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Abstract. Certain summability methods for functions and sequences are compared
by their speeds of convergence. The authors are extending their results published in
paper [9] for Riesz-type families {Aα} (α > α0) of summability methods Aα. Note that
a typical Riesz-type family is the family formed by Riesz methods Aα = (R,α), α > 0.
In [9] the comparative estimates for speeds of convergence for two methods Aγ and Aβ

in a Riesz-type family {Aα} were proved on the base of an inclusion theorem. In the
present paper these estimates are improved by comparing speeds of three methods Aγ ,

Aβ and Aδ on the base of a Tauberian theorem. As a result, a Tauberian remainder
theorem is proved. Numerical examples given in [9] are extended to the present paper
as applications of the Tauberian remainder theorem proved here.
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1 Introduction and Basic Notions

We continue comparing speeds of convergence in Riesz-type families of summa-
bility methods started in paper [9]. In the mentioned paper any two methods
in a Riesz-type family were compared by speed of convergence. In the present
paper we improve our estimates comparing by speed of convergence any three
methods in a Riesz-type family.

1.1. We begin our paper recalling the basic notions used in [9]. Let us con-
sider functions x = x(u) defined for u ≥ 0, bounded and Lebesgue-measurable
on every finite interval [0, u0]. Let us denote the set of all such functions by X.
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Suppose that A is a transformation of functions x = x(u) (or, in par-
ticular, of sequences x = (xn)) into functions Ax = y = y(u) ∈ X. If the
limit limu→∞ y(u) = s exists then we say that x = x(u) is convergent to
s with respect to the summability method A, and write x(u) → s(A). If
y = y(u) is bounded then we say that x is bounded with respect to A, and
write x(u) = O(A). We denote by ωA the set of all these functions x, where the
transformation A is applied, and by cA and mA the set of all functions x which
are convergent and bounded with respect to the method A, respectively. The
method A is said to be regular if limu→∞ x(u) = s implies limu→∞ y(u) = s
whenever x ∈ X. Further we use the notation c0 for the set of all functions
x ∈ X having limu→∞ x(u) = 0.

One of the most common summability method for functions x is an integral
method A is defined with the help of transformation

y(u) =

∫

∞

0

a(u, v)x(v) dv,

where a(u, v) is a certain function of two variables u ≥ 0 and v ≥ 0. We say
also that the integral method A is defined by the function a(u, v). An example
of an integral summability method is the generalized integral Nörlund method
(N,P (u), Q(u)) defined with the help of transformation

y(u) =
1

R(u)

∫ u

0

P (u− v)Q(v)x(v) dv (u > 0),

where P = P (u) and Q = Q(u) are non-negative functions from X such that

R(u) =

∫ u

0

P (u − v)Q(v) dv 6= 0 for u > 0.

In particular, if Q(u) = 1 and P (u) = uα−1 for u > 0 and α > 0, we get the
Riesz method (R,α).

For sequences x = (xn) we focus ourselves on certain semi-continuous
summability methods A defined by transformations

y(u) =
∞
∑

n=0

an(u)xn (u ≥ 0),

where an(u) (n = 0, 1, . . .) are some functions from X. An example of a semi-
continuous method is the Borel method B defined by the transformation

y(u) =
1

eu

∞
∑

n=0

un

n!
xn. (1.1)

1.2. One of the basic notions in this paper is the "speed of convergence".
We use here definitions based on the definitions for sequences (see [4] and
[5]) and extended for functions in [8] and [12]. Let λ = λ(u) be a positive
function from X such that λ(u) → ∞ as u → ∞. It is said that a function
x = x(u) is convergent to s with speed λ (shortly: λ-convergent) if the finite
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limit limu→∞ λ(u) [x(u) − s] exists. If λ(u) [x(u) − s] = O(1) as u → ∞, then
x is said to be λ-bounded.

