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Abstract. The aim of this paper is to establish a new approximation algorithm for
fixed points of nonexpansive mappings in general Banach spaces and to illustrate some
numerical results. The approximation algorithm we shall discuss is xt,n = (tT )nx0,
where x0 ∈ D(T ) is arbitrary, n is a natural number, and t ∈ (0, 1). We shall also
provide some numerical error estimates.
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1 Introduction and Preliminaries

From the applications point of view the construction of fixed points for nonex-
pansive mappings is an important topic in the theory of nonlinear analysis. For
nonexpansive mappings classical fixed point theorems have been established in
[1, 4, 10], whereas Mann [5], Ishikawa [3], and Halpern [2] have analyzed some it-
erative schemes. Various improvements and extensions of the iterative schemes
presented in [2, 3, 5] have been offered in recent years in [6, 7, 8, 9, 11, 13].
However, although these improvements and extensions advance the theory, they
have only limited applicability in applied problems. The purpose of this paper
is to study a new approximation algorithm of fixed points for nonexpansive
mappings in general Banach spaces and to illustrate its applications in numer-
ical computation. Our approximation scheme is defined by xt,n = (tT )nx0,
where x0 ∈ D(T ) is arbitrary, n is a natural number, and t ∈ (0, 1).

In order to study our new approximation algorithm, the following notation
will be useful.
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A mapping T : K → K, in a Banach space, is said to be almost invariant,
if the range R(T ) is bounded and there exists some constant t0 ∈ (0, 1) such
that tR(T ) ⊂ K for all t ∈ [t0, 1].

Example 1. Let E be a Banach space and T be a retraction from K = {x :
‖x−x0‖ ≤ 2} onto R(T ) = {x : ‖x−x0‖ ≤ 1‖, where x0 is a point of E. Then
for all α ∈ [1/2, 1], we have αR(T ) ⊂ K, and hence T is almost invariant.

Example 2. Let E be a Banach space, S(E) denote the unit ball of E, and let
T : S(E) → S(E) be a mapping, then T is almost invariant.

1.1 New approximation algorithm

Let E be a Banach space, K be a nonempty closed subset of E and T : K → K
be an almost invariant nonexpansive mapping. For an arbitrary x0 ∈ K we
define the sequence {xt,n} by

xt,n = (tT )nx0, (1.1)

where t ∈ (0, 1) and n is a natural number.
Recall that a Banach space E is said to satisfy Opial’s condition, if whenever

{xn} is a sequence in E which converges weakly to x, then

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀ y ∈ E, y 6= x.

We also recall that a mapping T in a Banach space is said to be demi-closed
at zero if for any sequence {xn} which converges weakly to x∗ and {Txn}
converges strongly to zero, Tx∗ = 0. We shall need the following lemma.

Lemma 1. [12] Let E be a real reflexive Banach space which satisfy Opial’s

condition. Let K be a nonempty closed convex subset of E, and T : K → K be

a continuous pseudocontractive mapping. Then (I − T ) is demi-closed at zero.

Since any nonexpansive mapping is continuous pseudocontractive mapping,
the above demi-closed principle also holds for nonexpansive mappings.

2 Error Estimation for Approximate Fixed Points

Let E be a real Banach space, K be a closed subset of E, T : K → K be
an almost invariant nonexpansive mapping and xt,n be the path defined by
(1.1). Assume that t → 1, then there exists some neighbourhood [t0, 1) such
that, for any t ∈ [t0, 1), the contraction tT : K → K has a unique fixed point
yt ∈ K, i.e., yt = tT yt. Further, for any given t ∈ [t0, 1), by the Banach fixed
point theorem, the approximation sequence {xt,n} defined by (1.1) converges
strongly to the yt, as n → ∞ (the Picard iterative process). Now from the
error estimation formula for the Picard iterative process, we have

‖xt,n − yt‖ ≤ tn

1− t
‖x0 − tTx0‖. (2.1)
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In addition, from yt = tT yt, we find

