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Abstract. The aim of this paper is to establish a new approximation algorithm for
fixed points of nonexpansive mappings in general Banach spaces and to illustrate some
numerical results. The approximation algorithm we shall discuss is x¢,n = (¢T) o,
where zo € D(T) is arbitrary, n is a natural number, and ¢t € (0,1). We shall also
provide some numerical error estimates.
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1 Introduction and Preliminaries

From the applications point of view the construction of fixed points for nonex-
pansive mappings is an important topic in the theory of nonlinear analysis. For
nonexpansive mappings classical fixed point theorems have been established in
[1, 4, 10], whereas Mann [5], Ishikawa [3], and Halpern [2] have analyzed some it-
erative schemes. Various improvements and extensions of the iterative schemes
presented in [2, 3, 5] have been offered in recent years in [6, 7, 8, 9, 11, 13].
However, although these improvements and extensions advance the theory, they
have only limited applicability in applied problems. The purpose of this paper
is to study a new approximation algorithm of fixed points for nonexpansive
mappings in general Banach spaces and to illustrate its applications in numer-
ical computation. Our approximation scheme is defined by z;, = (t1')"xo,
where x¢g € D(T) is arbitrary, n is a natural number, and ¢ € (0,1).

In order to study our new approximation algorithm, the following notation
will be useful.
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A mapping T : K — K, in a Banach space, is said to be almost invariant,
if the range R(T) is bounded and there exists some constant ty € (0,1) such
that tR(T") C K for all ¢ € [to, 1].

Ezample 1. Let E be a Banach space and T be a retraction from K = {x :
|z —zo|| < 2} onto R(T) = {x : ||x — xo|| < 1|, where z¢ is a point of E. Then
for all o € [1/2,1], we have aR(T") C K, and hence T is almost invariant.

Ezample 2. Let E be a Banach space, S(E) denote the unit ball of E, and let
T :S(E) — S(E) be a mapping, then T is almost invariant.

1.1 New approximation algorithm

Let E be a Banach space, K be a nonempty closed subset of F and T : K — K
be an almost invariant nonexpansive mapping. For an arbitrary x¢o € K we
define the sequence {z;,} by

Ttn = (tT)n,To, (11)

where ¢ € (0,1) and n is a natural number.
Recall that a Banach space F is said to satisfy Opial’s condition, if whenever
{z,} is a sequence in E which converges weakly to z, then

limsup ||z, — z|| < limsup ||z, —y||, Yy€eE, y#u.
n—o00 n—r00
We also recall that a mapping 7" in a Banach space is said to be demi-closed
at zero if for any sequence {x,} which converges weakly to z* and {Tx,}
converges strongly to zero, T'z* = 0. We shall need the following lemma.

Lemma 1. [12| Let E be a real reflexive Banach space which satisfy Opial’s
condition. Let K be a nonempty closed convex subset of E, and T : K — K be
a continuous pseudocontractive mapping. Then (I —T) is demi-closed at zero.

Since any nonexpansive mapping is continuous pseudocontractive mapping,
the above demi-closed principle also holds for nonexpansive mappings.

2 Error Estimation for Approximate Fixed Points

Let E be a real Banach space, K be a closed subset of £, T : K — K be
an almost invariant nonexpansive mapping and z;, be the path defined by
(1.1). Assume that ¢t — 1, then there exists some neighbourhood [tg,1) such
that, for any t € [tg, 1), the contraction ¢tT : K — K has a unique fixed point
yr € K, i.e., y. = tTy;. Further, for any given ¢t € [to, 1), by the Banach fixed
point theorem, the approximation sequence {x;,} defined by (1.1) converges
strongly to the y;, as n — oo (the Picard iterative process). Now from the
error estimation formula for the Picard iterative process, we have

n

1—-t

[2e,n = yell < [0 — tTol| (2.1)
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In addition, from y; = tT'y;, we find
lye = Tyell < (/= 1) [[ell. (2.2)
Combining (2.1) and (2.2), we obtain

Izt —Toenll < oen — el + lye — Tyell + | Tye — Ty n |
< 2l|wen — yell + lye — Tyl

2t" 1
<7 lxo — tTxol| 4+ (= — DI[tTy:|
—t t
2t" 93
= 2 o — tTwol| + (1L )Ty (2.3)
< 2" o — tTo ]| + (1 — £) max ||
To — X — max yA
—1-—t 0 0 2€R(T)
< 2 o — Taol| + 26" | T | + (1 — 1) max |z
To — X X — max Z\l.
=1 0 0 Z€R(T)

Now since lims ;1 5500 f—jt =0, it follows that

lim  ||&g, — T2y, = 0.
t—1,n—o0

Hence, we have established an approximate fixed point path {z;,} = (tT)"zo
and the error estimation (2.3).

