (2.1) is given as

w(x) = C1 sinλx+ C2 cosλx+ C3x+ C4,

where λ2 = P/(EI). As it was discussed in [26], using boundary conditions we
get a characteristic equation and formulate the following stability criterion

tanλL = λL
(

1 + a/L
)

.

3 Homotopy Perturbation Method

In recent years, Homotopy Perturbation Method (HPM) can be considered as
one of the most promising methods for nonlinear problems. It provides an
analytical approximate solution for problems at hand. Brief theoretical steps
can be given as follows. Let consider a problem

L(w) +N(w) = f(r), r ∈ Ω (3.1)

with boundary conditions B(w, ∂w/∂n) = 0. Here L is a linear operator, N is
a nonlinear operator, B is a boundary operator, and f(r) is a known analytic
function. HPM, which was described in detail in [13], defines homotopy as

v(r, p) = Ω × [0, 1] → R, (3.2)

which satisfies the following equalities:

H(v, p) = (1− p)[L(v)− L(w0)] + p[L(v) +N(v)− f(r)] = 0 (3.3)

Math. Model. Anal., 15(3):275–286, 2010.
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or
H(v, p) = L(v)− L(w0) + pL(w0) + p[N(v)− f(r)] = 0, (3.4)

where r ∈ Ω, p ∈ [0, 1] is an imbedding parameter and u0 is an initial approx-
imation which satisfies the boundary conditions. Obviously, from (3.3) and
(3.4), we have:

H(v, 0) = L(v)− L(w0) = 0,

H(v, 1) = L(v) +N(v)− f(r) = 0.

As p changes from zero to unity, v(r, p) changes from u0 to u(r). In topology,
these deformations L(v)−L(w0) and L(v)+N(v)− f(r) are called homotopic.
The basic assumption is that the solutions of Eq. (3.3) and Eq. (3.4) can be
expressed as a power series in p such that:

v = v0 + pv1 + p2v2 + p3v3 + . . . . (3.5)

The approximate solution of L(w) +N(w) = f(r), r ∈ Ω can be obtained as:

w = lim
p→1

v = v0 + v1 + v2 + v3 + . . . . (3.6)

The convergence of the series in Eq.(3.6) has been proved in [11]. Another
study with important results on the convergence of HPM for partial differential
equations was presented by Biazar and Ghazvini [5]. These studies proved the
convergence of the method and showed that HPM is a reliable and efficient
technique for analyzing nonlinear problems.

General buckling equation in (2.1) can be rewritten as follows,

w,xxxx + 2
EI(x),x
EI(x)

w,xxx +
1

EI(x)
[P + EI(x),xx]w,xx = 0. (3.7)

Based on the formulation given above, Eq. (3.7) can be divided into two parts
as follows,

L(w) = w,xxxx, N(w) = 2
EI(x),x
EI(x)

w,xxx +
1

EI(x)
[P + EI(x),xx]w,xx (3.8)

with f(r) = 0. Inserting (3.5) into (3.4) in view of (3.7)–(3.8), and equating
the like powers of the parameter p and, then solving each equation yields the
following iteration procedure

p0 : viv0 − wiv
0 = 0, (3.9)

p1 : viv
1

+ wiv
0

+ ξ1
(

x
)

v
′′′

0
+ ξ2

(

P, x
)

v
′′

0
= 0 (3.10)

p2 : viv2 + ξ1
(

x
)

v
′′′

1 + ξ2
(

P, x
)

v
′′

1 = 0 (3.11)

p3 : viv
3

+ ξ1
(

x
)

v
′′′

2
+ ξ2

(

P, x
)

v
′′

2
= 0 (3.12)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pn : vivn + ξ1
(

x
)

v
′′′

n−1
+ ξ2

(

P, x)v
′′

n−1
= 0 (3.13)
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where

ξ1
(

x
)

= 2
EI(x),x
EI(x)

, ξ2
(

P, x
)

=
1

EI(x)
[P + EI(x),xx]. (3.14)

In order to apply HPM, a good initial guess is required and the solution of
Lw = 0 provides a good one for the problem at hand. Inserting this initial
guess into Eq.(3.9), a solution can easily be obtained by solving successive
equations (3.9)–(3.14) and then using (3.6).