‖yt − Tyt‖ ≤ (1/t− 1) ‖yt‖. (2.2)

Combining (2.1) and (2.2), we obtain

‖xt,n − Txt,n‖ ≤ ‖xt,n − yt‖+ ‖yt − Tyt‖+ ‖Tyt − Txt,n‖
≤ 2‖xt,n − yt‖+ ‖yt − Tyt‖

≤ 2tn

1− t
‖x0 − tTx0‖+ (

1

t
− 1)‖tT yt‖

=
2tn

1− t
‖x0 − tTx0‖+ (1− t)‖Tyt‖

≤ 2tn

1− t
‖x0 − tTx0‖+ (1− t) max

z∈R(T )
‖z‖

≤ 2tn

1− t
‖x0 − Tx0‖+ 2tn‖Tx0‖+ (1− t) max

z∈R(T )
‖z‖.

(2.3)

Now since limt→1,n→∞
tn

1−t
= 0, it follows that

lim
t→1,n→∞

‖xt,n − Txt,n‖ = 0.

Hence, we have established an approximate fixed point path {xt,n} = (tT )nx0

and the error estimation (2.3).
For any given acceptable error ε > 0, in the inequality (2.3) we take t ∈ (0, 1)

and a natural number n such that ‖xt,n − Txt,n‖ ≤ ε, where xt,n = (tT )nx0.
Clearly, to reduce the number of iterations, we must take the least natural
numbers n so that the above inequality is satisfied. For this, we consider the
following nonlinear optimal problem

minn = n(t), xt,n = (tT )nx0, ‖xt,n − Txt,n‖ ≤ ε, t ∈ (0, 1).

Next, in the inequality (2.3), we let

A = 2‖x0 − Tx0‖, B = 2‖Tx0‖, C = max
z∈R(T )

‖z‖,

so it can be written as

‖xt,n − Txt,n‖ ≤ tn

1− t
A+ tnB + (1− t)C.

Now for any given acceptable error ε > 0, we let

tn

1− t
A+ tnB + (1− t)C ≤ ε,

which is equivalent to

tn
( A

1− t
+B

)

≤ ε− (1− t)C,
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and hence

tn ≤ ε− (1 − t)C

A/(1− t) +B
=

(1− t)ε− (1− t)2C

A+ (1− t)B
.

Thus, it follows that

n ≥ ln
[(

(1− t)ε− (1 − t)2C
)

/(A+ (1− t)B)
]

ln t
. (2.4)

Next, without any loss of generality, we can assume that

0 <
(1− t)ε− (1− t)2C

A+ (1 − t)B
< 1,

so that n > 0. Clearly, for any given ε > 0, if we take t ∈ (0, 1) and a nature
number n such that (2.4) holds, then ‖xt,n−Txt,n‖ ≤ ε, where xt,n = (tT )nx0.

Finally, we define

fε,A,B,C(t) =
ln
[(

(1 − t)ε− (1− t)2C
)

/(A+ (1− t)B)
]

ln t

and compute the minimum of fε,A,B,C(t) in the open interval (0, 1), for the
given ε, A, B, C. If there exists a tε ∈ (0, 1) such that

fε,A,B,C(tε) = min
t∈(0,1)

fε,A,B,C(t),

then we can take nε = [fε,A,B,C(tε)] + 1 and xtε,nε
= (tεT )

nεx0, so that

‖xε,nε
− Txε,nε

‖ ≤ ε.

The above process for the computation of approximate fixed points of the
nonexpansive mapping T , by the approximate algorithm xt,n = (tT )nx0 pro-
vides the minimal natural number n.

Now we shall give some numerical examples. For simplicity, we shall assume
that A = B = C = 1, and consider the four cases, ε = 0.5, 0.1, 0.01, 0.001.

Case 1. Let ε = 0.5. In this case, we have

f0.5,1,1,1(t) =
ln

[

(0.5(1− t)− (1 − t)2)/(1 + (1 − t))
]

ln t
.

