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Abstract. Certain summability methods for functions and sequences are compared
by their speeds of convergence. The authors are extending their results published in
paper [9] for Riesz-type families {Aa } (o > o) of summability methods A. Note that
a typical Riesz-type family is the family formed by Riesz methods Ao = (R, &), a > 0.
In [9] the comparative estimates for speeds of convergence for two methods A, and Ag
in a Riesz-type family {A.} were proved on the base of an inclusion theorem. In the
present paper these estimates are improved by comparing speeds of three methods A,
Ap and As on the base of a Tauberian theorem. As a result, a Tauberian remainder
theorem is proved. Numerical examples given in [9] are extended to the present paper
as applications of the Tauberian remainder theorem proved here.
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1 Introduction and Basic Notions

We continue comparing speeds of convergence in Riesz-type families of summa-
bility methods started in paper [9]. In the mentioned paper any two methods
in a Riesz-type family were compared by speed of convergence. In the present
paper we improve our estimates comparing by speed of convergence any three
methods in a Riesz-type family.

1.1. We begin our paper recalling the basic notions used in [9]. Let us con-
sider functions z = x(u) defined for v > 0, bounded and Lebesgue-measurable
on every finite interval [0, ug]. Let us denote the set of all such functions by X.
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Suppose that A is a transformation of functions x = x(u) (or, in par-
ticular, of sequences x = (z,,)) into functions Az = y = y(u) € X. If the
limit lim, oo y(u) = s exists then we say that @ = z(u) is convergent to

s with respect to the summability method A, and write z(u) — s(A). If
y = y(u) is bounded then we say that z is bounded with respect to A, and
write z(u) = O(A). We denote by wA the set of all these functions x, where the
transformation A is applied, and by cA and mA the set of all functions  which
are convergent and bounded with respect to the method A, respectively. The
method A is said to be regular if lim, o (u) = s implies lim, o0 y(u) = s
whenever x € X. Further we use the notation ¢y for the set of all functions
x € X having lim, o x(u) = 0.

One of the most common summability method for functions z is an integral
method A is defined with the help of transformation

where a(u,v) is a certain function of two variables u > 0 and v > 0. We say
also that the integral method A is defined by the function a(u,v). An example
of an integral summability method is the generalized integral Norlund method
(N, P(u),Q(u)) defined with the help of transformation

y(u) = % /O“ P(u—v)Q)x(v)dv (u>0),

where P = P(u) and @ = Q(u) are non-negative functions from X such that
R(u) = / P(u—v)Q)dv#0 for u> 0.
0

In particular, if Q(u) = 1 and P(u) = u*~! for u > 0 and a > 0, we get the
Riesz method (R, ).

For sequences x = (z,,) we focus ourselves on certain semi-continuous
summability methods A defined by transformations

y(w) =3 an(w)a, (u>0),

where a,(u) (n = 0,1,...) are some functions from X. An example of a semi-
continuous method is the Borel method B defined by the transformation

I o= u”
y(u) = e—uz_%mxn. (1.1)
1.2. One of the basic notions in this paper is the "speed of convergence".
We use here definitions based on the definitions for sequences (see [4] and
[5]) and extended for functions in [8] and [12]. Let A = A(u) be a positive
function from X such that A\(u) — oo as u — oo. It is said that a function

x = z(u) is convergent to s with speed A (shortly: A-convergent) if the finite
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limit limy, oo A(u) [x(u) — s] exists. If A(u) [z(u) — s] = O(1) as u — oo, then
x is said to be A-bounded.

We use the notations ¢* and m? for the sets of all A\-convergent and -
bounded functions x, respectively. It is said that z is convergent or bounded
with speed \ with respect to the summability method A if Az € ¢* or Az € m?,
respectively.