We use the notations cλ and mλ for the sets of all λ-convergent and λ-
bounded functions x, respectively. It is said that x is convergent or bounded
with speed λ with respect to the summability method A if Ax ∈ cλ or Ax ∈ mλ,
respectively.

1.3. The main subject of the paper is a Riesz-type family of summability
methods ([8, 13]). Let {Aα} be a family of summability methods Aα where
1 α >

(−)α1 and which are defined by transformations of functions x = x(u) ∈

ωAα ⊂ X into Aαx = yα = yα(u) ∈ X. Suppose that for any β > γ >
(−)α1 we

have
ωAγ ⊂ ωAβ . (1.2)

Definition 1. ([8], Definition 1; [13], Definition 2) A family {Aα} (α >
(−)α1) is

said to be a Riesz-type family if for every β > γ >
(−)α1 the relation (1.2) holds

and the methods Aγ and Aβ are connected through

yβ(u) =
Mγ,β

rβ(u)

∫ u

0

(u− v)β−γ−1rγ(v)yγ(v) dv (u > 0), (1.3)

rβ(u) = Mγ,β

∫ u

0

(u− v)β−γ−1rγ(v) dv (u > 0), (1.4)

where rγ = rγ(u) and rβ = rβ(u) are some positive functions from X and Mγ,β

is a constant depending on γ and β.

Example 1. Let {Aα} be the family of generalized Nörlund methods Aα =
(N, pα(u), q(u)) (α > α0) defined by positive functions p = p(u) ∈ X and
q = q(u) ∈ X and a number α0 such that

rα(u) =

∫ u

0

pα(u− v)q(v) dv > 0 (u > 0, α > α0),

where pα(u) =
∫ u

0 (u − v)α−1p(v) dv. It is known that relations (1.3) together
with (1.4) and (1.6) hold here for any β > γ > α0 (see [14]), and thus this
family is a Riesz-type family.

Example 2. Consider the Borel-type methods Aα = (B,α, qn) (see [13]). Let
(qn) be a non-negative sequence such that the power series

∑

qnu
n has the

radius of convergence R = ∞ and qn > 0 at least for one n ∈ N. Denote

rα(u) =

∞
∑

n=1

n!qnu
n+α−1

Γ (n+ α)
(1.5)

and define the methods (B,α, qn) (α> −1/2) for converging sequences x = (xn)
with the help of transformation

yα(u) =
1

rα(u)

∞
∑

n=1

n!qnu
n+α−1

Γ (n+ α)
xn (u > 0).

1 The notation α
>
(−)

α1 means that we consider parameter values α > α1 or α ≥ α1 with

some fixed number α1.

Math. Model. Anal., 15(1):103–112, 2010.
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The methods Aα = (B,α, qn) satisfy relations (1.3) and (1.4) with rα(u) defined
by (1.5) and Mγ,β = 1/Γ (β − γ) (see [13]) and form therefore a Riesz-type
family. In particular, if qn = 1

n! we get the Borel-type methods (B,α) =
(B,α, 1/n!) (see [1, 2]). If, in addition, α = 1, we have the Borel method
B = (B, 1).

Example 3. Consider the family of generalized Nörlund methods Aα=(N, uα−1,
q(u)) where α > 0 and q = q(u) is a positive function from X. These methods
are defined by transformation of x into Aαx = yα(u) with

yα(u) =
1

rα(u)

∫ u

0

(u − v)α−1q(v)x(v) dv (u > 0),

where rα = rα(u) =
∫ u

0 (u − v)α−1q(v) dv. This family satisfies relations (1.3)
and (1.4) with

Mγ,β =
Γ (β)

Γ (γ)Γ (β − γ)
(1.6)

(see [9], Example 1) and therefore it is a Riesz-type family. In particular, if
q(u) = 1 (u ≥ 0) we have Riesz methods (N, uα−1, 1) = (R,α).

2 Preliminary Results

We need some results proved in [9].
2.1. Speeds of convergence of any two methods in a Riesz-type family were

compared in [9] on the base of an inclusion theorem which will be formulated
as the following proposition.

