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Abstract. An entropy dissipative spatial discretization has recently been construc-
ted for the multidimensional gas dynamics equations based on their preliminary
parabolic quasi–gasdynamic (QGD) regularization. In this paper, an explicit finite-
difference scheme with such a discretization is verified on several versions of the
1D Riemann problem, both well-known in the literature and new. The scheme is
compared with the previously constructed QGD-schemes and its merits are noticed.
Practical convergence rates in the mesh L1-norm are computed. We also analyze
the practical relevance in the nonlinear statement as the Mach number grows of re-
cently derived necessary conditions for L2-dissipativity of the Cauchy problem for a
linearized QGD-scheme.
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1 Introduction

Vast literature is devoted to methods for numerical solving gas dynamics equa-
tions, see, in particular, [1, 10, 11, 16]. In recent years, those methods that are
in addition entropy dissipative (conservative) attract much attention, see, in
particular, [1, Ch. 18, 19], [6, 8, 13,14,15,17].

The quasi-gasdynamic (QGD) system of equations [2, 3] is an entropy-
correct and the Petrovsky parabolic [18, 21] regularization of the gas dynam-
ics equations. It serves as the basis for constructing a family of QGD-finite-

�
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difference schemes to solve the latter equations. Such schemes have been suc-
cessfully used since the mid-1980s in a wide variety of applied computations.

Entropy dissipative spatial QGD-discretizations were first constructed and
verified in the 1D case in [7, 19]. Also such a QGD-discretization has recently
been constructed in the multidimensional case [20]. In the present paper, the
explicit finite-difference scheme with this discretization is verified in the 1D
case on several versions of the Riemann problem on the disintegration of a
discontinuity, both well-known in the literature [12, 15] and new. The scheme
is compared with previously constructed standard-type QGD-schemes, and its
merits are noticed that include, in some tests, obtaining numerical solutions of
better quality (on the same grid) and/or possibility to use larger time steps (oc-
casionally tens and hundreds times more). In addition, practical convergence
rates in the mesh L1-norm are computed for a typical discontinuous solution,
and it is shown that they are close to 0.5. We note that, for the entropy dissipa-
tive QGD-discretizations, in addition, the kinetic and internal energy balance
equations contain no any indefinite non-divergent mesh imbalances [7, 19, 20]
whereas all known standard-type QGD-schemes possess no these properties.

Both necessary and sufficient conditions for L2-dissipativity of the Cauchy
problem for a linearized QGD-scheme have recently been derived in [22]. In the
last part of the paper, we also analyze the practical relevance of the necessary
conditions in the nonlinear statement as the Mach number grows on a version
of the Riemann problem and show that it is valid, within certain limits, with
better quality for the entropy dissipative QGD-discretization.

2 The quasi-gasdynamic system of equations and related
schemes for the 1D gas dynamics equations

The quasi-gasdynamic (QGD) system of equations [2,3] in the 1D case consists
of the following mass, momentum and total energy balance equations

∂tρ+ ∂xj = 0, (2.1)

∂t(ρu) + ∂x(ju+ p) = ∂xΠ, (2.2)

∂tE + ∂x [(E + p)(u− w)] = ∂x(−q +Πu), (2.3)

where ∂t and ∂x are the partial derivatives in time t ≥ 0 and spatial coordinate
x ∈ R. The functions ρ > 0, u, E = 0.5ρu2+ρε are respectively the gas density,
velocity and total energy as well as p and ε > 0 are the pressure and specific
internal energy. We take the perfect polytropic gas state equation p = (γ−1)ρε,
γ = const > 1, and exclude the absolute temperature from consideration.