It is clear that, the domain of f0.5,1,1,1(t) must be 0.5 < t < 1, and

lim
t→0.5+

f0.5,1,1,1(t) = +∞, lim
t→1−

f0.5,1,1,1(t) = +∞.

We compute the values of f0.5,1,1,1(t) for some 0.5 < t < 1:

f0.5,1,1,1(0.63) = 7.24898 f0.5,1,1,1(0.62) = 7.13321
f0.5,1,1,1(0.61) = 7.03664 f0.5,1,1,1(0.60) = 6.96000
f0.5,1,1,1(0.59) = 6.90468 f0.5,1,1,1(0.58) = 6.87296
f0.5,1,1,1(0.57) = 6.86848 f0.5,1,1,1(0.56) = 6.89750
f0.5,1,1,1(0.55) = 6.96813 f0.5,1,1,1(0.54) = 7.09825
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We also compute the minimum of f0.5,1,1,1(t)

min
0.5<t<1

f0.5,1,1,1(t) = 6.86664 = f0.5,1,1,1(t
∗), t∗ = 0.573433.

Thus, we can take xt,n = (0.573433T )7x0, as an approximate fixed point of T .
Clearly, it follows that ‖xt,n − Txt,n‖ ≤ 0.5.

Case 2. Let ε = 0.1. In this case, we have

f0.1,1,1,1(t) =
ln
[

(0.1(1− t)− (1 − t)2)/(1 + (1− t))
]

ln t
.

It is clear that, the domain of f0.5,1,1,1(t) must be 0.9 < t < 1, and

lim
t→0.9+

f0.1,1,1,1(t) = +∞, lim
t→1−

f0.1,1,1,1(t) = +∞.

We compute the functional values of f0.1,1,1,1(t) for some 0.9 < t < 1 in the
following:

f0.1,1,1,1(0.99) = 698.7890 f0.1,1,1,1(0.95) = 117.7590
f0.1,1,1,1(0.94) = 98.4326 f0.1,1,1,1(0.93) = 85.8952
f0.1,1,1,1(0.92) = 78.1313 f0.1,1,1,1(0.9109) = 75.2484
f0.1,1,1,1(0.91) = 75.2756 f0.1,1,1,1(0.901) = 89.3505.

We also compute the minimum of f0.1,1,1,1(t)

min
0.9<t<1

f0.1,1,1,1(t) = 75.2475 = f0.1,1,1,1(t
∗), t∗ = 0.917633.

Thus, we can take xt,n = (0.917633T )76x0 as an approximate fixed point of T .
Clearly, it follows that ‖xt,n − Txt,n‖ ≤ 0.1.

Case 3. Let ε = 0.01. In this case, we have

f0.01,1,1,1(t) =
ln
[

(0.01(1− t)− (1− t)2)/(1 + (1 − t))
]

ln t
.

It is clear that, the domain of f0.01,1,1,1(t) must be 0.99 < t < 1, and

lim
t→0.99+

f0.01,1,1,1(t) = +∞, lim
t→1−

f0.01,1,1,1(t) = +∞.

We compute the functional values of f0.01,1,1,1(t) for some 0.99 < t < 1 in the
following:

f0.01,1,1,1(0.9920) = 1375.83 f0.01,1,1,1(0.9912) = 1297.35
f0.01,1,1,1(0.9911) = 1291.19 f0.01,1,1,1(0.9910) = 1286.09
f0.01,1,1,1(0.9909) = 1282.22 f0.01,1,1,1(0.9908) = 1279.79
f0.01,1,1,1(0.9907) = 1279.11 f0.01,1,1,1(0.9906) = 1280.64
f0.01,1,1,1(0.9905) = 1285.10 f0.01,1,1,1(0.9904) = 1293.71

We also compute the minimum of f0.01,1,1,1(t)

min
0.99<t<1

f0.01,1,1,1(t) = 1279.09 = f0.01,1,1,1(t
∗), t∗ = 0.99071541.

