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Abstract. We consider regularization of linear ill-posed problem Au = f with noisy
data fδ, ‖fδ − f‖ ≤ δ. The approximate solution is computed as the extrapolated
Tikhonov approximation, which is a linear combination of n ≥ 2 Tikhonov approx-
imations with different parameters. If the solution u∗ belongs to R((A∗A)n), then
the maximal guaranteed accuracy of Tikhonov approximation is O(δ2/3) versus accu-
racy O(δ2n/(2n+1)) of corresponding extrapolated approximation. We propose several
rules for choice of the regularization parameter, some of these are also good in case
of moderate over- and underestimation of the noise level. Numerical examples are
given.
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1 Introduction

Extrapolation as a tool for increasing the accuracy of approximation methods
is based on the idea to form the approximate solution as a linear combination of
n ≥ 2 approximations with different values of parameter, where the coefficients
are chosen in such a way that the leading terms in error expansion will be elim-
inated. Extrapolation is widely used in discretization methods, in numerical
integration, in interpolation etc [16, 21].

In this paper we consider an operator equation

Au = f, f ∈ R(A),
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where A ∈ L(H,F ) is a linear continuous operator between Hilbert spaces H
and F . We suppose that instead of exact data f ∈ F noisy data fδ ∈ F with
‖fδ−f‖ ≤ δ is available. To approximate the solution u∗ ∈ H of this equation,
we use the Tikhonov method uα = (αI + A∗A)−1A∗fδ, where α > 0 and I is
the identity operator. In case H = F , A = A∗ ≥ 0 also the Lavrentiev method
uα = (αI+A)−1fδ may be used. In this paper we consider extrapolated version
of the Tikhonov method.

Up to now, to the extrapolation for increasing the accuracy of approxima-
tion methods in ill-posed problems only few papers are devoted. In [21] (see
also [34]) the extrapolated Tikhonov method and a version of the extrapolated
Lavrentiev method were proposed for systems of linear algebraic equations.
The extrapolated Tikhonov method for operator equations with exact data
was studied in [10]. In [5, 6, 33] some other techniques for extrapolation of
Tikhonov method for ill-conditioned linear systems were proposed. In case of
noisy data the extrapolated Tikhonov method was studied in [11, 12].

Another, more known possibility for increasing the accuracy of regulariza-
tion methods is the use of iteration. Then we get the m-iterated Tikhonov
approximation uα = um,α by starting with u0,α = 0 and iteratively computing
the approximations

ui,α = (αI +A∗A)−1(αui−1,α +A∗fδ) (i = 1, . . . ,m). (1.1)

Using different parameters αi at different iteration steps i gives nonstationary
iterated Tikhonov approximation [14].

ui,αi
= (αiI +A∗A)−1(αui−1,αi−1

+A∗fδ) (i = 1, . . . ,m) (1.2)

As shown in [11], this approximation coincides with extrapolated approxima-
tion vn,αk

for k = 1, n = m:

vn,αk
=

n+k−1
∑

i=k

diuαi
, di =

n+k−1
∏

j=k,j 6=i

(

1− αi

αj

)−1

. (1.3)

It is easy to see that
∑n+k−1

i=k di = 1 but the sequence of coefficients di has
alternating signs, hence vn,αk

is not a convex combination of terms uαi
. Note

that for large n and close αi’s (1.2) is a more stable way to find vm,αi
than

(1.3). In case of smooth solution

u∗ ∈ R((A∗A)p/2) (1.4)

a proper choice of α gives for extrapolated Tikhonov approximation uappr =
vn,αk

the error estimate

‖uappr − u∗‖ ≤ const δp/(p+1) (1.5)

with p ≤ 2n. Note that in a posteriori choice of the regularization parameter
in m-iterated Tikhonov method approximations are often computed for some
sequence {αi} of parameters, until some condition is fulfilled, and a single
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approximation with maximal accuracy O(δ
2m

2m+1 ) is used. One example is the
balancing principle, advocated recently in many papers [1, 2, 3, 4, 8, 17, 18, 19,
20, 22, 23, 24, 25, 28]. The accuracy of the Tikhonov approximation (m = 1)
is low but increasing the number m of iterations also increases the amount of
computational work, since at transition from um,αi

to um,αi+1
we have to solve

m equations. The approximation computed by extrapolated Tikhonov method
has both benefits: its accuracy is the same as in n = m times iterated Tikhonov
method but at the transition from vm,αi

to vm,αi+1
only one equation needs to

be solved.

