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Abstract. The fractional generalization of dynamical systems is considered. For
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and the generalized exponent of the vector field are introduced. Two examples of their
application are explained in detail.
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1 INTRODUCTION

Dynamical systems (DSs) are among the basic tools for investigating evolution-
ary processes. The classical DS definition contains the concept of the finite-
dimensional manifold as the phase space and the one-parametric group of dif-
feomorphisms as the phase flow [4]. Later on, the concept of the DS underwent
changes. DSs have been generalized to infinite-dimensional systems; Poisson
brackets formalism led to the simplectic manifolds; application of the discrete
time resulted in the cascades, and so on [3]. Essentially new types of DSs are
being generated by the new mathematical tools and physical ideas. One of the
latest ideas concerns the concept of fractional calculus.

Derivatives and integrals of fractional order [1, 8, 9, 20, 25] have found many
applications in recent studies in general physics [7, 16, 21, 28] and mechanics
[2, 5, 6, 10, 14, 22, 23]. The interest in fractional analysis has been growing
continually during the last few years. Fractional analysis is widely used in
kinetic theories [11, 26, 29], statistical mechanics [13, 27], quantum mechanics
[12, 17], dynamics in complex media [18, 15, 24], and many others. In mechanics
much more attention has been given to continuous DSs describing diffusion
and wave processes [21]. At the same time, some solutions of oscillator-type
equations have been obtained [7, 28]. It seems that time has come for a wide
generalization of the basic conception of DSs.

http://dx.doi.org/10.3846/1392-6292.2010.15.235-244
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236 P. Miškinis

The classical DS is characterized by determinism, finite dimensionality and
differentiation. Phase flow is the mathematical model of a determined process.
Formalization of the conditions of finite dimensionality and differentiation im-
plies the necessity for the phase space to be a differentiable manifold of finite
dimensionality, and the phase space must be a one-parametric group of diffeo-
morphisms of this manifold.

In this paper, the fractional generalization of finite-dimensional DSs is con-
sidered. For this purpose, we introduce the concepts of fractional phase semi-
flow, fractional DSs, the generalized exponent of the vector field.

2 Fractional Autonomous Systems

Definition 1. The phase semi-flow (M, {gt+}) is a pair that consists of the
manifold M and the one-parametric semi-group {gt+} of its transformations.

Let the vector field ξi = ξi(x1, . . . , xn) be given in the space domain Ω =
(x1, . . . , xn). Each field of this kind is related to an autonomous system of
integro-differential equations of the kind

dαxi(t)

dtα
±

= ξi(x1(t), . . . , xn(t)) , i = 1, . . . , n , (2.1)

where
dαxi(t)

dtα
±

is the right (+) or left (−) fractional derivative of the order

α, i.e. an integro-differential singular operator, a fractional generalization of
the derivative (see Appendix). Depending on the type of the derivative (±),
the vector field is right- or left-sided. Below, if not indicated otherwise, right-
sided vector fields will be considered. For α = 1, the autonomous system of
integro-differential equations (2.1) turns into a classical autonomous system.

Definition 2. A fractional dynamical system (FDS) comprises a phase semi-
flow and the corresponding fractional autonomous system.

Solution of autonomous system (2.1), xi = xi(t) is an integral curve of the
vector field ξi. Let us through

F
i(α)
t (x1

0, . . . , x
n
0 ) = xi = xi(t, x1

0, . . . , x
n
0 ) (2.2)

denote the integral curve of the field ξi with the initial condition xi(0) = xi
0.

Formula (2.2) gives the mapping

F
i(α)
t : (x1

0, . . . , x
n
0 ) → (x1(t, x1

0, . . . , x
n
0 ), . . . , x

n(t, x1
0, . . . , x

n
0 ))

of the initial space area Ω into itself, depending on parameter t (a shift by t
along the integral curve).

Like the classical DS, the non-autonomous FDS is not more general than
the autonomous one. Upon introducing the new function xn+1 = t, the non-
autonomous FDS is reduced to an autonomous one.
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The main theorem of the FDS serves as the generalization of the main
theorem of the classical DSs [4].

The Main Theorem of the FDS. Let ξi(x) be a real, continuous function

limited in the area Ω and meeting the Lipschitz condition

|ξi(x1, . . . , xj
a, . . . , x

n)− ξi(x1, . . . , xj
b, . . . , x

n)| ≤ A|xj
a − xj

b| .

In this case, there exists the area D ⊂ Ω in which the solution of equation (2.1)

with the initial condition xi(0) = xi
0 exists continuously and uniquely.

From the theorem of existence and uniqueness of the solution of system

(2.1) it follows that the mapping F
(α)
t has been defined for small t values in

the environment of this point (x1
0, . . . , x

n
0 ) and locally is a diffeomorphism.