Thus, we can take xt,n = (0.99071541T )1280x0 as an approximate fixed point
of T . Clearly, it follows that ‖xt,n − Txt,n‖ ≤ 0.01.
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Case 4. Let ε = 0.001. In this case, we have

f0.001,1,1,1(t) =
ln
[

(0.001(1− t)− (1− t)2)/(1 + (1− t))
]

ln t
.

It is clear that, the domain of f0.001,1,1,1(t) must be 0.999 < t < 1, and

lim
t→0.999+

f0.001,1,1,1(t) = +∞, lim
t→1−

f0.001,1,1,1(t) = +∞.

We compute the functional values of f0.001,1,1,1(t) for some 0.999 < t < 1 in
the following:

f0.001,1,1,1(0.9991) = 18018.90 f0.001,1,1,1(0.99909) = 17924.50
f0.001,1,1,1(0.99908) = 17845.60 f0.001,1,1,1(0.99907) = 17785.60
f0.001,1,1,1(0.99906) = 17748.80 f0.001,1,1,1(0.99905) = 17742.60
f0.001,1,1,1(0.99904) = 17779.10 f0.001,1,1,1(0.99903) = 17881.50
f0.001,1,1,1(0.99902) = 18102.10 f0.001,1,1,1(0.99901) = 18608.70.

We also compute the minimum of f0.001,1,1,1(t)

min
0.999<t<1

f0.001,1,1,1(t) = 17740.70 = f0.001,1,1,1(t
∗), t∗ = 0.999053156.

Thus, we can take xt,n = (0.999053156T )17741x0 as an approximate fixed point
of T . Clearly, it follows that ‖xt,n − Txt,n‖ ≤ 0.001.

3 Some Approximation Fixed Point Sequences and Con-

vergence

In particular, let t = αn → 1, as n → ∞, be a real sequence in (0, 1) such that

limn→∞
αn

n

1−αn
= 0, then the approximation algorithm (1.1) takes the following

special form

xn = (αnT )
nx0. (3.1)

Clearly, from (2.3) it follows that

lim
n→∞

‖xn − Txn‖ = 0. (3.2)

Example 3. Let αn =
√
n/(

√
n+ 1). Then, it is easy to show that

αn
n

1− αn

=
(

√
n√

n+1
)n

1−
√
n√

n+1

=
(

√
n√

n+1
)n

1√
n+1

→ 0

as n → ∞. In this case, the approximation algorithm (1.1) simply takes the
following form

xn =
(

√
n√

n+ 1
T
)n

x0. (3.3)



A New Algorithm for Fixed Points of Nonexpansive Mappings 263

Theorem 1. Let E be a real reflexive Banach space which satisfies Opial’s

condition, K be a closed convex subset of E, and T : K → K be an almost

invariant nonexpansive mapping. Then the fixed points set F (T ) is nonempty.

Moreover let limn→∞
αn

n

1−αn
= 0. Then for any initial x0 ∈ K, ww(xn) ⊂ F (T ),

where ww(xn) denote the weak limit set of {xn} defined by (3.1).

Proof. From (3.2) we have ‖xn−Txn‖ → 0 as n → ∞. This together with the
reflexivity of Banach space E, and Lemma 1, implies that, for any subsequence
{xnk

} of {xn}, there must exist a subsequence {xnki
} of {xnk

} which converges
weakly to a fixed point x∗ of T . This completes the proof. ⊓⊔

Example 4. From Example 3, it follows that the sequence {xn} defined by

xn =
( n

n+ 1
T
)n2

x0 (3.4)

is also an approximation fixed point sequence. The numerical error estimates
of (3.3) and (3.4) can be computed as in Section 2.