In this paper we use the same approach as in papers [11, 12] and propose
various new rules for a posteriori choice of the regularization parameter. In
case of moderate overestimation of the noise level our rules R2e and Me give
essentially better results than other rules. In contrast to other rules, rules R2
and R2e also allow moderate underestimation of the noise level.

The plan of this paper is as follows. Sections 2, 3 are devoted to parameter
choices in (iterated) Tikhonov method and in (extrapolated) Tikhonov method,
respectively. Many order optimal parameter choice rules in Tikhonov method
require computing u2,α and/or u3,α. In Section 3 we formulate analogous rules
for (extrapolated) Tikhonov method, using the extrapolated Tikhonov approx-
imations instead of the iterated Tikhonov approximations. In Section 4 we for-
mulate the monotone error rule for choosing an approximation from sequence.
In the last section results of numerical experiments for proposed rules are given.

2 Parameter Choice in the (Iterated) Tikhonov Method

For a posteriori choice of the regularization parameter α in (iterated) Tikhonov
method several rules are proposed. In discrepancy principle [26, 36] for (iter-
ated) Tikhonov approximation um,α the parameter α is chosen in such a way
that ‖Aum,α − fδ‖ = bδ, b ≥ 1. In the modified discrepancy principle [9, 29]
αMD, in the monotone error rule [35] (ME-rule) αME and in rule R2 [31] αR2

are chosen from equations

(Aum,α − fδ, Aum+1,α − fδ) = bδ, b ≥ 1, (2.1)

(Aum,α − fδ, Aum+1,α − fδ)

‖Aum+1,α − fδ‖
= bδ, b ≥ 1, (2.2)

κ(α)‖A∗(Aum+1,α − f)‖2√
α(A∗(Aum+1,α−f), A∗(Aum+2,α−f))1/2

= bδ, κ(α) = 1 +
α

‖A‖2 , (2.3)

respectively. Due to the equality

A∗(Aum+1,α − f) = α(um,α − um+1,α)

the equation (2.3) may be written as

dR2(α) :=

√
α‖um,α − um+1,α‖2κ(α)

(um,α − um+1,α, um+1,α − um+2,α)1/2
= bδ. (2.4)

Math. Model. Anal., 15(1):55–68, 2010.
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In case (1.4) the discrepancy principle, modified discrepancy principle, ME-rule
and R2-rule (under certain assumption, see [31]) guarantee the error estimate
(1.5) for p ≤ 1, p ≤ 2, p ≤ 2 and p ≤ 2, respectively. The name of the ME-rule
is justified by the property

d

dα
‖uα − u∗‖ ≥ 0 for all α ∈ (αME,∞).

It means that the optimal parameter

αopt = argmin{‖uα − u∗‖, α > 0} ≤ αME.

In numerical experiments of Section 5 we get good results with estimated
smaller parameter αMEe = min(0.5αME, 0.6α

1.08
ME ).

The equation (2.4) may have many solutions and both the smallest and the
largest solutions may be of interest. Here we propose to take the largest solu-
tion as αR2. Then typically αR2 ≥ αopt and the estimated smaller parameter
αR2e := 0.5αR2 is typically better than αR2. Extensive numerical experiments
have shown that in case ‖f − f0‖ = δ typically αMEe is the better of the pa-
rameters αMEe and αR2e, whereas in case ‖f − f0‖ < δ, αR2e is better but in
both cases

αMe := min{αMEe, αR2e} (2.5)

chooses the best of them.
Recently many papers [1, 2, 3, 4, 8, 17, 18, 19, 20, 22, 23, 24, 25, 28] advocate

the balancing principle (also called Lepskii principle). Here the approximations
uαi

are computed for values α1 = δ2 and αk = α1q
1−k, k = 2, 3, . . . , M , where

q < 1 and M is such that αM−1 < 1 ≤ αM . The regularization parameter
is chosen as αm, where m is the first index, for which a certain condition is
fulfilled. For Tikhonov method this condition is in [23, 24]

‖uαm+1
− uαm

‖ >
cδ√
αm

(2.6)

with c = 2 and in [17, 28]

∃j ∈ {1, . . . ,m} : ‖uαm+1
− uαj

‖ >
cδ
√
αj

(2.7)

with c = 2. However, a proper c must depend on q in such a way that c → 0 as
q → 1. Otherwise, after finding αm ≈ αopt on coarse mesh and then refining
the mesh, the left hand side of (2.6) tends to zero as q → 1, hence αm chosen
by (2.6) increases. More precisely, it is shown in [13] that if in conditions (2.6),
(2.7) the constant c satisfies c > q−1−1 and c > q−1− qm−j, respectively, then
the error of Tikhonov approximation is a monotonically increasing function of
c. As proven in [13, 30], the balancing principle with condition (2.6) is order
optimal, if c ≥ 3

√
3(1− q)/(16

√
q). We recommend to use the last constant in

condition (2.6) and c = (1−qm+1−j)/q in condition (2.7). Condition (2.7) needs
huge computation time and resulted in large error in numerical experiments,
therefore we used the condition

∃j ∈ {m− 1,m} :
4‖uαm+1

− uαj
‖

(1− qm+1−j)q(j−m−1)/2
>

δ
√
αj

(2.8)
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in Section 5 besides of (2.7). In case of correlated noise we recommend to
substitute in (2.8) the constant 4 by 3.