Example 1. Let us consider one of the simplest examples of FDS: the fractional
generalization of the law of unrestricted reproduction of microorganisms in a
nutritive medium. The equation of motion is

dαx(t)

dtα
= λx , α ≤ 1 , λ > 0 , x(0) = x0 . (2.3)

When α → 1, we get the classical reproduction law (Malthus)[19]. Solution of
equation (2.3) is

x(t) = x0 exp (λ
1/αt) .

The diffeomorphism F
(α)
t here is an exponential function:

F
(α)
t : x0 → x0 exp (λ

1/αt) .

The phase trajectories are straight lines ẋ(t) = λ1/αx, with a slope to the axis
depending on the fractional parameter α (see Fig. 1). If F0 is an identical

Figure 1. The vector field ξ = (x, λ1/αx) in Cartesian coordinates for various initial
conditions.

mapping and the diffeomorphisms satisfy the condition

Ft1/α ◦ Fs1/α = F(t+s)1/α (2.4)

valid for both parts at the corresponding values of parameters t, s, t+ s, then
diffeomorphisms Ft comprise a local semi-group. For diffeomorphisms Ft to be

Math. Model. Anal., 15(2):235–244, 2010.
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a group, besides the condition (2.4) and existence of inverse mapping, one more
condition should be met: (Fα

t )
−1 = Fα

−t, which is not the case here. Here,

(Fα
t )−1 = Fα

t∗ , t∗ = (−1)1/αt . (2.5)

Thus, to each vector field ξi a local one-parametrical semigroup of diffeomor-

phisms F
i(α)
t is related. At small values of the parameter t, the explicit form

of the mapping F
i(α)
t is given as follows:

xi(t, x1
0, . . . , x

n
0 ) = xi

0 +
tα

Γ (1 + α)
ξi(x1

0, . . . , x
n
0 ) + o(t) ,

where Γ (x) is the Euler gamma-function. With the same accuracy, the Jacobi

matrix of the mapping F
i(α)
t is expressed as

∂xi(t)

∂xj
0

= δij +
tα

Γ (1 + α)

∂ξi

∂xj
0

+ o(t) .

As follows from the (2.5), for the inverse mapping

xi
0(t, x

1, . . . , xn) = xi −
tα

Γ (1 + α)
ξi(x1, . . . , xn) + o(t)

the corresponding Jacobi matrix is

∂xi
0

∂xj
= δij −

tα

Γ (1 + α)

∂ξi

∂xj
+ o(t).

Vice versa, if we have a one-parameter local semi-group or even a group of
diffeomorphisms F i

t = (F 1
t , . . . , F

n
t ), it allows an unambiguous reconstruction

of the vector field

ξi =
dα

dtα
F i
t |t=0, i = 1, . . . , n. (2.6)

From the correlation (2.6), specifically, it follows that different vector fields may
have one and the same integral curve. To elucidate the difference between the
classical and the fractional DS, let us take a simple group of diffeomorphisms
and find the corresponding vector fields.

Example 2. . We will consider, in a plane with coordinates (x, y), a one-
parameter group or rotations at the angle t around the origin of coordinates.
Then, the mapping F i

t may be written as

x(t) = x0 cos t− y0 sin t , y(t) = x0 sin t+ y0 cos t .

From the property of the fractional derivative (see Appendix), it follows that
the fractional derivative of the mapping F i

t is

dαx(0)

dtα
= x0 cos

(πα

2

)

− y0 sin
(πα

2

)

,

dαy(0)

dtα
= x0 sin

(πα

2

)

+ y0 cos
(πα

2

)

.
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Figure 2. The vector field ξ = (bx − ay, ax + by) in Cartesian coordinates (a = sinϕ, b =
cosϕ, ϕ = απ/2, |ξ| = R).

Thus, the field of velocities ξi, i = 1, 2 in Cartesian coordinates (x, y) has
the form

ξ(x, y) = (bx− ay, ax+ by) , |ξ| = R ,

where a = sin πα
2 , b = cos πα

2 , R =
√

x2
0 + y20 . The integral curves of this field,

like in the classical case α = 1, are circles x2 + y2 = R2 = const (Fig. 2)1.
But in contrast to the classical case α = 1, the vector field along these integral
curves is an isocline field. Indeed, the scalar product

〈ξ, r〉 = cos (πα/2)R2 = const ,

whence it follows that the vector field is tangent when α = 2n + 1 and turns
into a field of normals when α = 2n, n ∈ Z.