1.3. The main subject of the paper is a Riesz-type family of summability
methods ([8, 13]). Let {A,} be a family of summability methods A, where
! a(i)al and which are defined by transformations of functions =z = z(u) €

wA, C X into Apx = Yo = yo(u) € X. Suppose that for any 5 > 'y(i)oq we
have

WA, CwAg. (1.2)
DEFINITION 1. ([8], Definition 1; [13], Definition 2) A family {4, } (a(i)al) is
said to be a Riesz-type family if for every g > ”y(f)al the relation (1.2) holds
and the methods A, and Ag are connected through

u:M uu—vﬁf'yflr v v) dv U
wow) = 22 [0 e ) @0, 0
ra(u) =M%3/0 (u—v)B_W_lrv(v) dv (u>0), (1.4)

where r, = r,(u) and rg = r3(u) are some positive functions from X and M, 3
is a constant depending on « and S.

Ezample 1. Let {A,} be the family of generalized Norlund methods A4, =
(N, pa(u), q(u)) (o > ap) defined by positive functions p = p(u) € X and
¢ =q(u) € X and a number ag such that

ra(u)z/oupa(u—v)q(v)dv>0 (u>0,a>ag),

where po(u) = [;' (u —v)*'p(v) dv. It is known that relations (1.3) together
with (1.4) and (1.6) hold here for any 5 > v > ag (see [14]), and thus this
family is a Riesz-type family.

Ezample 2. Consider the Borel-type methods A, = (B, «,qy) (see [13]). Let
(gn) be a non-negative sequence such that the power series » ¢,u™ has the
radius of convergence R = oo and ¢, > 0 at least for one n € N. Denote

0o _
n!qnun-i—a 1

I'(n+ a) (15)

ro(u) =
n=1

and define the methods (B, «, ¢, ) (> —1/2) for converging sequences x = (x,)
with the help of transformation

1 = nlgurte!
« = n 0).
Yo (1) ro(u) ; I'(n+ ) v (u>0)

1 The notation a(i)al means that we consider parameter values a > a1 or a > a1 with
some fixed number a1.
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The methods A, = (B, «, g,) satisty relations (1.3) and (1.4) with r, (u) defined
by (1.5) and M, g = 1/I'(8 — 7) (see [13]) and form therefore a Riesz-type
family. In particular, if ¢, = % we get the Borel-type methods (B,«a) =
(B,a,1/n!) (see [1, 2]). If, in addition, « = 1, we have the Borel method
B =(B,1).

Example 3. Consider the family of generalized Norlund methods A,=(N,u®"1,
q(u)) where @ > 0 and ¢ = ¢(u) is a positive function from X. These methods
are defined by transformation of x into Ay = y,(u) with

_%Béﬂu—wwwwmva (u>0),

ya(u) = Ta(

where rq = ro(u) = [ (u —v)* 'q(v) dv. This family satisfies relations (1.3)
and (1.4) with
')
M,g=—tl
R COTR Ry
(see [9], Example 1) and therefore it is a Riesz-type family. In particular, if
q(u) = 1 (u > 0) we have Riesz methods (N,u*"1,1) = (R, a).

(1.6)

2 Preliminary Results

We need some results proved in [9].

2.1. Speeds of convergence of any two methods in a Riesz-type family were
compared in [9] on the base of an inclusion theorem which will be formulated
as the following proposition.

Proposition 1. Let {A,} (a(f)al) be a Riesz-type family. Then we have for
functions x = x(u) and numbers s and § > v(f)al that

i) x(u) = 0 (Ay) = x(u) = 0 (Ag), @) z(u) = s(Ay) = z(u) = s(Ap),
provided in case 1) that lim, fou Ta, (V) dv = o0 is satisfied if v = «a; s
included.

The next theorem (see [9], Theorem 1) describes how the speed of conver-
gence changes if we go from one summability method in the family to a stronger
one.

Theorem A. Let {Ay}(a > ag) be a Riesz-type family. Let some positive
function A = AMu) — oo (as u — o0) from X and some number v > og such
that "1

Au)

i) Then we have for functions © = x(u) and numbers s and 3 > ~y that

A() [y (u) = sl = O(1) = Ag(u) [ys(u) — s| = O(1), (2.1)

€ X be given.

where the speeds are related through the formulas

M) = 2 bat) = My [ a0 0,0 = 2 (22)
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it) Moreover, we have that

A) [yy(u) —s] =t = Ag(u) [ys(u) —s] =1, (2.3)
provided that .
lim by (v) dv = 0. (2.4)
u—r 00 0

Under restriction (2.4) the condition A(u) — oo implies Ag(u) — oo in
Theorem A (see [9], Remark 2). We note also that Theorem A can be considered
as a generalization of case A) of Theorem 1 from [12], which was proved for
matrix case. Certain evaluations for speed of convergence for Riesz and Norlund
matrix methods in Banach spaces were proved in recent papers [6] and [7].