In these equations, the mass flux j together with the regularizing velocities
w and ŵ, viscous stress Π and heat flux q are as follows

j = ρ(u− w), w =
τ

ρ
∂x(ρu2 + p), ŵ =

τ

ρ
(ρu∂xu+ ∂xp), (2.4)

Π = µ∂xu+ ρuŵ + τ(u∂xp+ γp∂xu), (2.5)

−q = κ̃∂xε+ τρ
(
∂xε+ p∂x

1

ρ

)
u2. (2.6)
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Here τ = τ(ρ, u, ε) > 0 is the regularizing parameter, and the coefficients of
artificial viscosity µ and (scaled) heat conductivity κ̃ are given by the formulas

µ = αSτp, κ̃ = γµ/αP , (2.7)

where αS > 0 and αP > 0 are respectively the Schmidt and Prandtl numbers.
We define the uniform mesh ωh on R with the nodes xk = kh, k ∈ Z, and

the step h = X/N , where X > 0. Let ω∗
h be the auxiliary mesh with the

nodes xk−1/2 = (k − 1/2)h, k ∈ Z. Let ω̄∆t be the mesh in t with the nodes
0 = t0 < t1 < . . . < tm < . . . and the steps ∆tm = tm+1 − tm, m ≥ 0. We set
vmk = v(xk, tm), ymk−1/2 = y(xk−1/2, tm).

We define the mean value, shift and finite-difference mesh operators in x
and t

svk−1/2 =
vk−1 + vk

2
, v−,k−1/2 = vk−1, v+,k−1/2 = vk, δvk−1/2 =

vk − vk−1

h
,

δ∗yk =
yk+1/2 − yk−1/2

h
, δtv

m =
vm+1 − vm

∆tm
.

We consider three two-level explicit in time and three-point symmetric in
space QGD-schemes. The scheme S with the standard-type spatial discretiza-
tion [19] has the form

δtρ+ δ∗j = 0,

δt(ρu) + δ∗(jsu+ sp) = δ∗Π,

δtE + δ∗
[(
E(0) + sp

)(
su− w

)]
= δ∗(−q +Πsu).

Hereafter the main equations (2.1)–(2.3) are approximated in space on the mesh
ωh, and the main sought functions ρ, u and ε as well as the functions E and p
are also defined on ωh.

Functions (2.4)–(2.6) are approximated in space on the mesh ω∗
h:

j = sρ · (su− w), w =
τ∗
sρ
δ(ρu2 + p), ŵ =

τ∗
sρ

(
sρ · su · δu+ δp

)
,

Π = sµ · δu+ sρ · su · ŵ + τ∗
(
su · δp+ γsp · δu

)
,

−q = sκ̃ · δε+ τ∗sρ ·
(
δε+ sp · δ 1

ρ

)
(su)2.

Hereafter, to reduce the amount of brackets, we assume that, for example,
sρ · (su − w) = (sρ)(su − w) (i.e., the sign · terminates the action of the
preceding operators on the left).

Also E(0) = 1
2 (sρ)(su)2 + s(ρε) and τ∗ = sτ on ω∗

h, where the regularizing
parameter τ is defined on ωh by one of the formulas

(a) τ = αh/cs or (b) τ = α̂h/(|u|+ cs), (2.8)

where α > 0 and α̂ > 0 are parameters (normally α ≤ 0.5 and α̂ < 1),
cs =

√
γ(γ − 1)ε is the sound velocity. Formulas (2.7) are in use on ωh.
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The time step is chosen as

∆t = βh/max
ωh

(|u|+ cs)

in all the schemes, where 0 < β ≤ 1 is a parameter (the Courant number).
The scheme S (and other standard-type QGD-schemes, see below) possesses

no the property of entropy dissipativity since its entropy balance equation
contains indefinite non-divergent mesh imbalances [19].

