Several Theorems on λ-Summable Series*

O. Meronen and I. Tammeraid

Department of Mathematics, Tallinn University of Technology Tallinn, 19086, Estonia
E-mail(corresp.): olgam@staff.ttu.ee; itammeraid@staff.ttu.ee

Received August 31, 2009; revised December 18,2009; published online February 15, 2010

Abstract

We prove several propositions on λ-summable series by Cesàro method $(C, 1)$ or by weighted mean methods \bar{N}, which are also often called Riesz methods $P=\left(R, p_{n}\right)$.

Keywords: summability by weighted mean methods, λ-bounded series.
AMS Subject Classification: 40-XX.

1 Introduction

A sequence $x=\left\{\xi_{n}\right\}$ is called bounded with the rapidity $\lambda=\left\{\lambda_{n}\right\}\left(0<\lambda_{n} \uparrow\right)$ if $\lambda_{n}\left(\xi_{n}-\xi\right)=O(1)$ with $\lim \xi_{n}=\xi$. A sequence $x=\left\{\xi_{n}\right\}$ is called λ-bounded by a matrix method A if $A x$ is λ-bounded. G. Kangro [2] proved Tauberian remainder theorem for the Riesz summability method A preserving λ-boundedness (by the supposition $A m^{\lambda} \subset m^{\lambda}$), where

$$
m^{\lambda}=\left\{x \mid x=\left\{\xi_{n}\right\} \wedge \lim \xi_{n}=\xi \wedge \lambda_{n}\left(\xi_{n}-\xi\right)=O(1)\right\} .
$$

I. Tammeraid [5] studied Tauberian remainder theorems for Cesàro and Hölder methods of summability. For example: if the sequences x and λ satisfy the conditions $n \lambda_{n} \Delta \xi_{n}=O(1), x \in\left((C, \alpha), m^{\lambda}\right)(\alpha>0)$ and

$$
\begin{equation*}
\frac{\lambda_{n}}{n+1} \sum_{k=0}^{n} \frac{1}{\lambda_{k}}=O(1) \tag{1.1}
\end{equation*}
$$

then $x \in m^{\lambda}$.
If we inquire the condition (1.1) in the case $\lambda_{n}=(n+1)^{\alpha}$, we get that $0<\alpha<1$. That means that the condition (1.1) of preserving λ-boundedness does not enable us to study these problems in the case $\lambda_{n}=(n+1)^{\alpha}$ with $\alpha \geq 1$. Therefore we are interested in the ideas which gave us G. H. Hardy [1], F. Móricz and B. E. Rhoades [3, 4].

[^0]
2 Cesàro Means of Order One

We use two lemmas (see [1]).
Lemma 1. If the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} \tag{2.1}
\end{equation*}
$$

is $(C, 1)$-summable, then the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{a_{k}}{k+1} \tag{2.2}
\end{equation*}
$$

is convergent.
Lemma 2. The necessary and sufficient condition that the series (2.1) should be summable $(C, 1)$ to sum A is that

$$
\begin{equation*}
\lim \left(\xi_{n}+(n+1) b_{n+1}\right)=A, \tag{2.3}
\end{equation*}
$$

while

$$
\begin{equation*}
\xi_{n}=\sum_{k=0}^{n} a_{k}, \quad b_{n}=\sum_{k=n}^{\infty} \frac{a_{k}}{k+1} . \tag{2.4}
\end{equation*}
$$

It is easy to control (see [1]) that the convergence of the series $\sum b_{n}$ to A is equivalent to the condition (2.3).

Proposition 1. If $0<\mu_{n} \nearrow \infty$,

$$
\begin{equation*}
\mu_{n}=O\left(\mu_{n-1}\right) \tag{2.5}
\end{equation*}
$$

and the series (2.1) is μ-bounded by the method $(C, 1)$ and

$$
\begin{equation*}
\mu_{n} \sum_{k=n+1}^{\infty} \frac{1}{(k+2)(k+3) \mu_{k}}=O(1) \tag{2.6}
\end{equation*}
$$

then the series (2.2) is μ-bounded.
Proof. Let the series (2.1) be $(C, 1)$-summable to A. That means $\lim \sigma_{n}=A$, while

$$
\begin{equation*}
\sigma_{n}=\frac{1}{n+1} \sum_{k=0}^{n} \xi_{k}, \quad \xi_{n}=(n+1) \sigma_{n}-n \sigma_{n-1} \tag{2.7}
\end{equation*}
$$