Proposition 1. Let {Aα} (α >
(−)α1) be a Riesz-type family. Then we have for

functions x = x(u) and numbers s and β > γ >
(−)α1 that

i) x(u) = O (Aγ) =⇒ x(u) = O (Aβ), ii) x(u) → s(Aγ) =⇒ x(u) → s(Aβ),
provided in case ii) that limu→∞

∫ u

0
rα1

(v) dv = ∞ is satisfied if γ = α1 is
included.

The next theorem (see [9], Theorem 1) describes how the speed of conver-
gence changes if we go from one summability method in the family to a stronger
one.

Theorem A. Let {Aα}(α > α0) be a Riesz-type family. Let some positive
function λ = λ(u) → ∞ (as u → ∞) from X and some number γ > α0 such

that
rγ(u)

λ(u)
∈ X be given.

i) Then we have for functions x = x(u) and numbers s and β > γ that

λ(u) [yγ(u)− s] = O(1) =⇒ λβ(u) [yβ(u)− s] = O(1), (2.1)

where the speeds are related through the formulas

λβ(u) =
rβ(u)

bβ(u)
, bβ(u) = Mγ,β

∫ u

0

(u−v)β−γ−1bγ(v) dv, bγ(u) =
rγ(u)

λ(u)
. (2.2)
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ii) Moreover, we have that

λ(u) [yγ(u)− s] → t =⇒ λβ(u) [yβ(u)− s] → t, (2.3)

provided that

lim
u→∞

∫ u

0

bγ(v) dv = ∞. (2.4)

Under restriction (2.4) the condition λ(u) → ∞ implies λβ(u) → ∞ in
Theorem A (see [9], Remark 2). We note also that Theorem A can be considered
as a generalization of case A) of Theorem 1 from [12], which was proved for
matrix case. Certain evaluations for speed of convergence for Riesz and Nörlund
matrix methods in Banach spaces were proved in recent papers [6] and [7].

2.2. The speeds λ = λ(u) and λβ = λβ(u) defined in Theorem A can be
compared by the inequalities.

Let a = a(u) and b = b(u) be two positive functions from X. If there exist
positive numbers c1, c2 and u0 such that the condition

c1b(u) ≤ a(u) ≤ c2b(u) (2.5)

holds for every u > u0, we write a(u) ≈ b(u). If b = b(u) is nondecreasing and
condition (2.5) is satisfied with some positive c1 and c2 for any u > 0, then we
say that a = a(u) is almost nondecreasing.

The following proposition is proved in [9] (see [9], Propositions 2 and 3).

Proposition 2. Let a Riesz-type family {Aα} (α > α0) and a positive function
λ = λ(u) ∈ X be given. Fix some γ > α0 and suppose that λβ = λβ(u)
(β > γ > α0) is defined through (2.2). Then for β > γ > α0 we have:

i) λβ(u) ≤ Lλ(u) (u > 0) provided that λ = λ(u) is almost nondecreasing,

ii) λβ(u) ≥
Krβ(u)

rγ(u)uβ−γ
λ(u) (u > 0) provided that bγ(u) = rγ(u)/λ(u) is

almost nondecreasing, where L and K are some positive constants independent
from u.

Previous result state that switching to a stronger method, the speed of
convergence can not be improved but also it cannot become too much worse.
This is consistent with results known for matrix methods (see e.g. [4, 6, 12]).

3 Main Results. A Tauberian Remainder Theorem

First we prove a convexity theorem.