Consider a posteriori choice of the regularization parameter α in (extrap-
olated) Tikhonov method. In rules (2.1) and (2.2) of Section 2 the iterated
approximation u2,α is used for parameter choice in Tikhonov method, hence
one additional equation must be solved. However, order optimal error esti-
mates for source-like solutions remain true, if in these rules u2,α is replaced by
a proper linear combination of two approximations (see also [32]). We formu-
late corresponding rules for Tikhonov method and for extrapolated Tikhonov
method. Consider set αi = qi, q < 1, i = 1, 2, . . . We choose in discrep-
ancy principle and in rules MD, ME and R2 parameter αMD, αME and αR2 in
(extrapolated) Tikhonov approximation vn,αi

as α = αi fulfilling the conditions

‖Avn,αi
− fδ‖ ≈ bδ, b ≥ 1,

(Avn,αi
− fδ, Avn+1,αi

− fδ) ≈ bδ, b ≥ 1,

dME(αi) =
(Avn,αi

− fδ, Avn+1,αi
− fδ)

‖Avn+1,αi
− fδ‖

≈ bδ, b ≥ 1, (2.9)

dR2(αi) =

√
αi‖vn,αi

− vn+1,αi
‖2κ(αi)

(vn,αi
− vn+1,αi

, vn+1,αi
− vn+2,αi−1

)1/2
≈ bδ, (2.10)

respectively. We use the same formulas for parameter estimation as in (iterated)
Tikhonov method:

αMEe = min(0.5αME, 0.6α
1.08
ME ), αR2e = 0.5αR2, αMe = min{αMEe, αR2e}.

3 Choice of Parameters in the Extrapolated Tikhonov
Method

In vn,α both indices can be viewed as regularization parameters. In the follow-
ing we consider separately the cases, when one of parameters n and α is fixed
and the other parameter is the regularization parameter.

1) Let the sequence αk ≥ αk+1 ≥ . . . be given (αk is fixed) and consider
choice of n in extrapolated Tikhonov approximation vn,αk

. We give condition
for checking, whether vn,αk

is a more accurate solution than vn−1,αk
. Denote

rn ≡ Avn,αk
− fδ. Let C = const > 1.

Theorem 1. [11]. The functions dD(n) = ‖rn‖, dME(n) =
(rn + rn+1, rn+1)

2‖rn+1‖
are monotonically decreasing and dD(n + 1) < dME(n) < dD(n) for all n. Let
nD, nME be the first numbers with dD(n) ≤ Cδ, dME(n) ≤ Cδ respectively.
Then nD − 1 ≤ nME ≤ nD and

‖vn,αk
− u∗‖ < ‖vn−1,αk

− u∗‖, n = 1, 2, . . . , nME.

If a monotonically decreasing infinite sequence α1, α2, . . . satisfies conditions

∞
∑

i=k

α−1
i = ∞, α−1

n ≤ const

n−1
∑

i=k

α−1
i ,

Math. Model. Anal., 15(1):55–68, 2010.
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then the existence of finite nD and nME is guaranteed, for n ∈ {nD, nME},
‖vn,αk

− u∗‖ → 0 (δ → 0), and in case (1.4) the error estimate (1.5) holds for
all p > 0.

2) Let n ≥ 2 and sequence α1 > α2 > . . . be fixed. Consider choice of
α = αi in extrapolated approximation vn,αi

.

Theorem 2. [11]. The functions dD(α) = ‖Avn,α − fδ‖, dMD(α) = (Avn,α −
fδ, Avn+1,α − fδ) are monotonically decreasing. If α is chosen from the dis-
crepancy principle dD(α) ≈ Cδ, then ‖vn,α − u∗‖ → 0 (δ → 0) and in case
(1.4) for uappr = vn,α the error estimate (1.5) holds in extrapolated Tikhonov
method with p ≤ 2n− 1. If α in extrapolated Tikhonov method is chosen from
the modified discrepancy principle dMD(α) ≈ Cδ, then ‖vn,α−u∗‖ → 0 (δ → 0)
and in case (1.4) for uappr = vn,α the error estimate (1.5) holds with p ≤ 2n.