The scheme A with the entropy dissipative spatial discretization from [19]
has the form

δtρ+ δ∗j = 0, (2.9)

δt(ρu) + δ∗(jsu+ sp) = δ∗Π, (2.10)

δtE + δ∗
[
(E(1) + sp)(su− w)− 0.25h2δu · δp

]
= δ∗(−q +Πsu). (2.11)

Functions (2.4)–(2.6) are approximated as follows

j=ρln(su− w), w=ŵ +
τ∗
sρ
su · δ(ρu), ŵ =

τ∗
sρ

(sρ · su · δu+ δp), (2.12)

Π = sµ · δu+ sρ · su · ŵ + τ∗
(
su · δp+ γ(sp)1δu

)
, (2.13)

− q = sκ̃ · δε+ τ∗sρ ·
(
δε− (sp)1

(sρ)2
δρ
)

(su)2. (2.14)

In addition, the following non-standard formulas are applied

E(1) = 0.5ρlnu−u+ + ρlnε
ln, (sp)1 = (γ − 1)sρ · sε, (2.15)

ρln = 1/ ln(ρ−; ρ+), εln = ε−ε+ ln(ε−; ε+). (2.16)

Here the non-standard means ρln and εln play an essential role, with the dif-
ference quotient for the logarithmic function

ln(a; b) =
ln b− ln a

b− a
for a 6= b, ln(a; a) =

1

a
, a > 0, b > 0.

To avoid loss of accuracy for |b/a − 1| ≤ δ, with δ > 0 small enough, the
Simpson rule for the corresponding integral is used:

ln(a; b) =

∫ 1

0

dα

(1− α)a+ αb
≈ 1

6a
+

4

3(a+ b)
+

1

6b
.

In [7], this discretization was generalized to the case of general state equa-
tions, and it was verified for the perfect polytropic gas and more complex state
equations on a set of known tests. Unfortunately, there exists no its direct
generalization to the multidimensional case.

Also two simplified schemes A are considered below: the scheme A1 with
the means ρln and εln replaced by the simplest ones sρ and sε as well as the
scheme A2, where in addition u−u+ is replaced by (su)2 (in E(1)) and the term
−0.25h2δu · δp is omitted in equation (2.11).
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The entropy dissipative spatial discretization has recently been constructed
for the multidimensional QGD-equations in [20]. In the 1D case, it leads to
the scheme B where the same equations (2.9)–(2.11) and the formulas j =
ρln(su−w) and (2.15)–(2.16) are used. But the other functions (2.4)–(2.6) are
discretized alternatively:

w = ŵ +Aε
s(τρ)

(sρ)2
su · δ(ρu), ŵ = Aε

sε

(sρ)2
s
(τρ
ε

) (
sρ · su · δu+ δp

)
,

Π = sµ ·Aεδu+ su · sρ · ŵ +Aε
s(τρ)

sρ

(
su · δp+ γ(sp)1δu

)
,

−q = sκ̃ · δε+Aεs(τρ) ·
(
δε− (sp)1

(sρ)2
δρ
)

(su)2,

where Aε = ε−ε+/(sε)
2. Notice that the latter formulas are essentially trans-

formed in comparison with the original version [20] in order to make them
closer to (2.12)–(2.14).

All the described schemes are originally constructed and analyzed on a non-
uniform mesh ωh.

3 Computations of the Riemann problem and comparison
of schemes

Traditionally, the Riemann problem is widely used to analyze the properties
of numerical methods for solving the gas dynamics equations. The initial data
are piecewise-constant and discontinuous in it. Below we consider five tests
which are versions of this problem and reflect different situations in the arising
flows. The tests 1–4 are well-known in the literature [4, 5, 9, 12, 16], and test 5
has recently been proposed to us by M.V. Kraposhin.

Table 1. Data for the Riemann problem

No. ρL uL pL ρR uR pR tfin

1 1 0.75 1 0.125 0 0.1 0.2

2 1 -2 0.4 1 2 0.4 0.15

3 5.99924 19.5975 460.894 5.99924 -6.19633 46.095 0.035

4 0.1261192 8.9047029 782.92899 6.591493 2.2654207 3.1544874 0.0039

5a 0.5 10 0.5 1 -10 1 0.03

5b 0.05 10 0.05 1 -10 1 0.03

In Table 1, the values of initial data (for t = 0) in the tests left and right of
the discontinuity for x = 0 are labeled with the indices L and R respectively,
and tfin is the computation time. It is taken γ = 1.4 in tests 1–4 and γ = 5/3

Math. Model. Anal., 24(2):179–194, 2019.
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in test 5. We use formula (2.8)(a) in tests 1–4 (for continuity with [4, 5]) and
(2.8)(b) in test 5.