2.2. The speeds A = A(u) and A\g = Ag(u) defined in Theorem A can be
compared by the inequalities.

Let a = a(u) and b = b(u) be two positive functions from X. If there exist
positive numbers c1, ¢o and ug such that the condition

c1b(u) < alu) < eab(u) (2.5)

holds for every u > ug, we write a(u) ~ b(u). If b = b(u) is nondecreasing and
condition (2.5) is satisfied with some positive ¢; and ¢y for any u > 0, then we
say that @ = a(u) is almost nondecreasing.

The following proposition is proved in [9] (see [9], Propositions 2 and 3).

Proposition 2. Let a Riesz-type family { A} (o > ap) and a positive function
A = MNu) € X be given. Fiz some v > «g and suppose that \g = Ag(u)
(B>~ > o) is defined through (2.2). Then for 8 > v > «g we have:
i) Ag(u) < LA(u) (u > 0) provided that A = \(u) is almost nondecreasing,
K
it) Ag(u) = H(;a)%)\(u) (u > 0) provided that b, (u) = r(u)/A(u) is

almost nondecreasing, where L and K are some positive constants independent
from u.

Previous result state that switching to a stronger method, the speed of
convergence can not be improved but also it cannot become too much worse.
This is consistent with results known for matrix methods (see e.g. [4, 6, 12]).

3 Main Results. A Tauberian Remainder Theorem

First we prove a convexity theorem.

Theorem 1. Let {A,} (a(i)al) be a Riesz-type family satisfying the condition

rp(u)/ra(u) #u?~%  (u>0) (3.1)

for all B > a > ay. Then we have for functions x = x(u) and numbers s and
B>6> v(f)al that

z(u) =0 (Ay), z(u) = s(Ag) = z(u) — s(4s). (3.2)

Math. Model. Anal., 15(1):103-112, 2010.
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Proof. Suppose first that v > ;. Without a loss of generality we may take
8 =~v4+1and s =0. Suppose that

Yy1(u) = 0 as u — 00, yy(u) =0(1) (3.3)
for a function z = z(u) and some value « of the parameter, and show that
ys(u) = 0 as u — o0 (3.4)
for any 0 such that v < 6 < v+ 1. By relation (1.3) we have that

_ My uu—v‘s_v_lr v v) dv u
o) = 222 [ o @@ > 0)

Choose some 0 € (1/2;1) and divide ys(u) into two parts:

_ Myt " w—0v)""" (v v) dv
ya(u) — ’I”(S(U) A ( ) ’Y( )y'y( )d
% “ w—v 6—7—1,,,. v v v — u u
+7°5(u) /eu( ) (V)Y (v) dv = Ii (u, 0) + I2(u,0).  (3.5)

Thus we have the equality ys(u) = I1(u,0) + I2(u,0). Note that I (u,d) and
I5(u,0) depend also on v, 6. Integrating by parts, we get for I;(u,8) the fol-
lowing form:

) = 22 (= [ o, ()

L My /0 " [0 =7 = u— w2 /0 (0 ()] dv = I} (u.6) + I} (u.0),

Ou
0

<

rs(u)
where
/ _ M5 u— )71 UT Ou _ My w— )11
(0.0) = 22 (=0 [ 0an)] = S w0
Ou My (u—6u) !
<[ o it = P e 0 (00)
and
Ou v
I (u,0) = fj&:; /0 [(5 — = 1)(u— )72 /0 7y (t)y (t)dt | dv

m s e [0 D s @) e
My 41 rs(u) Jo

Using conditions (3.1) and (3.3) we get

— fy)s——1
%%ﬁl(u)y.ﬁl(u) = O(L)u =9y s—7-1

X (1—0)° 7Ly 1(u) =o0(1)(1 —0)° 71 =0p(1) as u — oo.