In extrapolated Tikhonov approximation for the choice of the parameter αi

we also use ME-rule and R2-rule with formulas (2.9), (2.10) and corresponding
estimates αMEe, αR2e and αMe.

Consider now extrapolation of m times iterated method of Tikhonov (1.1).
For different αi = qiα (i = 1, . . . , n) different number of iterations m1, . . . ,
mn may be used. As approximate solution we take (see [11])

vn,α =
n+k−1
∑

i=k

mi
∑

j=1

di,juj,αi
, (3.1)

where the coefficients di,j can be uniquely determined from relation

n+k−1
∑

i=k

mi
∑

j=1

di,j(1 + λ/qi)
−j =

n
∏

i=1

(1 + λ/qi)
−mi (∀λ ∈ R).

Theorem 3. [11]. If n and q1, . . . , qn are fixed and α is chosen from the
discrepancy principle dD(n) ≈ Cδ, then ‖vn,α − u∗‖ → 0 (δ → 0) and in
case (1.4) the error estimate (1.5) holds for uappr = vn,α in (3.1) with p ≤
2(m1 +m2 + · · ·+mn)− 1.

4 The Monotone Error Rule for Choosing an Approxi-
mation from the Sequence

In balancing principle a sequence of approximate solutions {uαi
} is computed

and a rule for choice of one approximation uαi
is given. It motivates us to give

another rule, the monotone error rule, for choice of a proper approximation
from the sequence.

Theorem 4. Let ui = A∗wi, i = 1, 2, . . . be a sequence of approximations to
solution u∗ of the equation Au = f . Let iME be the first index i satisfying

dME(i) =
(Aui − fδ +Aui+1 − fδ, wi+1 − wi)

2‖wi+1 − wi‖
≤ δ.

Then
‖ui − u∗‖ ≤ ‖ui−1 − u∗‖ for all i = 2, . . . , iME.



Extrapolation of Tikhonov Regularization Method 61

Proof. We have

‖ui − u∗‖2 − ‖ui−1−u∗‖2 = (ui−1 + ui − 2u∗, ui − ui−1)

= (Aui−1 +Aui − 2f, wi − wi−1)

= (Aui−1 − fδ +Aui − fδ + 2(fδ − f), wi − wi−1)

≤ 2‖wi − wi−1‖[δ − dME(i − 1)].

Therefore, if dME(i− 1) > δ, then ‖ui − u∗‖ < ‖ui−1 − u∗‖. ⊓⊔

To use the functional dME(i), elements wi are needed. They may be found
by computing at first wi and on final step ui = A∗wi. The last theorem
may be applied to many kinds of approximations: to approximations ui = uαi

with decreasing parameters α1 > α2 > . . . in Tikhonov method or in iterated
Tikhonov method. In extrapolated Tikhonov method i in ui may refer to
number of terms n in linear combination (1.3) or to αi in (1.3) or to some
other element in arbitrary sequence of extrapolated approximations.

5 Numerical Experiments

We solved 10 test problems from [15] baart, deriv2, foxgood, gravity, heat,
i_laplace, phillips, shaw, spikes, wing and another 6 from [7]: gauss, hilbert,
lotkin, moler, pascal, prolate. We used discretization parameter N = 100 and
if the problem had more parameters, then all of these had the default value
1. As in paper [7] we combined all 16 discretized problems with 6 solution
vectors ui = 1, ui = i/N , ui = ((i − ⌊N/2⌋)/⌈N/2⌉)2, ui = sin 2π(i − 1)/N ,
ui = i/N + 1/4 sin2π(i − 1)/N and ui = 0 for i ≤ ⌊N/2⌋, 1 for i > ⌊N/2⌋.
In 10 problems from [15] the original solution was also included into the test
set. Besides solutions u∗ we solved variants of the problems with smoothened
solutions (A∗A)p/2u∗, where p = 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 8; the right-hand
side was computed as f = A(A∗A)p/2u∗. All problems were normalized in such
a way that the norms of operator and right-hand side were equal to 1.

Instead of exact data f it is assumed that randomly perturbed data fδ
is given. The problems were regularized by the Tikhonov method, where
Tikhonov approximations were computed on the set of alpha-values Ω = {αi}
with αi = qi, using q = 0.9. To choose αi ∈ Ω in the Tikhonov method, the
following rules were applied.