The tests are treated on the segment [−X/2, X/2] with X = 1 and for
αS = αP = 1; for even N , at x = 0 the initial values of v = ρ, u, ε are taken as
(vL + vR)/2. Define the mesh ωXh = {−X/2 + kh}Nk=0 with h = X/N .

Below we present some brief information on solving these tests by the
schemes S, A, A1, A2 and B as well as also by the standard-type QGD-scheme
S0 from [4, 5], which is somewhat different from the scheme S. Note that the
verification of one more standard-type QGD-scheme and its comparison with
the Kurganov-Tadmor scheme has recently been performed in [9].

Test 1. This test is one of the Sod problem versions. In the arising flow with
discontinuities, there are typical elements such as a rarefaction wave, a contact
discontinuity and a shock wave. The results of computations are shown in Fig-
ure 1. It and similar figures below contain graphs of the approximate functions
v for the scheme B of our main interest (solid line) and, for comparison, the
exact functions vex (dashed line), where v = ρ, u, p, ε, at time tfin.

Figure 1. Test 1. Solutions for α = 0.2, β = 0.3 and N = 400

For all schemes S, A, A1, A2 and B, the results are close. In particular, for
α = 0.3 and N = 400, the value β = 0.7 is admissible for them whereas the
smaller value β = 0.4 was taken for the scheme S0 in [5].

In this test, we also analyze practical orders of convergence. We introduce
the L1-norm of a function v defined on the mesh ωXh:

‖v‖L1
h

=
h

2
|v0|+ h

N−1∑
k=1

|vk|+
h

2
|vN |.
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The relative L1
h-error of the approximate function v is calculated by the formula

rh(v) = ‖v − vex‖L1
h

/
‖vex‖L1

h
,

where vex is the exact value of the function v = ρ, u, ε.
We select the set of values Ni = 1024, 1280, 1600, 2000, 2500, 3124, 3900,

4880, 6100, 7624, 9530, 11912, 14890, 18612 such that Ni+1/Ni = (or ≈)1.25. In
accordance with the natural hypotheses on the behavior of relative errors

rh(v) ∼ cvhλ(v), max
v=ρ,u,ε

rh(v) ∼ chλ as h→ 0,

the practical orders of convergence approximating λ(v) and λ are calculated as

λi+1(v) = ln
rhi

(v)

rhi+1(v)

/
ln
Ni+1

Ni
, λi+1 = ln

maxv=ρ,u,ε rhi
(v)

maxv=ρ,u,ε rhi+1(v)

/
ln
Ni+1

Ni
,

with 0 ≤ i ≤ 12. The results of computations are given in Figure 2.

Figure 2. Test 1. The practical orders of convergence λi+1(v), v = ρ, u, ε, in dependence
on Ni+1, 0 ≤ i ≤ 12

It should be noticed that λi(ρ) and λi(ε) fluctuate moderately within respec-
tively [0.456, 0.621] and [0.478, 0.637] and differ little from each other, whereas
λi(u) varies quite strongly within [0.260, 1.204] despite the moderate growth of
Ni.

We emphasize that in this test it turned out that maxv=ρ,u,ε rhi
(v) = rhi

(ε)
for all i. Therefore λi = λi(ε) for all i, and this value tends to ≈ 0.5 as i grows.