Theorem 1. Let {Aα} (α >
(−)α1) be a Riesz-type family satisfying the condition

rβ(u)/rα(u) ≈ uβ−α (u > 0) (3.1)

for all β > α > α1. Then we have for functions x = x(u) and numbers s and
β > δ > γ >

(−)α1 that

x(u) = O (Aγ), x(u) → s (Aβ) =⇒ x(u) → s (Aδ). (3.2)

Math. Model. Anal., 15(1):103–112, 2010.
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Proof. Suppose first that γ > α1. Without a loss of generality we may take
β = γ + 1 and s = 0. Suppose that

yγ+1(u) → 0 as u → ∞, yγ(u) = O(1) (3.3)

for a function x = x(u) and some value γ of the parameter, and show that

yδ(u) → 0 as u → ∞ (3.4)

for any δ such that γ < δ < γ + 1. By relation (1.3) we have that

yδ(u) =
Mγ,δ

rδ(u)

∫ u

0

(u− v)δ−γ−1rγ(v)yγ(v) dv (u > 0).

Choose some θ ∈ (1/2; 1) and divide yδ(u) into two parts:

yδ(u) =
Mγ,δ

rδ(u)

∫ θu

0

(u− v)δ−γ−1rγ(v)yγ(v) dv

+
Mγ,δ

rδ(u)

∫ u

θu

(u− v)δ−γ−1rγ(v)yγ(v) dv = I1(u, θ) + I2(u, θ). (3.5)

Thus we have the equality yδ(u) = I1(u, θ) + I2(u, θ). Note that I1(u, θ) and
I2(u, θ) depend also on γ, δ. Integrating by parts, we get for I1(u, θ) the fol-
lowing form:

I1(u, θ) =
Mγ,δ

rδ(u)

(

(u − v)δ−γ−1

∫ v

0

rγ(t)yγ(t)dt
)
∣

∣

∣

θu

0

+
Mγ,δ

rδ(u)

∫ θu

0

[

(δ − γ − 1)(u− v)δ−γ−2

∫ v

0

rγ(t)yγ(t)dt
]

dv = I ′1(u, θ) + I ′′1 (u, θ),

where

I ′1(u, θ) =
Mγ,δ

rδ(u)
((u− v)δ−γ−1

∫ v

0

rγ(t)yγ(t)dt)
∣

∣

∣

θu

0
=

Mγ,δ

rδ(u)
(u− θu)δ−γ−1

×

∫ θu

0

rγ(t)yγ(t)dt =
Mγ,δ

Mγ,γ+1

(u− θu)δ−γ−1

rδ(u)
rγ+1(θu)yγ+1(θu)

and

I ′′1 (u, θ) =
Mγ,δ

rδ(u)

∫ θu

0

[

(δ − γ − 1)(u− v)δ−γ−2

∫ v

0

rγ(t)yγ(t)dt
]

dv

=
Mγ,δ

Mγ,γ+1

1

rδ(u)

∫ θu

0

(δ − γ − 1)(u− v)δ−γ−2rγ+1(v)yγ+1(v) dv.

Using conditions (3.1) and (3.3) we get

I ′1(u, θ) = O(1)
(u − θu)δ−γ−1

rδ(u)
rγ+1(u)yγ+1(u) = O(1)uγ+1−δuδ−γ−1

× (1− θ)δ−γ−1yγ+1(u) = o(1)(1 − θ)δ−γ−1 = oθ(1) as u → ∞.
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Thus we have I ′1(u, θ) = oθ(1) as u → ∞. Let us show that also I ′′1 (u, θ) = oθ(1)
as u → ∞. Denoting

c′γ,δ(u, v) =







1

rδ(u)
(u− v)δ−γ−2rγ+1(v), if 0 ≤ v ≤ θu,

0, if v > θu,

we will show that the integral transformation defined by c′γ,δ(u, v) is a c0 → c0
type transformation. We use Theorem 6 from [3] which gives the sufficient
conditions for the regularity of integral methods. Let us prove first that

∫ v0

0

c′γ,δ(u, v) dv = oθ(1) as u → ∞,

assuming that v0 is a fixed positive number and v < v0 < θu. We get:
∫ v0

0

c′γ,δ(u, v) dv =
1

rδ(u)

∫ v0

0

(u− v)δ−γ−2rγ+1(v) dv ≤
rγ+1(u)

rδ(u)

×

∫ v0

0

(u− v)δ−γ−2 dv = O(1)uγ+1−δ(u− v)δ−γ−1
∣

∣

∣

v0

0

= O(1)
[

uγ+1−δ(u− v0)
δ−γ−1 − 1

]

= O(1)
[

(1−
v0
u
)δ−γ−1 − 1

]

= oθ(1) as u → ∞.