For any given acceptable error € > 0, in the inequality (2.3) we take t € (0,1)
and a natural number n such that ||z, — T2 .| < e, where x¢,, = (tT)"x0.
Clearly, to reduce the number of iterations, we must take the least natural
numbers n so that the above inequality is satisfied. For this, we consider the
following nonlinear optimal problem

minn =n(t), i, = 0T)"x0, |Ten —Toen| <e, te€(0,1).
Next, in the inequality (2.3), we let

A =2|lzg — Txo|, B=2|Txol|, C= max |z],
z€R(T)
so it can be written as

"
th,n - Txt,n” S 1—¢

A+1"B+(1-1)C.

Now for any given acceptable error € > 0, we let

t’n.
1-1

A+t"B+(1—-t)C <e,
which is equivalent to

”Gé;+3)§€—ﬂ—ﬂa
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and hence
;e e—(1-0)C  (1—-te—(1-1)>2C
~A/Ql-t)+B  A+(1-t)B

Thus, it follows that

Lo mla-n—q —fr);c)/(AﬂL(l—t)Bﬂ. (2.4)

Next, without any loss of generality, we can assume that

(1—-t)e—(1-1)2C

O Ara-nB

<1,

so that n > 0. Clearly, for any given ¢ > 0, if we take ¢t € (0,1) and a nature
number n such that (2.4) holds, then ||z, — T2y .|| < €, where x;,, = (tT)"x0.
Finally, we define

In [((1 = 1)e = (1= 6°C) /(A + (1 - 1))

e t) =
fea,B,c(t) 7

and compute the minimum of f. 4 p.c(t) in the open interval (0,1), for the
given e, A, B, C. If there exists a t. € (0,1) such that

fea,Bc(te) = té?é% fe,a,B,c(1),

then we can take n. = [fe a.B.c(t:)] + 1 and 4, », = (tcT) =20, so that
Hx57n5 - Tx57n5|| S €.

The above process for the computation of approximate fixed points of the
nonexpansive mapping 7', by the approximate algorithm x;, = (tT)"zo pro-
vides the minimal natural number n.

Now we shall give some numerical examples. For simplicity, we shall assume
that A = B = C =1, and consider the four cases, ¢ = 0.5, 0.1, 0.01, 0.001.

Case 1. Let € = 0.5. In this case, we have

n [(0.5(1 ) — (1= 1))/ + (1 - 1)]

fos111(t) = It

It is clear that, the domain of fy5,1,1,1(t) must be 0.5 <t < 1, and

lim f0.5,1,1,1(t) - “FOO, lim f0_5717171(t) = +00.
t—0.51 t—1-

We compute the values of fo51,1.1(¢) for some 0.5 < t < 1:

fo.5.1.1,1(0.63) = 7.24898
fo5.1.1.1(0.61) = 7.03664
fo.5.1.1,1(0.59) = 6.90468
fo.5.1.1.1(0.57) = 6.86848
fo.5.1.1.1(0.55) = 6.96813

fo5.1.1.1(0.62) = 7.13321
f0.5.1.1,1(0.60) = 6.96000
fo5.1.1.1(0.58) = 6.87296
fo.5.1.1.1(0.56) = 6.89750
fo5.1.1.1(0.54) = 7.09825



A New Algorithm for Fized Points of Nonexpansive Mappings 261

We also compute the minimum of fo5.1,1,1(¢)

O.?i1tn<1 f0,5117111(t) = 686664 = f0_5711171(t ), tt = 0573433

Thus, we can take x;, = (0.573433T) 7z, as an approximate fixed point of 7.
Clearly, it follows that ||z, — Tz | < 0.5.

Case 2. Let € =0.1. In this case, we have

In[(0.11 —¢) — (1 —)*)/(1 + (1 —1))] '

foa111.1(t) = ot

It is clear that, the domain of fy5,1,1,1(t) must be 0.9 <t < 1, and

lim fO.l.,l,l,l(t) - “FOO, lim f0_1717171(t) = +00.
t—0.9% t—1-

We compute the functional values of fy.1,1,1,1(¢) for some 0.9 < ¢t < 1 in the
following:

f01.1.1.1(0.99) = 698.7890  fo.1.1.1.1(0.95) = 117.7590
f01.1.1.1(0.94) = 98.4326  f5.1.1.1.1(0.93) = 85.8952
f01.1.1.1(0.92) = 78.1313  f5.1.1.1.1(0.9109) = 75.2484
f01.1.1.1(0.91) = 75.2756  fo.1.1.1.1(0.901) = 89.3505.

We also compute the minimum of fo1,1,1,1(%)

ngr)réltnd f0,171)171(t) = 75.2475 = f0,1)171)1(t ), t" =0.917633.

