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Abstract. A right heart ventricle has a complex and irregular shape, this obscures
analysis of ventricle surface movements. We are trying to quantitative evaluate mor-
phological changes of right ventricle surface, these changes appear during heart beat
cycle, between different age groups, due to heart diseases, and other factors. A
method for such evaluation would open new possibilities for insights into heart func-
tion, disease course extrapolation and other. We see this as a multistage task, where
the first step is partitioning whole surface into smaller, more manageable regions,
and the second step is to analyse each region separately. In this paper we present a
new algorithm for partitioning the medial axis of right heart ventricle surface. Such
partitioning leads to division of surface into smaller regions with clear shape. The
proposed algorithm first computes medial axis from sampled ventricle surface. Later,
the medial axis is filtered and smoothed, and third, we compute curvature map and
use it as weights in Dijkstra’s algorithm for curvature guided partitioning. Algorithm
provides a way for fully automatic partitioning of medial manifold into separate me-
dial scaffolds and a semi automatic way for additional curvature based division of
medial scaffolds.

Keywords: mathematical modelling, medial axis, partitioning, heart ventricle, sym-
metry sheet.

AMS Subject Classification: 65D18.

1 Introduction

The human heart is a complex muscular organ, it contains four main chambers:
two ventricles and two atriums. They form two pumping units, which move
blood. Left unit pumps blood to aorta and to whole body and right unit takes
deoxygenated blood and moves it to lungs for oxygen refill. The left ventricle
has a simple shape, most of it’s cross sections in the direction of a long heart
axis are circular. This allows easily calculate volumetric properties (capacity,
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blood flux, etc.) using the disk method, i.e. the area of each cross section
is multiplied by distance between two cross sections. The right ventricle, in
contrary to the left one, has a complex shape which is difficult to see from
two-dimensional echocardiography images due to restrictions of possible cross
sections. The complex shape causes troubles while evaluating ventricle’s volu-
metric properties. To make it easer, we are trying to reconstruct right ventricle
surface and it’s movement from echocardiographic images, namely from three
or four cross sections. To achieve this we need a way to quantitavely evaluate
morphological changes of the right ventricle surface. These changes appear
during heart beat cycle, between different age groups, due to heart diseases,
etc. Such knowledge would allow to improve surface reconstruction, besides
that it would open new possibilities for insights into heart function, disease
course extrapolation, etc. There were some attempts to reconstruct right ven-
tricle from a couple of cross sections as described in [13], but their method was
based on the assumption that contours intersect perpendicularly, which is not
the case in clinical practice. They have interpolated the whole ventricle surface
using only the shape of contours, the possible influence of certain features of
contour to the whole shape was not considered.

For the analysis of biological structures various methods are available, i.e.,
principal components analysis for mean shape construction and analysis of
variations from it (see, [15]), or parametrisation using spherical harmonics and
their coefficient analysis [9]. We want to capture small changes in surface, as
well as big changes in object, for this we chose medial axis (MA) transform [1]
of segmented right ventricle images. The definition of a medial axis is given in
Section 2.1. Several unique advantages of using medial axis or skeleton to model
geometric objects are described in [8]. Good overview of available techniques
for MA extraction is provided by Giblin and Kimia in [10].

Despite the wide range of techniques available for the computation of the
medial axis, its usefulness in real-world applications has been limited mainly
because of the complex structure in three-dimensional space, also due to the
fact that it is constructed from intersecting sheets of symmetry (medial scaf-
folds). We note, that the topological structure of the medial axis has not been
effectively captured in a graph format. Giblin and Kimia [10] analyse construc-
tion of medial axis and define five different types of entities, which in turn are
organized into points, curves and sheets. Besides that, they propose a theo-
retical background for 3D medial axis shape description by using hyper-graph
notation [10].

For a thorough analysis of the right heart ventricle surface and its medial
axis we need to simplify this general method. We try to partition it into two
dimensional medial scaffolds – 2D sheets in 3D space. They would allow a
simplified analysis and parametrisation of ventricle surface.

2 Algorithm

Our proposed algorithm uses multi-step approach. During the first step, me-
dial axis is computed from a sampled ventricle surface. The computation is
performed using algorithm proposed by Dey [7] which approximates MA as a
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sub-complex of Voronoi diagram.
During the second step MA is partitioned into separate symmetry sheets,

which may still have complex shapes. To divide them into smaller and simpler
shapes, during the third step we compute curvature maps for every sheet, and
use them as weights for Dijkstra’s algorithm which in turn computes shortest
dividing paths on MA sheets.