Following Theorem 6 from [3] it remains to show that the condition

∫ θu

0

c′γ,δ(u, v) dv = Oθ(1) (u > 0)

is also fulfilled. With the help of (3.1) we get:

∫ θu

0

rγ+1(v)

rδ(u)
(u− v)δ−γ−2 dv ≤

rγ+1(u)

rδ(u)

∫ θu

0

(u− v)δ−γ−2 dv

= O(1)uγ+1−δ(u − θu)δ−γ−1 = Oθ(1).

Thus we have shown that the integral transformation defined by c′γ,δ(u, v) is of
type c0 → c0 for every θ ∈ (1/2; 1), and therefore condition I ′′1 (u, θ) = oθ(1) is
satisfied. By the obtained relations we have that

I1(u, θ) = I ′1(u, θ) + I ′′1 (u, θ) = oθ(1) as u → ∞. (3.6)

Next we evaluate the quantity I2(u, θ) using relations (3.1) and (3.3):

I2(u, θ) = O(1)

∫ u

θu

(u − v)δ−γ−1 rγ+1(v)

vrδ(u)
dv = O(1)

rγ+1(u)

rδ(u)θu

×

∫ u

θu

(u− v)δ−γ−1 dv = O(1)uγ−δ(u− v)δ−γ
∣

∣

∣

θu

u
= O(1) (1− θ)δ−γ .

So we have the estimate

I2(u, θ) = O(1)(1 − θ)δ−γ . (3.7)

Math. Model. Anal., 15(1):103–112, 2010.
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Now we are able to complete our proof showing that (3.4) is true for every
γ < δ < γ + 1. We choose ε > 0 and afterwards θε ∈ (1/2, 1) so, that

I2(u, θε) = O(1)(1 − θε)
δ−γ <

ε

2
for any u > 0

(see (3.7)). Next we choose U = Uθε so, that |I1(u, θε)| < ε/2 for all u > U
(see (3.6)). It follows from (3.5) that |yδ(u)| < ε when u > U, i.e., (3.4) holds.
Thus we have shown that implication (3.2) is true for all β > δ > γ > α1.

If γ = α1, then we choose some γ < γ1 < δ and get that x(u) = O(Aγ)
implies x(u) = O(Aγ1

). To finish the proof, it remains to apply implication
(3.2), already proved, with γ1 instead of γ. ⊓⊔

Note that Theorem 1 was formulated (but not proved) in [13] as Proposi-
tion 4 with a hint on analogy with matrix case (see [10, 11]). The following
Tauberian remainder theorem extends Theorem A.

Theorem 2. Let {Aα} (α > α0) be a Riesz-type family. Let some positive
function λ = λ(u) → ∞ (as u → ∞) from X and some number γ > α0

such that rγ(u)/λ(u) ∈ X be given. Suppose that bβ(u) and λβ(u) are defined
through (2.2). Suppose also that the following condition

bβ(u)/bα(u) ≈ uβ−α (u > 0) (3.8)

is satisfied for any β > α > γ. Then we have for functions x = x(u) and
numbers s and β > δ > γ that

λ(u)[yγ(u)− s] = O(1), λβ(u)[yβ(u)− s] → t =⇒ λδ(u)[yδ(u)− s] → t. (3.9)

Proof. We set α1 = γ and construct another family {Bα}(α ≥ γ) on the base
of relations (2.2). Namely, we define the methods Bα by the transformations
of a function y = y(u) ∈ X into ηα = ηα(u) with

ηα(u) =
Mγ,α

bα(u)

∫ u

0

(u− v)β−γ−1bγ(v)y(v) dv (α > γ)

and ηγ(u) = y(u), i.e., Bγ = I. The family {Bα}(α ≥ γ) is a Riesz-type
family (see Example 3) satisfying the presumptions of Theorem 1. Let us
apply methods Bα to y = λ(u) [yγ(u) − s] and realize that Bαy = ηα(u) =
λα(u) [yα(u) − s] for any α > γ. Thus, implication (3.9) holds by Theorem 1
for any β > δ > γ as (3.2) in the form

y(u) = O (Bγ), y(u) → t (Bβ) =⇒ y(u) → t (Bδ).