It is obvious (see [1]) that we may suppose without loss of generality that $A=0$. As the series (2.1) is μ-bounded by $(C, 1)$ and $A=0$, then

$$
\begin{equation*}
\mu_{n} \sigma_{n}=O(1) \tag{2.8}
\end{equation*}
$$

Using Lemma 1 we get that the series (2.2) is convergent. As

$$
\sum_{k=0}^{n} \frac{a_{k}}{k+1}-\sum_{k=0}^{\infty} \frac{a_{k}}{k+1}=-\sum_{k=n+1}^{\infty} \frac{a_{k}}{k+1}
$$

then using (2.4), (2.7) we get

$$
\begin{aligned}
\sum_{k=n+1}^{\infty} \frac{a_{k}}{k+1} & =\sum_{k=n+1}^{\infty} \frac{\xi_{k}-\xi_{k-1}}{k+1}=-\frac{\xi_{n}}{n+2}+\sum_{k=n+1}^{\infty} \frac{\xi_{k}}{(k+1)(k+2)} \\
& =\frac{n \sigma_{n-1}}{n+2}-\frac{(n+1)(n+4) \sigma_{n}}{(n+2)(n+3)}+2 \sum_{k=n+1}^{\infty} \frac{\sigma_{k}}{(k+2)(k+3)} .
\end{aligned}
$$

Therefore using (2.5), (2.6) and (2.8) we have

$$
\begin{aligned}
& \mu_{n} \sum_{k=n+1}^{\infty} \frac{a_{k}}{k+1}=\frac{n}{n+2} \frac{\mu_{n}}{\mu_{n-1}} \mu_{n-1} \sigma_{n-1}-\frac{(n+1)(n+4)}{(n+2)(n+3)} \mu_{n} \sigma_{n} \\
& \quad+2 \mu_{n} \sum_{k=n+1}^{\infty} \frac{1}{(k+2)(k+3) \mu_{k}} \mu_{k} \sigma_{k}=O(1)+O(1)+O(1)=O(1) .
\end{aligned}
$$

So the assertion of Proposition 1 is valid.
Proposition 2. If $0<\lambda_{n} \nearrow \infty$,

$$
\begin{equation*}
\lambda_{n}=O\left(\lambda_{n-1}\right) \tag{2.9}
\end{equation*}
$$

and the series (2.1) is λ-bounded with $\lambda=\left\{\lambda_{n}\right\}$ by the method $(C, 1)$ and

$$
\begin{equation*}
(n+1) \lambda_{n} \sum_{k=n+1}^{\infty} \frac{1}{(k+2)(k+3) \lambda_{k}}=O(1) \tag{2.10}
\end{equation*}
$$

then the sequence

$$
\begin{equation*}
\left\{\xi_{n}+(n+1) b_{n+1}\right\} \tag{2.11}
\end{equation*}
$$

where the quantities ξ_{n} and b_{n} are defined by (2.4), is λ-bounded.
Proof. Let the series (2.1) be $(C, 1)$-summable to A. Let $A=0$. Using Lemma 2 we get that the sequence (2.11) is convergent to 0 . So we have $\lambda_{n} \sigma_{n}=O(1)$. Using (2.4) and (2.7) we get

$$
\begin{aligned}
& \xi_{n}+(n+1) b_{n+1}=\xi_{n}+(n+1) \sum_{k=n+1}^{\infty} \frac{\xi_{k}-\xi_{k-1}}{k+1} \\
& \xi_{n}+(n+1) b_{n+1}=-\frac{n \sigma_{n-1}}{n+2}+\frac{2(n+1) \sigma_{n}}{(n+2)(n+3)}+2(n+1) \sum_{k=n+1}^{\infty} \frac{\sigma_{k}}{(k+2)(k+3)} .
\end{aligned}
$$

So we get

$$
\begin{aligned}
\lambda_{n}\left(\xi_{n}+(n+1) b_{n+1}\right)= & -\frac{n}{n+2} \frac{\lambda_{n}}{\lambda_{n-1}} \lambda_{n-1} \sigma_{n-1}+\frac{2(n+1)}{(n+2)(n+3)} \lambda_{n} \sigma_{n} \\
& +2(n+1) \lambda_{n} \sum_{k=n+1}^{\infty} \frac{1}{(k+2)(k+3) \lambda_{k}} \lambda_{k} \sigma_{k}
\end{aligned}
$$

Therefore using properties of $\sigma_{n},(2.9)$ and (2.10) we get
$\lambda_{n}\left(\xi_{n}+(n+1) b_{n+1}\right)=O(1) \cdot O(1) \cdot O(1)+O(1) \cdot O(1)+O(1) \cdot O(1)=O(1)$.
Thus the sequence (2.11) is λ-bounded and the assertion of the Proposition 2 is valid.