Test 2. In this flow, two rarefaction waves are formed running away from
the region center x = 0, where ρ and p are close to 0 (in particular, ρ(0, tfin) ≈
0.022 and p(0, tfin) ≈ 0.0019) but ε does not tend to zero. Although the
solution is continuous for t > 0, for a lot of schemes [12], including the scheme
S0 [4,5] and the QGD-scheme in [9], a significant unphysical local extremum of
ε (an entropy wake) is observed for x = 0, which slowly decreases as N grows.

The results of computations are presented in Figure 3. The entropy wake
is almost insignificant there. Moreover, it slowly decreases and contracts as N
grows. The solution is still computed for β = 0.6, but its quality decreases as
β grows, and at β = 0.7 it is already destroyed.

Math. Model. Anal., 24(2):179–194, 2019.



186 A. Zlotnik and T. Lomonosov

Figure 3. Test 2. Solutions for α = 0.018, β = 0.2 and N = 250

For the schemes A and B, the results are similar. For the scheme A1, the
quality of computing u and ε in the vicinity of x = 0 is worse; for the scheme
A2, it is quite low (with large wakes not only in ε but ρ as well). For the
scheme S, even for a small β = 0.01, the solution is destroyed; if, for example,
α = β = 0.1, then the solution is computed, but its quality is low.

We can improve further the numerical solution applying the refined mesh
on [−0.1, 0.1]. In particular, diminishing the step 4 times there and thereby
increasing N up to 400, we reduce both the height and especially the support
of the entropy wake in ε.

Test 3. The gas flow consists of two shock waves diverging in gas between
which a contact discontinuity moves. The maxima of ρ and p increase substan-
tially. The results of computations are presented in Figure 4.

For the schemes A and B, the results are similar. For the schemes A1, A2

and S, hollows of ρ and p are observed before the front of the left shock wave.
For the scheme S0, α = 0.4 and lesser β = 0.1 were taken, and the quality of
the numerical solution was somewhat worse [5].

Test 4. The flow contains a strong shock wave, a rarefaction wave and
a contact discontinuity between them. A narrow and high local maximum
(a peak) of ρ arises, and its accurate reproduction requires to use large N .
There are also known difficulties [4,5,12] in computing u in the vicinity of the
rarefaction wave x ≈ −0.32, where the difference of values of ρ is very small.
The results of the computation are shown in Figure 5.

For the schemes A and B, the results are mainly similar. In particular, for
α = 0.2 and N = 6400, for the scheme A and the schemes A1, A2, B the values
respectively β = 0.3 and β = 0.2 are admissible.
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Figure 4. Test 3. Solutions for α = 0.3, β = 0.5 and N = 600

For the scheme S and α = 0.6 as well as the scheme S0 and α = 0.3 [5], the
value β = 0.3 is admissible.

For a non-uniform spatial mesh, the total amount of nodes can be reduced
with the same quality of the results. Namely, the same step can be kept in
[0, 0.1] but outside this segment it can be taken larger so that the total amount
of nodes will be N = 3000.

Tests 5a and 5b. The initial data of these tests are characterized by a high
jump in u but constant |u| and ε and differ only by a 2- or 20-fold jumps in ρ.
The results of computations in the simpler test 5a are omitted for brevity, and
in the more complex test 5b they are presented in Figure 6.

For the schemes A and B, the results in both tests 5a and 5b are similar. In
particular, for N = 500, in the tests 5a and 5b, the values respectively α = 0.4
and β = 0.1 as well as α = β = 0.2 are admissible. As for the schemes S,
A1 and A2, the solutions are destroyed in both tests even for a much smaller
β = 0.001. Also, for the scheme S0 and QGD-scheme from [9], there exist
serious problems concerning the computation of solutions (M.V. Kraposhin,
private communication).

In addition to the above tests, successful computations of many other tests
known in the literature were performed. Their results are omitted for brevity.

Thus, for the schemes A and B the results are mostly close, and they well
proven themselves in the test computations and in some of them demonstrated
obtaining numerical solutions of better quality (on the same grid) and/or the
possibility of using a larger (sometimes hundreds of times) time step than for
the standard-type QGD-schemes. In some tests, the simplified schemes A1 and
A2 are significantly inferior to the scheme A and thus such simplifications are
not always justified.