⊓⊔

An analogous Tauberian remainder theorem for "matrix case" was proved
in [12] as Theorem 2. Some Tauberian remainder theorems for Nörlund and
Riesz matrix methods in Banach spaces were proved recently in [6] and [7].
Some estimates for speeds in a Riesz-type family (weaker than here) can be
found also in [8].
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4 Examples on Comparison of Speeds of Convergence

Here we give some numerical examples on application of Theorem 2 for com-
parison of speeds of convergence in special Riesz-type families. More precisely,
we extend Examples 5, 7 and 9 from [9], where Theorem A was applied. In
mentioned examples comparative evaluations (2.1) and (2.3) for speeds of any
two methods Aγ and Aβ in Riesz-type families {Aα} are presented. Here we
improve these results, comparing any three methods Aγ , Aβ and Aδ with the
help of implication (3.9).

Example 4. We consider the Riesz methods Aα = (R,α) (α > 0). Choose the
speed of convergence λ(u) = (u + 1)ρ (ρ > 0) and fix some number γ > 0.
Suppose that x = x(u) is a function having a given speed of convergence
λ(u) with respect to the method Aγ = (R, γ) and define with the help of
formulas (2.2) the function bβ(u) and afterwards the speed of convergence λβ(u)
of x = x(u) with respect to the methods Aβ = (R, β) for β > γ. In Example 5
in [9] the following estimates for bβ(u) and λβ(u) were proved for any β > γ if
u → ∞ :

bβ(u) ∼ Mγ,βB(β − γ, γ − ρ+ 1)uβ−ρ/γ, if ρ < γ + 1, (4.1)

bβ(u) ≈

{

uβ−γ−1 log u, if ρ = γ + 1,
uβ−γ−1, if ρ > γ + 1,

(4.2)

λβ(u) ∼
Γ (γ + 1)Γ (β − ρ+ 1)

Γ (β + 1)Γ (γ − ρ+ 1)
uρ ∼

Γ (γ + 1)Γ (β − ρ+ 1)

Γ (β + 1)Γ (γ − ρ+ 1)
λ(u),

if ρ < γ + 1, (4.3)

λβ(u) ≈

{

uρ/log u ∼ λ(u)/log u, if ρ = γ + 1,

uρ uγ−ρ+1 ∼ λ(u)uγ−ρ+1, if ρ > γ + 1.
(4.4)

Estimates (4.1)–(4.2) show that condition (3.8) is satisfied for all β > α > γ.
Thus Theorem 2 applies, and implication (3.9) is true for any β > δ > γ where
speeds λβ and λδ obey evaluates (4.3) and (4.4).

Example 5. Let us consider the Borel-type methods Aα = (B,α, 1/n!) = (B,α)
(α > −1/2). Suppose that λ(u) = (u+1)ρeu, fix some γ > −1/2 and find λβ(u)
for β > γ through (2.2) again. In Example 7 in [9] for β > γ the following
estimates were proved:

bβ(u) ≈











uβ−γ−1, if ρ > 1,

uβ−γ−1 log u, if ρ = 1,

uβ−γ−ρ, if ρ < 1,

(4.5)

λβ(u) ≈



























eu

uβ−γ−1
∼

λ(u)

uβ−γ+ρ−1
, if ρ > 1,

eu

uβ−γ−1 log u
∼

λ(u)

uβ−γ log u
, if ρ = 1,

eu

uβ−γ−ρ
∼

λ(u)

uβ−γ
, if ρ < 1.