Since the fractional derivative has been determined for all α ∈ R (see Ap-
pendix), at α < 0 the family of circles consists of integral curves of a corre-
sponding autonomous system of integral equations. Depending on α, the vector
field ξα = ξαmod(4) is periodical (see Fig. 3).

a) b) c)

Figure 3. The general view of the vector field ξ = (bx − ay, ax + by) for various values of
the parameter α = (0.5, 1, 1.5) for the corresponding a), b) and c) .

1 The Mathematica 4.1 package has been used for drawing Fig. 2, 3. License ♯: L2990-7548

Math. Model. Anal., 15(2):235–244, 2010.
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3 The Generalized Exponent of the Vector Field

The one-parameter semi-group of diffeomorphisms F
(α)
t (x) corresponding to

the right-side vector field ξ(x) acts on the functions f = f(x) according to the
rule

(F
(α)
t f)(x) := f(F

(α)
t (x)) . (3.1)

Let us consider, e.g. on a straight line, a one-parameter semigroup of right

shifts F
(α)
t (x) = x+ t. The vector field ξ here is constant. The transformations

(3.1) may be expressed as F
(α)
t f(x) = f(x+ t).

For the Lebesgue measurable function f(x), expression (3.1) at the small
values of t may be presented as a Taylor series of fractional powers:

F
(α)
t f(x) = f(x+t)=f(x)+

Dα
a+f(0)

Γ (1+α)
tα+

D1+α
a+ f(0)

Γ (2+α)
t1+α+ . . .=(1+E

t∂x

−α )f(x) ,

where Ex
α is a generalized exponent function (see Appendix).

In the general case, it is expedient to introduce the following definition:

Definition 3. The generalized exponent of the vector field ξ is the operator

1+E
t∂ξ

−α=1+
tα

Γ (1+α)
∂α
ξ +

t1+α

Γ (2+α)
∂1+α
ξ +. . .=1+

∞
∑

n=0

tn+α

Γ (1 + n+ α)
∂n+α
ξ ,

where ∂α
ξ = ξ(α)∂x is a fractional directional derivative of the field ξ.

This definition allows us to generalize the classical shifting operator and use
it not only in classical, but also in quantum mechanics [17].

4 Linear Vector Fields

Let X =
(

X i
k

)

be a real (or complex) matrix of the rank n. We shall construct
a right-side vector field TX+ or a left-side vector field TX−

in space R
n (or Cn),

mapping its values in the point x ∈ R
n (or x ∈ C

n) to equal TX+(x) = −Xx
(TX−

(x) = Xx).

Theorem 1. The integral curve x
±
(t) of the right-side vector field TX+(x) or

of the left-side vector field TX−
(x)

dαx

dtα
±

= (∓X)α x , x(0) = x0 (4.1)

has the following form:

x
±
(t) = exp (∓tX) · x0 , (4.2)

the power of the matrix as usual being Aα ≡ exp (α logA). The proof follows

from the direct substitution of (4.2) into expression (4.1) and from the property

of the fractional derivative (see Appendix).
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5 Conclusions and Discussion

Thus, we have that: a) FDS is the fractional generalization of the classical DS;
b) the analog of the tangent vector field for the integral curve is the field of

isoclines; c) the generalized exponent of the vector field 1+E
t∂ξ

−α is the fractional
generalization of the shifting operator; d) the integral curve of the right-side
linear vector field has the form of the exponent mapping.

From the mathematical point of view, a sufficient condition for the existence
of a fractional derivative, e.g. its Riemann–Liouville form, is belonging to the
class of continuous functions (see e.g. [25]). In other words, a continuous but
non-differentiable function can never be the solution of the classical DS, while
it can be for a FDS. The physical contents of the FDS is in the process of
construction, but even now we can note that FDSs are a generalization of the
classical DSs when the classical concept of velocity does not work.

Some notes on the introduction of the FDS. The core object is the fractional
derivative. However, the latter may be not only in the Caputo–Weyl form, but
also in that of Riemann–Liouville. How much the FDS properties depend on
the form of its introduction? The basic criterion while introducing the FDS
is the physical correspondence between the fractional and the classical DSs
systems: when the order of the fractional derivative α → 1, a FDS must turn
into a classical DS: FDS −−−→

α→1
DS. In the case of the Riemann–Liouville form,

this criterion is satisfied. However, another problem arises: when 0 < α < 1,
there is no concept of velocity, and the phase trajectory does not exist.

The complex FDS, when xi(t), ξi(x) ∈ C, is equivalent to the real FDS (2.1)
with 2n unknown functions

dα

dtα
±

(Re xi(t)) = Re ξi(x) ,
dα

dtα
±

(Imxi(t)) = Im ξi(x) .