2.1 Computation of medial axis

The true medial axis for the first time was defined by Blum in [1]. We use
another definition by Dey [5] which states that the medial axis of a curve
(surface) F ⊂ R

k is the closure of the set of points in R
k that have at least two

closest points in F .
Different approaches of MA computation exist, our choice of particular ap-

proach was based on initial data we have. It is manually segmented CT scans
of human heart. The scans capture right ventricle region as well as temporal
information during heart movement. One heart beat cycle is captured in ten
three-dimensional images with voxel size 0.39× 0.39× 5 mm.

Low number of spatial samples limits application of voxel based medial axis
extraction techniques and lead to a geometric medial axis approximation. It is
approximated from surface samples and is computed according to the algorithm
described in [7]. It is shown in [6] that if surface sampling density approaches
infinity, then the medial axis approximation approaches true medial axis.

a) b)

Figure 1. The right heart ventricle a) reconstruction from up sampled and smoothed image
data; b) medial axis with superimposed mesh wire frame.

We note that an important condition is to have a sufficient surface sampling.
In order to obtain a dense and uniform surface sampling, we have tried to
approximate the surface by using spherical harmonics, as described in [14].
But such approximation introduces additional high frequency components on
surface, which in turn produces additional sheets in medial axis. The obtained
results led us to a simpler solution: up-sample and smooth out initial data,
and use some scalar field contouring algorithm (such as marching cubes [12])
on it. This produces smooth surfaces and reasonably dense sample points (see
Fig. 1a).
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The mesh produced by a scalar contouring algorithm can’t be used for
further computation, it is not guaranteed that the produced surface samples
triangulation is equivalent to Delaunay triangulation and is dual to a Voronoi
diagram as required by the algorithm. The MA extraction algorithm begins
with computation of Delaunay triangulation of the mesh vertices and extraction
of specific data structures–umbrellas [7]. It is a collection of surface polygons
having one common point and forming a topological disk (see Fig. 2a). Um-
brellas extraction from Delaunay triangulation is done by using complementary
cone (co-cone) concept [4]. Co-cone is a double cone surface (Fig. 2b), which
pinch point coincides with surface sample, and this sample defines a Voronoi
cell. Co-cone axis passes through the surface sample and through the farthest
Voronoi cell vertex p+.

a) b)

Figure 2. a) Umbrella – surface polygons, that share one common point and form a topo-
logical disk; b) complementary cone and it’s position in space with respect to Voronoi cell
and surface, here p+ the farthest Voronoi cell vertex [4].

The Voronoi diagram is filtered using angle and ratio criterions, complete
explanation of the criterions can be found in [5]. Filtering prunes most of the
Voronoi diagram faces, leaving only those satisfying both criterions. Remain-
ing set of Voronoi faces approximate medial axis, as depicted in Fig. 1b. The
faces are convex polygons with varying number of vertices. To simplify further
analysis we triangulate all faces and obtain a mesh which is composed from
triangles. Using this algorithm one may still run into problems near sharp cor-
ners, even if the sampling is sufficiently dense. Near sharp corners sampling
density requirement approaches infinity and lead to errors of MA approxima-
tion. In our case, heart is composed from soft tissues and do not contain sharp
features, thus, infinite sampling density problem is not encauntered.

2.2 Initial partitioning of medial axis

We adopt a naming and subdivision conventions proposed by Giblin and Kimia
in [10]. They define five basic entities that compose medial axis:

• A symmetry sheet, which is denoted by A2
1.
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• Intersection of locally three (globally it might be only two sheets as shown
in Fig. 3) symmetry sheets produce a curve and it is denoted by A3

1.

• Besides this curve, open symmetry sheet edge form a curve too, it is
denoted by A3.

• The point at which curves A3
1 and A3 meet, is denoted by A1A3.

• In some special cases, four symmetry sheets meet at one point, this point
is denoted A4

1.

Described entities are shown in Fig. 3. Further details on them can be found
in the original article.

Figure 3. Main medial axis entities: A3 is the edge of symmetry sheet, A3
1 is the intersection

of symmetry sheets, A2
1 is the symmetry sheet.

A computed medial axis is approximated by convex polygons, which where
subdivided into triangles, thus the whole MA surface is composed from tri-
angles. It consists of surface sample points pi, which are connected by edges
ek = (pi, pj), where k = 1, 2, . . . , n and triplets of edges form surface faces fi.
Each edge connects two surface samples and possibly fully or partially approx-
imates A3

1 or A3 curve. One edge may represent the whole curve, or the curve
can be composed from series of edges. We assume that, if a set contains faces,
then it contains edges and surface samples which define faces as well.

Each edge has one or more neighbouring faces. Let nf (ek) be a function
which gives a number of neighbouring faces for edge ek. On the approximated
MA, we define A3 curve as a series of connected edges, which are adjacent to
one and only one face, AS3 = {ek : nf (ek) = 1}. A3

S1 curve is defined as a series
of edges which have three neighbouring faces, A3

S1 = {ek : nf (ek) = 3}. Interior
of symmetry sheet is composed from surface samples connected by edges, which
have two neighbouring faces. All the sheet samples are bounded by A3

1 and A3

curves, thus open sheet boundary is composed from edges adjacent to one face,
and boundary at sheets intersection is composed from edges adjacent to three
faces.