(4.6)
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Condition (3.8) is satisfied for all β > α > γ by relations (4.5). Therefore,
Theorem 2 applies again, and implication (3.9) is true for any β > δ > γ where
speeds λβ and λδ obey evaluates (4.6).

Example 6. Suppose that Aα = (N, uα−1, eu
ϕ

) (α > 0) where 0 < ϕ < 1 is
some fixed number. Suppose that λ(u) = eu

ϕ

. It was shown in Example 9 in [9]
that bβ(u) ≈ uβ−γ+(1−ϕ)γ and λβ(u) ≈ eu

ϕ

uϕ(γ−β) = uϕ(γ−β)λ(u) for β > γ.
We see that (3.8) is satisfied for any β > α > γ. Therefore, implication (3.9) is
true for any β > δ > γ by Theorem 2.

References

[1] D. Borwein. On Borel-type methods of summability. Mathematica, 5:128–133,
1958.

[2] D. Borwein and B. L. R. Shawyer. On Borel-methods. Tôhoku Math. J., 18:283–
298, 1966. Doi:10.2748/tmj/1178243418.

[3] G.H. Hardy. Divergent series. Oxford Press, 1949.

[4] G. Kangro. On Bohr-Hardy-type multipliers of convergence for a given speed I.
Proc. Estonian Acad. Sci. Phys. Math., 18:137–145, 1969. (in Russian)

[5] G. Kangro. Summability factors for the series λ−bounded by the methods of
Riesz and Cesàro. Tartu Ülik. Toimetised, 277:136–154, 1971. (in Russian)

[6] O. Meronen and I. Tammeraid. Generalized Nörlund method and convergence
acceleration. Math. Model. Anal., 12:195–204, 2007.
Doi:10.3846/1392-6292.2007.12.195-204.

[7] O. Meronen and I. Tammeraid. Generalized linear methods and gap
Tauberian remainder theorems. Math. Model. Anal., 13:223–232, 2008.
Doi:10.3846/1392-6292.2008.13.223-232.

[8] V. Pavlova and A. Tali. On the convexity theorem of M. Riesz. Proc. Estonian
Acad. Sci. Phys. Math., 51:18–34, 2002.

[9] A. Šeletski and A. Tali. Comparison of speeds of convergence in Riesz-type
families of summability methods. Proc. Estonian Acad. Sci., 57:70–80, 2008.
Doi:10.3176/proc.2008.2.02.

[10] R. Sinha. Convexity theorem for (N, p, q) summability. Kyungpook Math. J.,
13:37–40, 1973.

[11] U. Stadtmüller and A. Tali. On some families of certain Nörlund methods and
power series methods. J. Math. Anal. Appl., 238:44–66, 1999.
Doi:10.1006/jmaa.1999.6503.

[12] U. Stadtmüller and A. Tali. Comparison of certain summability meth-
ods by speeds of convergence. Analysis Mathematica, 29:227–242, 2003.
Doi:10.1023/A:1025419305735.

[13] U. Stadtmüller and A. Tali. Strong summability in certain families of summa-
bility methods. Acta Sci. Math. (Szeged), 70:639–657, 2004.

[14] A. Tali. Zero-convex families of summability methods. Tartu Ülik. Toimetised,
504:48–57, 1981. (in Russian)

http://dx.doi.org/10.2748/tmj/1178243418
http://dx.doi.org/10.3846/1392-6292.2007.12.195-204
http://dx.doi.org/10.3846/1392-6292.2008.13.223-232
http://dx.doi.org/10.3176/proc.2008.2.02
http://dx.doi.org/10.1006/jmaa.1999.6503
http://dx.doi.org/10.1023/A:1025419305735

	Introduction and Basic Notions
	Preliminary Results
	Main Results. A Tauberian Remainder Theorem
	Examples on Comparison of Speeds of Convergence
	References