1) Discrepancy principle: αD is the first αi, for which ‖Auαi
− fδ‖ ≤ δ.

2) Monotone error rule: αME is the first αi satisfying dME(αi) ≤ δ; αMEe =
min(0.5αME, 0.6α

1.08
ME ).

3) Rule R2: αR2 is the first αi satisfying dR2(αi) ≤ ckδ, c1 = 0.3, c2 = 0.2,
c3 = 0.13; αR2e = 0.5αR2.

4) Balancing principle: here, in opposite to other rules, an increasing se-
quence α1, α2, . . . , α1 = δ2 and αk = α1q

1−k, k = 2, 3, . . . is used; αB1

and αB1* were chosen as the first αm, for which (2.6) holds with c = 2 and
c = 3

√
3(1 − q)/(16

√
q), respectively; αB2 and αB2* were chosen as the first

Math. Model. Anal., 15(1):55–68, 2010.
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αm, for which (2.7) holds with cm = 2 and cm = (1− qm+1−j)/q, respectively;
αB3 was chosen as the first αm, for which (2.8) holds.

We computed the extrapolated approximations

vn,αk
=

n+k−1
∑

i=k

diuαi
, di =

n+k−1
∏

j=k,j 6=i

αj

αj − αi
=

n+k−1
∏

j=k,j 6=i

1

1− qi−j
. (5.1)

In this approximation in addition to rules MEe, R2e, Me we computed the
estimated parameter αDe, using parameters αD, α2D, α3D from discrepancy
principle with n = 1, 2, 3, respectively, and α was chosen as the nearest α ∈
Ω to the alpha-value α

cn,1

nD α
cn,2

D , where (c21, c22) = (1.22,−0.12), (c31, c32) =
(1.16,−0.04). These constants and constants in αMEe, αMe, αR2e were found
by optimization on a large data set. We use notations 2MEe, 2Me, 3De for
rules MEe, Me, De, applied to extrapolated approximations with n = 2, n = 2,
n = 3, respectively.

Table 1. Means of error ratios.

p eD eD’ eMEe eMEe’ eR2e eR2e’ eMe eMe’ eMEs eMEs’

0 1.26 2.21 1.19 1.90 1.42 1.61 1.19 1.60 1.20 1.94
0.25 1.46 3.28 1.39 2.82 1.90 2.31 1.38 2.21 1.39 2.89
0.5 1.56 4.20 1.51 3.60 2.09 2.57 1.49 2.55 1.50 3.71
0.75 1.59 4.93 1.54 4.35 2.17 3.01 1.53 2.84 1.53 4.50
1 1.82 4.98 1.55 4.82 2.31 2.88 1.53 2.87 1.52 5.00
1.5 2.47 3.95 1.26 3.80 1.40 1.67 1.24 1.67 1.25 3.98
2 2.73 3.86 1.21 3.39 1.15 1.31 1.18 1.31 1.19 3.57
4 2.92 3.85 1.20 3.33 1.13 1.25 1.18 1.25 1.18 3.50
8 2.95 3.85 1.20 3.33 1.13 1.24 1.18 1.24 1.18 3.50

mean 2.08 3.90 1.34 3.48 1.63 1.98 1.32 1.95 1.33 3.62

Table 2. Means of error ratios for balancing principle.

p eB1 eB1’ eB1* eB1*’ eB2 eB2’ eB2* eB2*’ eB3 eB3’

0 6.21 7.60 2.29 2.86 3.77 4.57 2.67 3.30 1.77 2.14
0.25 11.97 15.32 3.59 4.70 6.65 8.37 4.33 5.61 2.51 3.26
0.5 20.47 27.09 4.92 6.78 10.41 13.71 6.12 8.32 3.22 4.38
0.75 30.02 40.21 6.29 8.84 14.50 19.70 8.00 11.16 3.97 5.46
1 36.63 50.86 7.19 10.3 17.71 24.22 9.20 13.34 4.53 6.23
1.5 38.99 56.33 6.18 9.20 17.49 24.96 8.17 12.11 3.98 5.23
2 38.07 55.35 5.73 8.66 16.91 24.35 7.65 11.50 3.83 4.77
4 38.46 55.81 5.66 8.55 17.07 24.52 7.54 11.40 3.87 4.68
8 38.72 55.80 5.63 8.52 17.13 24.53 7.50 11.37 3.86 4.65

mean 28.84 40.48 5.27 7.60 13.52 18.77 6.80 9.79 3.50 4.53

Rule MEs chooses the parameter α = αk in approximation (5.1) as the
nearest α ∈ Ω to min{0.5αi, 0.6α

1.08
i }, where αi is found by applying Theo-

rem 4 to the sequence ui = vn,αi
. As opposed to previous rules, where the
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regularization parameter was α, we computed approximations vmaxD as (5.1),
choosing the regularization parameter n by Theorem 1.