Initial partitioning labels each MA surface sample, and shows to which MA
entity the sample belongs. We start by dividing all edges into three sets: Ae

1,

Math. Model. Anal., 15(2):245–255, 2010.
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Ae
2 and Ae

3, where Ae
k = {∀ek ∈ Ae

k : nf (ek) = k}. Edges in the first set belong
to open boundaries, the second set contains edges belonging to MA interior
and the third set contains intersections of medial sheets.

To create a curve A1 approximating edge sequence C1
n, as a starting point

we take any edge from Ae
1 and start an iterative procedure. Collect all directly

neighbouring edges and check each edge membership in set Ae
1, if it does belong

to Ae
1 then it belongs to the curve. The edge is added to the set C1

n and removed
from Ae

1. Collection procedure is repeated until none of collected neighbouring
edges are present in Ae

1 or two edges with ending points of type A1A3 are
collected, they mark two ends of the curve. The collection procedure spreads
in two directions along edge curve, after collecting edge with A1A3 end point,
spreading in that direction should stop.

After the stopping criterion is met and curve is constructed, another edge
should be selected as a starting point, and edge collection procedure repeated,
thus constructing another open boundary curve. The procedure should be
repeated until the set Ae

1 is not empty.
To produce A3

1 curves approximating sequences C3
n, the same procedure is

used. Set Ae
1 is replaced by Ae

3, and curves may finish with A1A3 or A4
1 points.

a) b)

Figure 4. Partitioned medial axis in different time moments of heart beat. In a) there is
more separated sheets than in b).

To construct a set of medial sheet samples first we need to define a set C
which is union of all C1

n and C3
n sets, and a set M which holds whole medial

axis. The construction of a medial sheet Sn starts by selection of one sample
point pi from M which is not a member of C and adding it to a temporary set
Ω. For all samples in Ω collect all direct neighbours (samples which share one
edge with pi) to a set N and check each member of N whether it belongs to
C or Sn, or not. If it does, then it is a boundary point or an already visited
point, we do not need to analyse its neighbours, we remove it from N , and if it
is a boundary point, then we add it to Sn. Move all points from Ω to Sn and
from N to Ω. Repeat neighbours collection again until Ω becomes empty, then
the set Sn is constructed and contains all medial sheet interior and boundary
points.

The subdivided medial axis is shown in Fig. 4a. Different shades mark
different symmetry sheets. As can be seen in Fig. 4a, symmetry sheets of the
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right heart ventricle are quite complicated in shape. During the heart beat,
it’s shape changes and it’s medial axis changes. Symmetry sheets connect and
disconnect, appear and disappear during different phases of a beat cycle (see,
Fig. 4a and b). During one phase medial axis is composed from separate sheets,
while during the other phase some of the sheets get connected. It was observed
that at the places where symmetry sheets connect, there are higher curvature
ridges.

To avoid the instability problem and to partition medial axis into simpler
shapes we add another step, which tries to divide symmetry sheets on high
curvature ridges.

2.3 Curvature guided partitioning of Medial Axis

The sheets of medial axis are two-dimensional structures embedded into three-
dimensional space. Each sheet may be curled and twisted, thus forming a
complex shape in three dimensional space. To simplify them, we perform addi-
tional subdivisions by tracing paths on sheet surface. We have observed several
data sets and found that symmetry sheets can be divided at higher curvature
ridges. Smaller parts should be bounded by sheet boundaries and ridges.

MA mesh can be seen as a hyper-graph with nodes at mesh vertices, then
divided paths become paths in a graph. For them we use Dijkstra’s shortest
path in graph algorithm (see [3]). It computes shortest paths from one fixed
node to all remaining graph nodes.

To subdivide one symmetry sheet we perform iterative procedure, where
several dividing paths may be computed. We assume that every subdividing
curve should start at points where A3 and A3

1 curves meet and it can end either
at a similar point or at any open boundary point. We denote the set of ending
points by T and the set of starting points by P .

a) b)

Figure 5. Laplacian filtering of medial axi: a) before filtering, b) after filtering.

To make shortest paths follow curvature ridges, we compute Gaussian cur-
vature at every vertex of the MA. To take into account different sizes of faces,
we add additional weight to each face’s contribution in curvature computation,
wf = A(f)/3.

To improve computation of the curvature we need a way to smooth a mesh.