I1(u,0) = O(1)
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Thus we have I} (u,0) = 0g(1) as u — co. Let us show that also I7 (u, ) = o0g(1)
as u — 00. Denoting

1
L s v) =< rs(u)
0, if v > Ou,

. (u—v)2"72r 1 (v), if 0<w < 0u,

we will show that the integral transformation defined by ¢/ s(u,v)isaco — co
type transformation. We use Theorem 6 from [3| which gives the sufficient
conditions for the regularity of integral methods. Let us prove first that

v
/ &, s(u,v)dv = 0g(1) as u — oo,
0

assuming that vg is a fixed positive number and v < vy < fu. We get:

v / _ L 0 u— )72y v) do Ty+1 (u)
[ st = — [M i a0 < 200

) Uy
X / (u—0)°"7"2dv=01)u" 0 (u—v)° 77! ’
0 0

—0(1) [m“”(u )t = 1]
=0(1) [(1 - %)67771 - 1] =0p(1) as u — 0.

Following Theorem 6 from [3] it remains to show that the condition

Ou
/0 c, 5(u,v) dv = Og(1) (u>0)

is also fulfilled. With the help of (3.1) we get:

/eu Ty+1 ('U) (u _ U)é—v—2 dv < TV-H(“) /Gu(u _ ,U)é—'y—2 dv
0 0

rs(u) rs(u)
=00 (u — u)° 771 = 0p(1).
Thus we have shown that the integral transformation defined by ¢’ ;(u,v) is of

type co — ¢o for every 6 € (1/2;1), and therefore condition I} (u, 0) = og(1) is
satisfied. By the obtained relations we have that

I (u,0) = I1(u,0) + I} (u,0) = 0g(1)  as u — oo. (3.6)

Next we evaluate the quantity Is(u,6) using relations (3.1) and (3.3):

I(u,0) = O(1) /9 (- vf‘””% dv = O(”:ZZ;;Z

x /u(u — P dy = 01w — 01| = 0(1) (1 — 0.
6

m u
So we have the estimate

I(u,0) = O(1)(1 — 6)°7. (3.7)

Math. Model. Anal., 15(1):103-112, 2010.
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Now we are able to complete our proof showing that (3.4) is true for every
v <6 <4 1. We choose £ > 0 and afterwards 6. € (1/2,1) so, that

L(u,0.) = O(1)(1 — 6.~ < % for any u > 0

(see (3.7)). Next we choose U = Up_ so, that |I;(u,0.)] < /2 for all u > U
(see (3.6)). It follows from (3.5) that |ys(u)| < € when u > U, i.e., (3.4) holds.
Thus we have shown that implication (3.2) is true for all 5 >0 > v > ay.

If v = a1, then we choose some v < 71 <  and get that z(u) = O(A,)
implies z(u) = O(A,,). To finish the proof, it remains to apply implication
(3.2), already proved, with 7 instead of v. O

Note that Theorem 1 was formulated (but not proved) in [13] as Proposi-
tion 4 with a hint on analogy with matrix case (see [10, 11]). The following
Tauberian remainder theorem extends Theorem A.

Theorem 2. Let {A,} (o« > o) be a Riesz-type family. Let some positive
function X\ = AMu) — oo (as u — o0) from X and some number v > g
such that ro(u)/Mu) € X be given. Suppose that bg(u) and Ag(u) are defined
through (2.2). Suppose also that the following condition

bs(u)/ba(u) = uP~  (u>0) (3.8)

is satisfied for any B > « > ~. Then we have for functions © = x(u) and
numbers s and > § > v that

A)ly(u) = 5] = O(1), As(u)lys(u) —s] =t == As(u)ys(u) —s] =t (3.9)