Table 3. Means of error ratios for extrapolated approximations, n = 2.

p eDe eDe’ eMEe eMEe’ eR2e eR2e’ eMe eMe’ eMEs eMEs’

0 1.20 2.07 1.19 1.83 1.48 1.52 1.31 1.51 1.19 1.85
0.25 1.41 3.17 1.39 2.68 1.99 2.16 1.57 2.05 1.39 2.71
0.5 1.51 4.17 1.49 3.30 2.15 2.34 1.66 2.31 1.49 3.34
0.75 1.46 5.05 1.48 3.75 2.47 2.85 1.61 2.53 1.47 3.79
1 1.37 5.63 1.43 3.96 2.26 3.11 1.52 2.62 1.42 4.00
1.5 0.86 4.31 0.90 2.50 1.18 1.30 0.93 1.30 0.90 2.53
2 0.61 3.40 0.65 1.68 0.69 0.71 0.68 0.71 0.65 1.71
4 0.46 2.67 0.50 1.18 0.54 0.50 0.54 0.50 0.50 1.19
8 0.46 2.60 0.49 1.14 0.53 0.49 0.53 0.49 0.49 1.14

mean 1.04 3.67 1.06 2.45 1.47 1.66 1.15 1.56 1.05 2.47

Table 4. Means of error ratios for extrapolated approximations, n = 3.

p eDe eDe’ eMEe eMEe’ eR2e eR2e’ eMe eMe’ eMEs eMEs’

0 1.20 1.97 1.19 1.80 1.44 1.65 1.19 1.60 1.19 1.79
0.25 1.42 2.98 1.40 2.62 2.02 2.36 1.39 2.20 1.40 2.60
0.5 1.52 3.82 1.51 3.18 2.34 3.25 1.51 2.57 1.52 3.14
0.75 1.48 4.51 1.49 3.53 2.65 3.16 1.49 2.83 1.50 3.48
1 1.42 4.91 1.45 3.64 3.64 4.50 1.45 2.85 1.46 3.59
1.5 0.85 3.58 0.89 2.09 1.23 1.40 0.90 1.40 0.90 2.05
2 0.57 2.70 0.62 1.22 0.66 0.73 0.64 0.73 0.63 1.19
4 0.36 1.89 0.44 0.57 0.45 0.42 0.46 0.42 0.44 0.57
8 0.34 1.77 0.41 0.51 0.44 0.40 0.44 0.40 0.42 0.51

mean 1.02 3.13 1.04 2.13 1.65 1.98 1.05 1.66 1.05 2.10

We also computed vmaxD = vn,α0
, choosing n = nmaxD as nD in Theorem 1,

and vmaxDe = vn,α0
with n as the nearest integer to 1.1nmaxD.

In model equations the exact solutions are known. For each test we found
αopt as αi ∈ Ω with the smallest error: ‖uαopt

−u∗‖ = min{‖uαi
−u∗‖, αi ∈ Ω}.

All problems were solved 10 times, assuming that the noise level is δ = d ‖f−fδ‖
with δ ∈ {0.3; 10−i, i = 1, . . . , 6} and with d = 1, 2. In tables the column
corresponding to d = 2 is shown next to the column for d = 1 and we then
use prime in the name of the rule. Tables 1–5 show the averages (over all
problems, all δ and 10 runs) of error of the approximate solution by used
parameter choice, divided by the smallest error of the Tikhonov approximation:
for example eD = ‖uαD

− u∗‖ / ‖uαopt
− u∗‖. Tables 1, 2 contain results for

Tikhonov method, Tables 3, 4 for the extrapolated Tikhonov method with
n = 2, 3, Table 5 for approximations vmaxD, vmaxDe. As can be seen from
Table 2, the balancing principle with original large constants c = 2 in rules B1,
B2 gives significantly larger error than rule B3 and rules B1*, B2* with smaller
constants. However, the results for balancing principle were worse than results
for rules MEe, R2e, Me in Table 1. As Tables 3–5 show, in case u∗ ∈ R(A)
the error of the extrapolated approximation was in most cases smaller than the
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error of the best single Tikhonov approximation. Table 5 shows the advantage
of the approximation vmaxDe for large p.