Thus, we can take z;, = (0.917633T) "z as an approximate fixed point of 7.
Clearly, it follows that ||z, — Tz < 0.1

Case 3. Let ¢ = 0.01. In this case, we have

n . — — _ 2 _
foor i (t) = 21010~ 1) (intt) )/a+ -]

It is clear that, the domain of fy.01,1,1,1(t) must be 0.99 < ¢t < 1, and

lim  foo1,1,1,1(t) =400, lim fo.01,1,1,1(t) = +00.
t—0.991 t—1—

We compute the functional values of fy.01,1,1,1(¢) for some 0.99 < ¢ < 1 in the
following:

£0.01.1.1.1(0.9920) = 1375.83  fo.01.1.1.1(0.9912) = 1297.35
f0.01,1.1.1(0.9911) = 129119 fo.01,1.1.1(0.9910) = 1286.09
(

(

( )

( )
fo0.01,1,1,1(0.9909) = 1282.22  fy.01,1,1,1(0.9908) = 1279.79

( )

( )

—_ — — —

f0.01,1,1,1(0.9907) = 1279.11  fo.01.1,1,1(0.9906) = 1280.64
f0.01.1.1,1(0.9905) = 1285.10  f5.01.1.1,1(0.9904) = 1293.71

We also compute the minimum of fy.01,1,1,1(¢)

sdydy

o.min_ fo.or1,1(8) =1279.09 = foor11,1(t7), ¢ = 0.99071541.

Thus, we can take z;,, = (0.990715417)'?802, as an approximate fixed point
of T. Clearly, it follows that ||z, — T2 || < 0.01.
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Case 4. Let € =0.001. In this case, we have

In [(0.001(1 — #) — (1 = £)2)/(1 + (1 — 1))]
Int '

fo.001,1,1,1(t) =
It is clear that, the domain of fy.001,1,1,1(t) must be 0.999 < ¢t < 1, and

lim  fooo1,1,11(t) =400, lim fo.001,1,1,1(t) = +0o0.
t—0.999+ t—1-

We compute the functional values of f.001,1,1,1(¢) for some 0.999 < ¢ < 1 in
the following:

f0.001,1,1,1(0.9991) = 18018.90  fo.001,1.1,1(0.99909) = 17924.50
f0.001,1,1,1(0.99908) = 17845.60  fo.001,1,1,1(0.99907) = 17785.60
f0.001,1,1.1(0.99906) = 17748.80  fo.001.1,1.1(0.99905) = 17742.60
f0.001,1,1,1(0-99904) =17779.10 f0,001717171(0.99903) = 17881.50
f0.001.1,1,1(0.99902) = 18102.10  fo.001.1,1,1(0.99901) = 18608.70.

We also compute the minimum of fy.001,1,1,1(¢)

0.9g31<1%<1 .f0.00l.,l,l.,l(t) = 1774070 = f0_001717171(t ), t = 0999053156

Thus, we can take z; ,, = (0.999053156T)7"*1z, as an approximate fixed point
of T. Clearly, it follows that ||z, — Tz | < 0.001.

3 Some Approximation Fixed Point Sequences and Con-
vergence

In particular, let t = o, — 1, as n — oo, be a real sequence in (0, 1) such that

limy, 00 % = 0, then the approximation algorithm (1.1) takes the following
special form
Zn = (onT)"xp. (3.1)

Clearly, from (2.3) it follows that

nh_)rrgo |2 — Tzy| = 0. (3.2)

Ezample 3. Let o, = v/n/(v/n+ 1). Then, it is easy to show that

n (2" ()
Qp \/n+l _ \yn+l
11—, Vvn oo L 0
noo =g Ve

as n — oo. In this case, the approximation algorithm (1.1) simply takes the

following form
B Vn n
Ty = (\/ﬁ lT) x0. (3.3)
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Theorem 1. Let E be a real reflezive Banach space which satisfies Opial’s
condition, K be a closed convex subset of E, and T : K — K be an almost
muvariant nonexpansive mappz'ng Then the fized points set F(T') is nonempty.
Moreover let lim,, oo 1 2 =0. Then for any initial xg € K, wy,(x,) C F(T),
where wy,(x,) denote the weak limit set of {xy} defined by (3 1).

Proof.  From (3.2) we have ||, — T, || — 0 as n — oco. This together with the
reflexivity of Banach space F, and Lemma 1, implies that, for any subsequence
{n, } of {x,}, there must exist a subsequence {x,, } of {z,,} which converges
weakly to a fixed point x* of T'. This completes the proof. 0O

Ezample 4. From Example 3, it follows that the sequence {x,,} defined by

ng\t 3.4

I"_(n—i—l) o (34)
is also an approximation fixed point sequence. The numerical error estimates
of (3.3) and (3.4) can be computed as in Section 2.

Theorem 2. Let E be a real reflexive Banach space which satisfy Opial’s condi-
tion, K be a closed convex subset of E, and T : K — K be an almost invariant
nonexpansive mapping. Then the fized points set F(T) is nonempty and for
any initial vo € K, wy(z,) C F(T), where wy(xy,) denote the weak limit set
of {xn} defined by (3.4).
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