Proof. 'We set a; = v and construct another family {B, }(a > 7) on the base
of relations (2.2). Namely, we define the methods B, by the transformations
of a function y = y(u) € X into 174 = na(u) with

o) = 522 [0 @) o (> )
ba(u) Jo
and ny(u) = y(u), ie., By = I. The family {B,}(a > v) is a Riesz-type
family (see Example 3) satisfying the presumptions of Theorem 1. Let us
apply methods B, to y = A(u) [y,(u) — s] and realize that B,y = na(u) =
Ao (U) [ya(u) — 8] for any « > +. Thus, implication (3.9) holds by Theorem 1
for any 8 > ¢ >~ as (3.2) in the form

y(u) = O(By), y(u) = t(Bs) = y(u) = t(Bs).
O

An analogous Tauberian remainder theorem for "matrix case" was proved
in [12] as Theorem 2. Some Tauberian remainder theorems for Norlund and
Riesz matrix methods in Banach spaces were proved recently in [6] and [7].
Some estimates for speeds in a Riesz-type family (weaker than here) can be
found also in [8].
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4 Examples on Comparison of Speeds of Convergence

Here we give some numerical examples on application of Theorem 2 for com-
parison of speeds of convergence in special Riesz-type families. More precisely,
we extend Examples 5, 7 and 9 from [9], where Theorem A was applied. In
mentioned examples comparative evaluations (2.1) and (2.3) for speeds of any
two methods A, and Ag in Riesz-type families {A,} are presented. Here we
improve these results, comparing any three methods A, Ag and A with the
help of implication (3.9).

Ezample 4. We consider the Riesz methods A, = (R, a) (o > 0). Choose the
speed of convergence A(u) = (u + 1)? (p > 0) and fix some number v > 0.
Suppose that * = x(u) is a function having a given speed of convergence
A(u) with respect to the method A, = (R,v) and define with the help of
formulas (2.2) the function bg(u) and afterwards the speed of convergence Ag(u)
of x = x(u) with respect to the methods Ag = (R, 3) for 8 > ~. In Example 5
in [9] the following estimates for bg(u) and Ag(u) were proved for any 8 >  if
U — 00

bs(u) ~ My gB(B =,y —p+ 1’ /v, ifp<vy+1, (4.1)
uP=7"1logu, if p=~v+1,
bﬁ(u) ~ { u,@—v—l7 if p > ol + 1, (42)

ro+nr-—p+1 , 'G+HIB-p+1)

A ~ ~ A(u),
S~ TG = pr ) T TEF T —pr 1)
itp<y+1, (4.3)
u” [logu ~ A(u)/logu, if p=vy+1,
Aﬁ(u) ~ { 'LLP uV—P-l-l ~ )\(u) /UI'Y_P"I‘l7 1f p > 5 + 1 (44)

Estimates (4.1)—(4.2) show that condition (3.8) is satisfied for all 8 > a > 7.
Thus Theorem 2 applies, and implication (3.9) is true for any 5 > 6 > v where
speeds A\g and As obey evaluates (4.3) and (4.4).

Ezample 5. Let us consider the Borel-type methods A, = (B, «,1/n!) = (B, «)
(v > —1/2). Suppose that A(u) = (u+1)”e", fix some v > —1/2 and find A\g(u)
for 8 > ~ through (2.2) again. In Example 7 in [9] for S > ~ the following
estimates were proved:

w1, if p>1,
bp(u) =~ w7 llogu, if p=1, (4.5)
uP=r=r, if p<1,
e* Au) .
uB—r—1 ~ uﬁprf)\l(’ ) if p>1,
e u
A =S ~ if p=1 4.6
a(u) uP~7"llogu  uP~7logu’ s ' (4.6)
c ) if p<l.

B S
uB—r—r uB—r

Math. Model. Anal., 15(1):103-112, 2010.
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Condition (3.8) is satisfied for all 8 > « > v by relations (4.5). Therefore,
Theorem 2 applies again, and implication (3.9) is true for any 5 > 6 > v where
speeds Ag and \; obey evaluates (4.6).

Ezample 6. Suppose that A, = (N,u®"',e"") (a > 0) where 0 < ¢ < 1 is
some fixed number. Suppose that A\(u) = e**. It was shown in Example 9 in [9)]
that bs(u) =~ v~ 770797 and A\g(u) ~ " w8 = #O=F\(u) for B > 7.
We see that (3.8) is satisfied for any 5 > « > 7. Therefore, implication (3.9) is
true for any > 0 > 7 by Theorem 2.
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