Table 5. Means of error ratios for extrapolated approximations, n = max.

p emaxD emaxD’ emaxDe emaxDe’

0 1.34 2.39 1.22 2.12
0.25 1.63 3.76 1.44 3.25
0.5 1.74 5.03 1.54 4.28
0.75 1.62 6.17 1.49 5.15
1 1.43 6.74 1.42 5.57
1.5 0.96 4.92 0.86 4.30
2 0.63 3.84 0.56 3.38
4 0.32 2.66 0.31 2.49
8 0.27 2.34 0.27 2.24

mean 1.10 4.21 1.01 3.64

In Table 6, 7 averages of error ratios over δ and 10 runs of v3,αMe
, vmaxDe for

every problem are given. In most problems the ratios decreased by increasing
p, especially for p ≥ 1. Table 8 shows averages of error ratios over p and 10 runs
in problem heat for every δ. More information about extrapolated Tikhonov
method with numerical results can be found in [27].

Table 6. Means of error ratios for v3,αMEe
by problems.
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0 1.39 1.00 1.33 1.05 1.01 1.02 1.00 1.55 1.12 1.47 1.10 1.24 1.22 1.07 1.02 1.48
0.25 2.05 1.00 1.38 1.03 0.99 1.13 0.98 1.46 1.25 2.60 1.07 1.34 1.26 1.09 2.08 1.65
0.5 2.34 1.00 1.32 0.97 0.96 1.11 0.93 1.28 1.22 2.97 1.01 1.29 1.21 1.06 4.25 1.40
0.75 1.83 0.97 1.28 0.91 0.94 1.06 0.87 1.19 1.12 2.48 0.93 1.21 1.11 1.01 6.09 1.18
1 1.58 0.93 1.12 0.83 0.90 0.99 0.79 0.99 1.00 2.23 0.83 1.11 1.01 0.94 7.44 0.98
1.5 0.97 0.78 0.77 0.66 0.78 0.81 0.60 0.79 0.85 1.17 0.64 0.90 0.77 0.77 2.46 0.70
2 0.70 0.62 0.55 0.55 0.65 0.66 0.48 0.62 0.70 0.66 0.53 0.72 0.62 0.57 0.78 0.57
4 0.42 0.39 0.39 0.42 0.44 0.44 0.39 0.40 0.48 0.48 0.44 0.45 0.41 0.32 0.66 0.51
8 0.38 0.35 0.38 0.40 0.40 0.41 0.39 0.39 0.41 0.48 0.43 0.41 0.36 0.31 0.66 0.51

mean 1.30 0.78 0.95 0.76 0.78 0.85 0.72 0.96 0.91 1.61 0.78 0.96 0.88 0.79 2.83 1.00

Tables 9, 10, 11 show error ratios for rules D, R2e in Tikhonov approxima-
tion uα and rule R2e in extrapolated approximation v2,α for values of d = 0.5,
0.6, 0.8, 1, 1.3, 1.6, 2, 3, 5. In case of overestimated noise level (d > 1) the rule
R2e is significantly better than the discrepancy principle. In contrast to other
rules, the rules R2, R2e also allow moderate underestimation of the noise level.
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Table 7. Means of error ratios for vmaxDe by problems.

p b
a
a
rt

d
er

iv
2

fo
x
g
o
o
d

g
ra

v
it
y

h
ea

t

il
a
p
la

ce

p
h
il
li
p
s

sh
aw

sp
ik

es

w
in

g

g
a
u
ss

h
il
b
er

t

lo
tk

in

m
o
le

r

p
a
sc

a
l

p
ro

la
te

0 1.41 1.00 1.31 1.12 1.01 1.03 1.03 1.63 1.15 1.44 1.19 1.29 1.24 1.01 1.02 1.59
0.25 2.10 0.97 1.33 1.13 1.00 1.20 0.99 1.55 1.36 2.61 1.18 1.46 1.33 0.99 1.99 1.91
0.5 2.39 0.94 1.27 1.04 0.96 1.22 0.93 1.34 1.34 3.04 1.12 1.43 1.27 0.94 3.93 1.66
0.75 1.84 0.87 1.23 0.97 0.89 1.20 0.86 1.24 1.26 2.54 1.03 1.38 1.13 0.87 5.47 1.46
1 1.59 0.80 1.05 0.87 0.83 1.12 0.76 1.02 1.12 2.16 0.92 1.25 1.01 0.79 6.61 1.26
1.5 0.93 0.63 0.67 0.65 0.67 0.88 0.56 0.76 0.90 1.06 0.66 1.00 0.73 0.62 2.25 0.91
2 0.62 0.46 0.44 0.49 0.52 0.66 0.43 0.58 0.69 0.53 0.51 0.75 0.53 0.42 0.63 0.70
4 0.26 0.26 0.24 0.30 0.28 0.34 0.31 0.28 0.37 0.26 0.34 0.33 0.26 0.18 0.52 0.54
8 0.22 0.21 0.20 0.25 0.23 0.27 0.27 0.25 0.27 0.22 0.30 0.26 0.20 0.16 0.52 0.52

mean 1.26 0.68 0.86 0.76 0.71 0.88 0.68 0.96 0.94 1.54 0.81 1.02 0.86 0.66 2.55 1.17

Table 8. Means (over all p) of error ratios and errors for problem heat.