4 Analysis of Tilt-Buckling of Columns Using HPM

There exist four boundary conditions, i.e., two at each end of the column,
in the problem under consideration. In previous works [3, 4, 6, 7], an initial
approximation was chosen as the solution of the elastic stability problems of
Euler columns. In the variational iteration method an initial approximation is
chosen as the solution of the linear part of governing equation, i.e., solution of
Lw = 0. Hence, a third order polynomial which is the solution of Lw = 0 for
Eq. (3.7), was previously used in variational iteration analysis of buckling of
Euler columns [7, 4]. The same initial approximation was also used in previous
works employing HPM [3, 6] and is given as follows:

w0(x) = Ax3 +Bx2 + Cx+D. (4.1)

This initial guess is a third order polynomial and has four unknown coefficients.
These coefficients can be determined by introducing four boundary conditions
at the column’s ends into (4.1).

This polynomial function is also the interpolation function for the Euler-
Bernoulli beam finite element. Variational form for this finite element requires
an interpolation function to be continuous up to second order derivative. Such
a function satisfies the essential boundary conditions for the element.

Since the initial approximation in Eq. (4.1) satisfies the essential boundary
conditions at the column’s ends, a simpler initial approximation may be chosen,
satisfying Lw = 0 and the essential boundary conditions at x = 0 automatically
for the problem at hand. Such an approximation is given as:

w0(x) = Ax3 +Bx2.

This approximation is still a third order polynomial and includes only two
unknown coefficients which are supposed to be found by imposing the rest two
boundary conditions of the problem considered.

In the computations, fifteen iterations are conducted and boundary condi-
tions for each case are rewritten by using the final approximation of iteration.
Each boundary condition produces an equation containing two unknowns com-
ing from the initial approximation. Hence two equations may be written with
respect to those boundary conditions of the problem. These equations can be
put into matrix form as follows:

[

M(λ)
]{

A
}

=
{

0
}

Math. Model. Anal., 15(3):275–286, 2010.



i

i

“MMA15v23” — 2010/7/12 — 9:08 — page 280 — #6
i

i

i

i

i

i

280 S.B. Coşkun

where
{

A
}

=
〈

A,B
〉T

. For a nontrivial solution, determinant of coefficient ma-

trix must be zero. Determinant of matrix
[

M(λ)
]

yields a characteristic equa-
tion in terms of λ. Positive real roots of this equation are the non-dimensional
buckling loads for the tilt-buckled column.

5 Case Studies

5.1 Column with constant flexural stiffness

As the first case, tilt-buckling of an Euler column with constant flexural stiffness
is considered for a/L = 0.8. Stability criteria for this case is given in (7)
[26]. By using the proposed HPM, fifteen iterations are conducted and the
obtained results on the first three modes as non-dimensional buckling loads
(λ2 = PL2/EI) are presented in Table 1.

Table 1. Normalized buckling loads for the first three modes for the columns
with a constant flexural stiffness (a/L = 0.8).

MOD HPM Exact

1 1.2208 1.2208
2 21.0864 21.0864
3 60.5707 60.5707

In addition to results given in Table 1, the errors at different iterations are
depicted in Fig. 2 in order to show how fast the results are converging for each
mode.

Figure 2. Variation of errors with iterations for the first three modes.

Variation of critical buckling loads with a/L values is also considered and
both HPM and exact results are compared in Fig. 3.

As follows from Table 1, results obtained by HPM are in excellent agreement
with the exact results. Critical buckling load for constant stiffness case is
converging very quickly as shown in Fig. 2. It follows from Fig. 3 that variations
of critical buckling loads computed by HPM for different a/L are the same as
exact results. Comparisons with the exact solutions for constant stiffness case
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Figure 3. Variation of normalized critical buckling loads with a/L values.

show that HPM is a powerful tool in predicting buckling loads of tilt-buckled
columns. Hence, buckling loads for tilt-buckled columns with variable flexural
stiffness can be produced by using HPM accordingly.

5.2 Columns with variable flexural stiffness

First, a column with an exponentially varied flexural stiffness is considered.
Flexural stiffness of such a column can be considered as follows:

EI(x) = αe−bx (5.1)

The normalized buckling loads (PL2/α) for the first three modes are computed
for three different exponential variation cases: case 1 (bL = 0.1), case 2 (bL =
0.5) and case 3 (bL = 1.0). As the second type of variation, a linearly varied
flexural stiffness is considered. Linear variation of stiffness may be expressed
as follows:

EI(x) = α(1 − bx). (5.2)

The normalized buckling loads for the first three modes are computed for three
different linear variation cases: case 1 (bL = 0.1), case 2 (bL = 0.3) and case
3 (bL = 0.5). Finally, a quadratic variation of stiffness is considered. The
variation is considered as follows:

EI(x) = α(1− bx)2. (5.3)

For this quadratic variation case, normalized buckling loads for the first three
modes are computed for three different quadratic variation cases: case 1 (bL =
0.1), case 2 (bL = 0.3) and case 3 (bL = 0.5).