Math. Model. Anal., 15(2):245–255, 2010.
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For this one can use sophisticated methods such as solving non linear diffusion
equation, as it is used for images [2]. Such equations are solved in different ways
as in [11] and are computationally expensive, but they keep small features in a
mesh. For our purposes we chose a simple Laplacian smoothing on medial axis
mesh, it improves uniformity of the mesh (see Fig. 5). The smoothing operation

is defined as psi =
1

N

∑N

j=1
ps−1

j , where N is the number of neighbouring vertices
which are directly connected to pi and s is the number of iteration. At each
iteration the mesh is relaxed. To minimize distortions of the boundary contours,
during smoothing operation all boundary vertices remains fixed and are not
moved. For smoothing we have used up to 20 iterations.

Paths on the MA are computed from all members of P to all members of T ,
then shortest path is selected for each starting point. Every obtained shortest
path is a new dividing curve for the symmetry sheet. The computation is
performed on whole MA and every sheet is used. To avoid jumps from one
sheet to another, we assign infinite weights to all points of A3

1 curves and use
weighted computation of shortest paths.

We note, that after cycling over all possible source and target points, we
obtain additional subdivisions for symmetry sheets.

3 Results

The provided algorithm subdivides MA in two steps. First, initial partitions
are found, where each partition represents one symmetry sheet and can have
a quite complex shape. In order to simplify this shape, the algorithm tries to
compute additional dividing paths. Each path is traced along higher curvature
ridges, and the algorithm connects one A1A3 point with another A1A3 point,
or with some different type point which lies on an open sheet boundary.

Figure 6. Computation times in seconds for differently sized medial axes. N is the number
of points in approximated medial axis.

Computation times for initial partitioning are provided in Fig. 6. In the
given range the computation time almost linearly depends on the number of
points in the medial axis. The sizes of all analyzed medial axes fall into the
given range. The sudden jump at the right part of the graph can be explained
by a shortage of the fast memory of the computer, and usage of swap.

Timing of computation of dividing paths cannot be directly related to the
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number of points in MA. It also depends on the number of points in open
boundaries, and on the number of A1A3 points, so it depends on configuration
of MA and on the number of points in it. Another strong factor for timing of
the whole procedure is a required manual adjustment of target points. Overall
processing of one medial axis, including extraction, filtering and points adjust-
ment takes from 5 to 10 minutes. This makes from 1 to 2 hours for one heart
dataset composed from 10 temporal images. All computations were performed
on a machine with single core, 3 GHz processor and 2 GB of random access
memory.

a) b)

Figure 7. Subdivision of symmetry sheet obtained at two different time moments.

During experiments we have observed, that the shortest path on symme-
try sheet, not necessarily is the best way to subdivide the sheet. Sometimes,
especially if a source point is located close to the open boundary, the shortest
path isn’t the best choice as can be seen in Fig. 7b. In such cases the target
points should be selected manually and the dividing paths recalculated. Fig. 8
shows the initial subdivision and curvature based subdivision with manual ad-
justment, the subdivided MA is clearly composed from simple shaped sheets.

a) b)

Figure 8. Initial subdivision after first step and final subdivision after second step.

Fig. 9 shows how subdividing curve connects to medial sheets, which were
connected at one time moment and were disconnected on another. This infor-
mation can be used to track surface features in time if they split into several
parts.

Math. Model. Anal., 15(2):245–255, 2010.
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a) b)

Figure 9. Medial axis at different time moments. Subdivision curve connects two medial
sheets, which where connected before (lines were enhanced for better visibility).

For additional partitioning it is possible to try a recursive subdivision ap-
proach, which possibly could lead to even simpler parts of MA and this could
be advantageous for more complex shapes. If the results are to be used for sur-
face parametrisation, recursive subdivision may introduce separation of regions
which span the MA partition.

4 Discussion

The proposed semi-automatic medial axis partitioning method subdivides me-
dial axis into simpler shapes. They represent parts of the object surface and
can be used for its analysis or surface subdivision, i.e., surface is subdivided
in accordance to parts of MA, the surface points are connected with points on
MA. The new parts of the surface will be symmetric with respect to the medial
axis and simpler in their shape. Simplicity of the shape facilitates the surface
parametrisation task.

It is possible to extend this algorithm with recursive subdivision, such a
modification can be beneficial for analysis of very complex shapes. The exten-
sion would require thorough analysis of recursive subdivision process to deter-
mine the stopping conditions and evaluate obtained small patches of the medial
axis. Uncontrolled recursive subdivision would possibly lead to a meaningless
structure.

For a better automation of the described algorithm, point tracking in time
can be used. It would allow to track points of MA in time and keep them
stable, thus minimizing number of manual adjustments.

Surface subdivision into small patches, with respect to medial axis parti-
tions, and their parametrisation facilitates analysis of surface motion in time.
Analysis of medial axis symmetry sheets and their partitions might reveal inter-
esting information about the movement of surface features and their evolution
during different time points. It opens a possibility for measurement of surface
morphological changes in time, and enables a better surface approximation
where interpolation is needed.
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