A coherent union of two real FDSs, differing from their direct sum, should take
place in the case of analytical vector fields ξi; however, no result has been so
far obtained in this direction. We may show that

e
d
dtx(t) =

1

2πi

∫

C

Γ (−α)Dα
t x(t) dα ,

where Γ (z) is the Euler gamma-function, and the closed curve C has no pecu-
liarities of the phase trajectory x(t), the order of the fractional derivative α is
a complex number. This identity may be considered as a certain hint to the
existence of such a nontrivial interrelation.

Another important field of FDS is dimensional reduction: for α → 0, part
of the dynamical equations turn into constraints. We obtain a unique tool: the
phase semi-flow of rank n under continuous limit transition α → 0 turns into a
phase semi-flow of the rank n− 1 and into certain constraints. The correlation
among the classical DSs of different dimensions deserves a detailed analysis.

FDSs belong to the class of continuous DSs. The relation of the FDS with
ergodic theory and topological DSs is absolutely unclear. This paper, of course,
does not exhaust all the properties of the FDS. Rather, it opens the door to a
realm worthy of far more extensive studies.

Math. Model. Anal., 15(2):235–244, 2010.
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6 Appendix

The left Riemann– Liouville fractional derivative

RL
aD

α
t+f(t) =

1

Γ (n− α)

(

d

dt

)n∫ t

a

f(τ) dτ

(t− τ)1+α−n
.

The right fractional derivative

RL
bD

α
t−f(t) =

1

Γ (n− α)

(

−
d

dt

)n ∫ b

t

f(τ) dτ

(τ − t)1+α−n
,

where n = [α] + 1 and α > 0.
The corresponding left Caputo’s fractional derivative is defined as follows:

aD
α
t+f(t) =

1

Γ (n− α)

∫ t

a

dτ

(t− τ)1+α−n

(

df(τ)

dτ

)n

,

and the right Caputo’s fractional derivative is defined as

bD
α
t−f(t) =

1

Γ (n− α)

∫ b

t

dτ

(τ − t)1+α−n

(

−
df(τ)

dτ

)n

,

where α represents the order of the derivative: n− 1 < α < n and α > 0.
The relationship between the Riemann–Liouville and Caputo fractional

derivatives is (0 < α < 1):

aD
α
t+f(t) =

RL
aD

α
t+f(t)−

1

Γ (1− α)

f(a)

(t− a)α
,

bD
α
t−f(t) = −RL

bD
α
t−f(t) +

1

Γ (1− α)

f(b)

(b− t)α
.

Thus, e.g. the left Riemann–Liouville fractional derivative of the constant func-
tion C equals to C/[Γ (1 − α)(t − a)α], whereas the left Caputo fractional
derivative equal to zero. From the other hand, many properties of the Ca-
puto fractional derivatives are the same for the Riemann–Liouville fractional
derivative, when f(a) = f(b) = 0:

aD
−α
t+ f(t) = aI

α
t+f(t), (bD

−α
t− f(t) = bI

α
t−f(t)), α > 0, (6.1)

aI
α
t+f(t) =

1

Γ (α)

∫ t

a

f(τ) dτ

(t− τ)1−α
, t > a,

bI
α
t−f(t) =

1

Γ (α)

∫ b

t

f(τ) dτ

(τ − t)1−α
, t < b,

aD
α
t+f(t) = aI

−α
t+ f(t), (bD

α
t−f(t) = bI

−α
t− f(t)), α > 0,

aD
α
t+aD

β
t+f(t) = aD

β
t+aD

α
t+f(t) = aD

α+β
t+ f(t),

aI
α
t+aI

β
t+f(t) = aI

β
t+aI

α
t+f(t) = aI

α+β
t+ f(t),
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The analog of Taylor expansion is valid:

f(t) =

n−1
∑

j=0

aD
α+j
t+ f(0)

Γ (1 + α+ j)
tα+j +Rn(t) , n = [Reα] + 1 ,

where Rn(t) = aI
α+n
t+ aD

α+n
t+ f(t). The derivatives of some functions:

−∞
Dα

t+ sinλt = λα sin (λt+
πα

2
),

−∞
Dα

t+ cosλt = λα cos (λt+
πα

2
),

where λ > 0 , α > −1. When α ≤ −1, we have to use the property (6.1).

−∞
Dα

t+eλt+µ = λαeλt+µ , Reλ > 0 .

Some special functions: Eα,β(z) =
∑

∞

n=0

zn

Γ (αn+ β)
is the Mittag-Leffler func-

tion, and 1+Ez
α = 1+

∑

∞

n=0

zn+α

Γ (1 + α+ n)
is the generalized exponential func-

tion. The fractional Caputo derivative in this paper is used
−∞

Dα
t+ ≡

dα

dtα+
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