Proposition 3. If $0<\lambda_{n} \nearrow \infty$,

$$
\begin{equation*}
\mu_{n}=(n+1) \lambda_{n} \tag{2.12}
\end{equation*}
$$

and the series (2.1) is μ-bounded by the method $(C, 1)$ and the conditions (2.9) and (2.10) are satisfied, then the series (2.1) is λ-bounded.

Proof. Let $A=0$. Using (2.9) and (2.12) we get the condition (2.5) is satisfied. Using the Proposition 1 we get that the series (2.2) is μ-bounded. Using the Proposition 2 we get that the sequence (2.11) is λ-bounded. So we get

$$
\lambda_{n} \xi_{n}+\lambda_{n}(n+1) \sum_{k=n+1}^{\infty} \frac{a_{k}}{(k+1)}=O(1)
$$

As the series (2.2) is μ-bounded, we have

$$
\lambda_{n}(n+1) \sum_{k=n+1}^{\infty} \frac{a_{k}}{k+1}=O(1)
$$

So we get $\lambda_{n} \xi_{n}=O(1)$ and the assertion of the Proposition 3 is valid.

3 Weighted Means

F. Móricz, B. E. Rhoades [3] and [4] used Hardy's idea for an equivalent reformulation of summability by weighted mean methods. Let $\left\{p_{k}\right\}$ be a fixed sequence of positive numbers and $P_{n}=\sum_{k=0}^{n} p_{k}$. A series (2.1) is said to be summable by the weighted mean method \bar{N} (often called as Riesz method $\left.P=\left(R, p_{n}\right)\right)$ if the sequence $\left\{\eta_{n}\right\}$ defined by

$$
\begin{equation*}
\eta_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} \xi_{k} \tag{3.1}
\end{equation*}
$$

where ξ_{k} is defined by (2.4), converges to a finite limit as $n \rightarrow \infty$. We use a (see [3] and [4])
Lemma 3. Let \bar{N} be the weighted mean method determined by $\left\{p_{n}\right\}$ satisfying the conditions

$$
\begin{align*}
& p_{n} \geq a>0 \quad(n=0,1,2, \ldots), \quad p_{n+1} / p_{n}=O(1) \tag{3.2}\\
& \frac{p_{n+1} P_{n}}{p_{n}} \nearrow, \quad P_{n} \nearrow \infty \tag{3.3}
\end{align*}
$$

If the series (2.1) is \bar{N}-summable to a finite number A, then the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{n} \tag{3.4}
\end{equation*}
$$

converges to A, while

$$
\begin{equation*}
b_{n}=p_{n} \sum_{k=n}^{\infty} \frac{a_{k}}{P_{k}} . \tag{3.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\zeta_{n}=\xi_{n}+\frac{P_{n}}{p_{n+1}} b_{n+1}, \tag{3.6}
\end{equation*}
$$

while the quantity ξ_{n} is defined by (2.4).
Remark 1. The convergence of the series (3.4) to A is equivalent (see [4]) to the limit relation

$$
\lim \zeta_{n}=A
$$

Proposition 4. If $0<\lambda_{n} \nearrow \infty$ and the conditions (2.9), (3.2), (3.3),

$$
\begin{gather*}
p_{n+1}^{2} P_{n+2}-p_{n} p_{n+2} P_{n} \geq 0 \tag{3.7}\\
\lambda_{n} P_{n} \sum_{k=n+1}^{\infty} \frac{p_{k+1}^{2} P_{k+2}-p_{k} p_{k+2} P_{k}}{\lambda_{k} p_{k} p_{k+1} P_{k+1} P_{k+2}}=O(1) \tag{3.8}
\end{gather*}
$$

are satisfied and the series (2.1) is λ-bounded by the method \bar{N}, then the sequence $\left\{\zeta_{n}\right\}$ is λ-bounded.

Proof. Let the series (2.1) be \bar{N}-summable to A. That means $\lim \eta_{n}=A$. Using Lemma 3 and Remark 1 we get $\lim \zeta_{n}=A$. It is easy to prove (see [4]) that we may suppose without loss of generality that $A=0$. So we have $\lambda_{n} \eta_{n}=O(1)$. As by (3.1) we have

$$
\begin{equation*}
\xi_{n}=\left(P_{n} \eta_{n}-P_{n-1} \eta_{n-1}\right) / p_{n} \tag{3.9}
\end{equation*}
$$

then using (3.6), (3.5) and (3.9) we get

$$
\begin{aligned}
\zeta_{n}= & -\frac{p_{n+1} P_{n-1}}{p_{n} P_{n+1}} \eta_{n-1}+\frac{p_{n+1}^{2} P_{n} P_{n+2}-p_{n} p_{n+2} P_{n}^{2}}{p_{n} p_{n+1} P_{n+1} P_{n+2}} \eta_{n} \\
& +P_{n} \sum_{k=n+1}^{\infty} \frac{p_{k+1}^{2} P_{k+2}-p_{k} p_{k+2} P_{k}}{p_{k} p_{k+1} P_{k+1} P_{k+2}} \eta_{k} .
\end{aligned}
$$