The variations in flexural stiffness defined by (5.1)–(5.3) are inserted in
HPM formulation of the problem and buckling loads for the first three mode of
tilt-buckled column are obtained, as shown in Table 2. Three cases in the table
correspond to different values of parameters a and b as defined previously.
Moreover, variations of critical buckling loads for different variable stiffness
cases are depicted in Fig. 4.

Math. Model. Anal., 15(3):275–286, 2010.
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Table 2. Normalized buckling loads for first three modes for the columns with variable
flexural stiffness (a/L = 0.8).

Stiffness Variation MOD Case 1 Case 2 Case 3

Exponential

1 1.1878 1.0595 0.9083
2 20.0754 16.4287 12.6791
3 57.6260 47.0187 36.1338

Linear

1 1.1871 1.1159 1.0379
2 20.0413 17.8579 15.5044
3 57.5253 51.1559 44.2700

Quadratic

1 1.1537 1.0144 0.8652
2 19.0395 15.0452 11.1789
3 54.6080 42.9777 31.7185

 

Figure 4. Variation of normalized critical buckling loads for different variable stiffness cases.

6 Buckling Mode Shapes

Buckling mode shapes for the columns may also be produced from the polyno-
mial approximations by HPM considered in this study. For this purpose, buck-
ling modes of constant flexural stiffness case obtained using HPM are compared
with the exact ones given in [26]. Introducing eigenvalues into (2.1)–(2.3), we
obtain eigenfunctions for the mode shapes:

w(x) = A
( 5

9λ
sinλx− cosλx −

5

9
x+ 1

)

.

Eigenfunctions in (2.3) are normalized and compared with the normalized poly-
nomial eigenfunctions obtained by using HPM. These normalized eigenfunc-
tions are defined as

w̄j =
wN (x, λj)

[ 1
∫

0

∣

∣wN (x, λj)
∣

∣

2
dx

]1/2
, j = 1, 2, 3, . . . (6.1)



i

i

“MMA15v23” — 2010/7/12 — 9:08 — page 283 — #9
i

i

i

i

i

i

Analysis of Tilt-Buckling of Euler Columns by HPM 283

Figs. 5 and 6 show the comparison of buckling modes shapes for the first two
modes. From these figures, excellent agreement between HPM and exact results
is shown for both modes. Hence, the same approach can be used to predict
buckling mode shapes for variable stiffness cases.

Figure 5. Mode shapes for the first
mode – constant stiffness.

Figure 6. Mode shapes for the second
mode – constant stiffness.

Polynomial approximations for exponential, linear and quadratic variations
of flexural stiffness are normalized by using (6.1). Below, the first two mode
shapes for different variations with previously defined parameters which depend
on different values of b, are shown in Figs.7 – 12.

Figure 7. Modeshapes for the first mode
– exponential variation.

Figure 8. Modeshapes for the second
mode – exponential variation.

Figure 9. Modeshapes for the first mode
– linear variation.

Figure 10. Modeshapes for the second
mode – linear variation.

It may be observed that not only the buckling loads but also the buck-
ling modeshapes can also be easily obtained in the elastic stability analysis of
variable stiffness tilt-buckled columns.

Math. Model. Anal., 15(3):275–286, 2010.
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Figure 11. Modeshapes for the first
mode – quadratic variation.

Figure 12. Modeshapes for the second
mode – quadratic variation.

7 Conclusion

HPM was introduced in this study for the analysis of tilt-buckling of Euler
columns with constant and variable flexural stiffness. As a demonstration of
application of the method, first constant stiffness columns were analyzed and
obtained results were compared with the exact ones. HPM results have shown
excellent agreement with exact solutions for both the buckling loads and the
mode shapes. The results for these cases are very accurate and show that
the proposed method is capable to solve the same problems for columns of
variable stiffness. By introducing a variable flexural stiffness for the buckling
of an Euler column, it becomes difficult to obtain analytical solution for the
problem. Each different assumption in the variation of flexural stiffness leads
to a different variable coefficient ODE to be solved. In most of the cases, it
is not possible to obtain analytical solutions. However, it is easy to insert
these corresponding variable stiffness terms into HPM analysis procedure and
the results can be obtained after performing some iterations with the method.
The results obtained in this study pointed out that the proposed method is
an efficient and powerful technique in the analysis of tilt-buckling problems of
Euler columns with arbitrary variations of flexural stiffness.
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