Theorem 2. Let E be a real reflexive Banach space which satisfy Opial’s condi-

tion, K be a closed convex subset of E, and T : K → K be an almost invariant

nonexpansive mapping. Then the fixed points set F (T ) is nonempty and for

any initial x0 ∈ K, ww(xn) ⊂ F (T ), where ww(xn) denote the weak limit set

of {xn} defined by (3.4).

References

[1] K. Goebel and W. Kirk. A fixed point theorem for asymptotically nonexpansive
mappings. Proc. Amer. Math. Soc., 35:171–174, 1972. Doi:10.2307/2038462.

[2] B. Halpern. Fixed points of nonexpansive maps. Bull. Amer. Math. Soc., 73:957–
961, 1976. Doi:10.1090/S0002-9904-1967-11864-0.

[3] S. Ishikawa. Fixed point by new iteration method. Proc. Amer. Math. Soc.,
44:147–150, 1974. Doi:10.2307/2039245.

[4] T.H. Kim and H.K. Xu. Remarks on asymptotically nonexpansive mappings.
Nonlinear Analysis, 41:405–415, 2000. Doi:10.1016/S0362-546X(98)00284-3.

[5] W. Mann. Mean value methods in iteration. Proc. Amer. Math. Soc., 4:506–510,
1953. Doi:10.2307/2032162.

[6] A. Moudafi. Viscosity approximation methods for fixed point problems. J. Math.

Anal. Appl., 241:46–55, 2000. Doi:10.1006/jmaa.1999.6615.

[7] N. Nakajo and W. Takahashi. Strong convergence theorems for nonexpansive
mappings and nonexpansive semi–groups. J. Math. Anal. Appl., 297:372–379,
2003. Doi:10.1016/S0022-247X(02)00458-4.

[8] M. Noor and Z. Huang. Wiener–Hopf equation technique for variational inequa-
lities and nonexpansive mappings. Appl. Math. Comput., 2007.
Doi:10.1016/j.amc.2007.02.117.

[9] Y. Su and X. Qin. General iteration algorithm and convergence rate optimal
model for common fixed points of nonexpansive mappings. Appl. Math. Comput.,
186:271–278, 2007. Doi:10.1016/j.amc.2006.07.101.

Math. Model. Anal., 15(2):257–264, 2010.

http://dx.doi.org/10.2307/2038462
http://dx.doi.org/10.1090/S0002-9904-1967-11864-0
http://dx.doi.org/10.2307/2039245
http://dx.doi.org/10.1016/S0362-546X(98)00284-3
http://dx.doi.org/10.2307/2032162
http://dx.doi.org/10.1006/jmaa.1999.6615
http://dx.doi.org/10.1016/S0022-247X(02)00458-4
http://dx.doi.org/10.1016/j.amc.2007.02.117
http://dx.doi.org/10.1016/j.amc.2006.07.101


264 Y. Su and R.P. Agarwal

[10] W. Takahashi. Nonlinear Functional Analysis, Fixed Point Theory and Applica-

tions. Yokohama Publishers, 2000.

[11] H. Xu and M. Ori. An implicit iteration process for nonexpansive mappings. Nu-

mer. Funct. Anal. Optimize., 22:767–773, 2001. Doi:10.1081/NFA-100105317.

[12] H. Zhou. Convergence theorems of common fixed points for a finite family
of Lipschitz pseudocontractions in Banach spaces. Nonlinear Analysis, 2007.
Doi:10.1016/j.na.2007.02.041.

[13] H. Zhou and S. Chang. Convergence of implicit iterative process for a finite family
of asymptotically nonexpansive mappings in Banach spaces. Numer. Funct. Anal.

Optimize., 23:911–921, 2002. Doi:10.1081/NFA-120016276.

http://dx.doi.org/10.1081/NFA-100105317
http://dx.doi.org/10.1016/j.na.2007.02.041
http://dx.doi.org/10.1081/NFA-120016276

	Introduction and Preliminaries
	New approximation algorithm

	Error Estimation for Approximate Fixed Points
	Some Approximation Fixed Point Sequences and Convergence
	References