As $\lambda_{k} \eta_{k}=O(1)$, then using (2.9), (3.2), (3.3), (3.7) and (3.8) we get

$$
\begin{aligned}
\lambda_{n} \zeta_{n}= & -\frac{p_{n+1} P_{n-1}}{p_{n} P_{n+1}} \frac{\lambda_{n}}{\lambda_{n-1}} \lambda_{n-1} \eta_{n-1}+\frac{p_{n+1}^{2} P_{n} P_{n+2}-p_{n} p_{n+2} P_{n}^{2}}{p_{n} p_{n+1} P_{n+1} P_{n+2}} \lambda_{n} \eta_{n} \\
& +\lambda_{n} P_{n} \sum_{k=n+1}^{\infty} \frac{p_{k+1}^{2} P_{k+2}-p_{k} p_{k+2} P_{k}}{\lambda_{k} p_{k} p_{k+1} P_{k+1} P_{k+2}} \lambda_{k} \eta_{k} \\
& =O(1) O(1) O(1)+O(1) O(1)+O(1)=O(1) .
\end{aligned}
$$

Proposition 5. If $0<\lambda_{n} \nearrow \infty, \mu_{n}=P_{n} \lambda_{n}, \gamma_{n}=P_{n} b_{n+1} / p_{n+1}$ and the series (2.1) is μ-bounded by the method \bar{N} and the conditions (2.9), (3.2), (3.3), (3.7) and (3.8) are satisfied, then the sequence $\left\{\gamma_{n}\right\}$ is λ-bounded.

Proof. Let $A=0$. Then we have $\mu_{n} \eta_{n}=O(1)$. As the series (2.1) is μ^{-} bounded then this series is also λ-bounded. So we get

$$
\begin{aligned}
\lambda_{n} \gamma_{n} & =\lambda_{n} P_{n} \sum_{k=n+1}^{\infty} \frac{p_{k+1}^{2} P_{k+2}-p_{k} p_{k+2} P_{k}}{\lambda_{k} p_{k} p_{k+1} P_{k+1} P_{k+2}} \lambda_{k} \eta_{k}+\frac{\lambda_{n}}{\lambda_{n-1}} \frac{P_{n-1}}{p_{n} P_{n+1}} \lambda_{n-1} \eta_{n-1} \\
& -\left(\frac{p_{n+2} P_{n}}{p_{n+1} P_{n+1} P_{n+2}}+\frac{P_{n}}{p_{n} P_{n+1}}\right) \mu_{n} \eta_{n}=O(1) .
\end{aligned}
$$

Proposition 6. If the conditions of Propositions 4 and 5 are satisfied, then the series (2.1) is λ-bounded.

Proof. Let $A=0$. Using (3.6) we get

$$
\lambda_{n} \zeta_{n}=\lambda_{n} \xi_{n}+\lambda_{n} \gamma_{n}
$$

As $\lambda_{n} \zeta_{n}=O(1)$ and $\lambda_{n} \gamma_{n}=O(1)$ then $\lambda_{n} \xi_{n}=O(1)$.

References

[1] G.H. Hardy. A theorem concerning summable series. Proc. Cambridge Philos. Soc., 20:34-37, 1920.
[2] G. Kangro. A Tauberian remainder theorem for the Riesz method. Acta et commentationes universitatis Tartuensis, 277:155-160, 1971.
[3] F. Móricz and B. E. Rhoades. An equivalent reformulation of summability by weighted mean methods. Linear algebra Appl., 268:171-181, 1998. Doi:10.1016/S0024-3795(97)00039-6.
[4] F. Móricz and B. E. Rhoades. An equivalent reformulation of summability by weighted mean methods, revisited. Linear algebra Appl., 394:187-192, 2002. Doi:10.1016/S0024-3795(01)00604-8.
[5] I. Tammeraid. Tauberian remainder theorems for the Cesàro and Hölder methods of summability. Acta et commentationes universitatis Tartuensis, 277:161-170, 1971.

[^0]: * This work was supported by the Estonian Science Foundation, Research Grant No. ETF6943.