δ eD eD’ eMe eMe’ e2MEe e2MEe’ e3De e3De’ ‖uαopt−u∗
‖

0.3 1.06 3.20 1.09 1.11 0.95 1.36 0.82 1.48 2.68e-001
10

−1 1.11 2.26 1.10 1.06 0.90 1.43 0.80 2.30 1.80e-001
10

−2 1.30 1.35 1.11 1.06 0.83 1.11 0.75 1.56 9.07e-002
10

−3 1.55 1.18 1.13 1.07 0.79 0.97 0.72 1.19 5.67e-002
10

−4 1.84 1.30 1.13 1.06 0.77 0.87 0.70 1.00 4.35e-002
10

−5 2.44 1.58 1.15 1.06 0.76 0.80 0.69 0.87 3.77e-002
10

−6 3.33 2.21 1.19 1.07 0.76 0.76 0.70 0.79 3.36e-002

mean 1.81 1.87 1.13 1.07 0.82 1.05 0.74 1.31

Table 9. Means of error ratios for uαD
.

p \ d 1 1.3 1.6 2 3 5

0 1.26 1.76 1.98 2.21 2.55 3.03
0.25 1.46 2.42 2.85 3.28 3.92 4.83
0.5 1.56 2.89 3.53 4.20 5.20 6.70
0.75 1.59 3.23 4.04 4.93 6.19 8.21
1 1.82 3.15 4.02 4.98 6.34 8.57
1.5 2.47 2.58 3.17 3.95 4.92 6.78
2 2.73 2.63 3.14 3.86 4.70 6.40
4 2.92 2.68 3.15 3.85 4.65 6.29
8 2.95 2.68 3.15 3.85 4.64 6.26

mean 2.08 2.67 3.23 3.90 4.79 6.34
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66 U. Hämarik, R. Palm and T. Raus

Table 10. Means of error ratios for uαR2e
.

p \ d 0.5 0.6 0.8 1 1.3 1.6 2 3 5

0 1.80 1.44 1.38 1.42 1.48 1.54 1.61 1.82 2.14
0.25 2.25 1.83 1.78 1.90 2.04 2.18 2.31 2.65 3.14
0.5 2.60 2.05 1.98 2.09 2.25 2.39 2.57 3.16 4.25
0.75 2.68 2.04 2.05 2.17 2.43 2.77 3.01 3.59 4.44
1 2.71 2.21 2.12 2.31 2.46 2.63 2.88 3.39 5.20
1.5 1.85 1.37 1.37 1.40 1.46 1.54 1.67 2.01 2.71
2 1.61 1.20 1.15 1.15 1.17 1.22 1.31 1.56 2.13
4 1.48 1.19 1.15 1.13 1.14 1.18 1.25 1.45 1.96
8 1.46 1.19 1.14 1.13 1.14 1.18 1.24 1.45 1.94

mean 2.05 1.61 1.57 1.63 1.73 1.85 1.98 2.34 3.10

Table 11. Means of error ratios for v2,αR2e
.

p \ d 0.5 0.6 0.8 1 1.3 1.6 2 3 5

0 112 15.3 1.96 1.48 1.42 1.45 1.52 1.66 1.94
0.25 182 21.7 2.49 1.99 1.97 2.06 2.16 2.39 2.79
0.5 228 24.4 2.76 2.15 2.11 2.19 2.34 3.28 3.82
0.75 257 25.3 3.21 2.47 2.46 2.68 2.85 3.20 3.73
1 262 24.4 2.93 2.26 2.27 2.36 3.11 4.06 5.15
1.5 272 19.3 1.44 1.18 1.21 1.25 1.30 1.46 1.84
2 239 12.4 0.77 0.69 0.68 0.69 0.71 0.79 1.03
4 236 4.36 0.56 0.54 0.52 0.51 0.50 0.51 0.62
8 236 3.82 0.55 0.53 0.51 0.50 0.49 0.50 0.60

mean 225 16.8 1.85 1.47 1.46 1.52 1.66 1.98 2.39
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