Math. Model. Anal., 24(2):179–194, 2019.
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Figure 5. Test 4. Solutions for α = 0.2, β = 0.2 and N = 6400

4 Analysis of relevance in the nonlinear statement of
linearized L2-dissipativity conditions

Both necessary and sufficient conditions have recently been derived in [22] for
L2-dissipativity of the Cauchy problem for the scheme S linearized at a constant
background solution (ρ, u, ε) = (ρ∗, u∗, ε∗), with ρ∗ > 0 and ε∗ > 0.

Using formula (2.8)(b) for τ , the necessary condition for the scheme S and
the schemes A and B has the same form

β ≤ β̂nec(α̂,M) := min
{

2α̂, (M + 1)2
/[

2α̂
(
M2 + λmax

)]}
, (4.1)

where M = |u∗|/cs∗ and cs∗ =
√
γ(γ − 1)ε∗ are the background Mach number

and sound velocity as well as

λmax = max
{ α̂P + 1

2
+
[( α̂P − 1

2

)2
+
γ − 1

γ
α̂P

]1/2
,

(αS + 1)/γ + 1

2
+
[( (αS − 1)/γ + 1

2

)2
+

4

γ
M2
]1/2

,

(αS − 1)/γ + α̂P
2

+ 1 +
[( α̂P − (αS + 1)/γ

2

)2
+ 4

γ − 1

γ
M2
]1/2}

,

with α̂P = 1/αP .
If formula (2.8)(a) for τ is in use, then condition (4.1) takes the form

β ≤ βnec(α,M) := min
{

2α(M + 1), (M + 1)
/[

2α
(
M2 + λmax

)]}
. (4.2)

Comparison of conditions (4.1) and (4.2) gives arguments in favor of formula
(2.8)(b) for large M [22].
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Figure 6. Test 5b. Solutions for α = 0.4, β = 0.1 and N = 500

The question to what extent the conditions are relevant in the nonlinear
statement including the case of the growing Mach number is of great interest.
In order to analyze it, numerical experiments were performed for the model
Riemann problem with the values ρL = 0.5, uL =

√
γM0, pL = 0.5, ρR = 1,

uR = 0 and pR = 1 as well as γ = 5/3 (note that εL = εR = 3/2), X = 1 and
tfin = 0.03. The values of the “left” Mach number M0 = 2, 4, 6 were taken.

Both formulas (2.8)(b) and (2.8)(a) were used, and the values respectively

α̂ = 0.2, 0.3, . . ., 0.9 and β = 0.1kβ̂nec(α̂,M0) as well as α = 0.1, 0.2, . . . , 0.9
and β = 0.1kβnec(α,M0), 1 ≤ k ≤ 11, were tested.

To analyze the quality of numerical solutions, we applied (similarly to [23])
the deviation of their relative variation from 1 at the time moment t = tfin:

δV = max
v=ρ,u,ε

∣∣∣ Vh(v)

V (vex)
− 1
∣∣∣ with Vh(v) :=

N∑
k=1

|vk − vk−1|.

Here Vh(v) is the variation on the mesh ωXh of the approximate function v,
and V (vex) is the variation on [−X/2, X/2] of the related exact function vex.

The results of computations are presented for the scheme B in Figures 7
and 9, respectively, for formulas (2.8)(b) and (2.8)(a), as well as for the scheme
S in Figure 8 for formula (2.8)(b). We take N = 1000. The upper and lower
Λ-shaped lines depict plots of the right-hand sides of the necessary conditions
(4.1) and (4.2) for M = M0 and M = 0 respectively; here they are broader for
M = M0 than for M = 0.

The points with δV ∈ [0, 0.1], (0.1, 0.2] and (0.2,∞] are marked with trian-
gles, squares and circles respectively; here δV = ∞ and the dash in the tables
below mean that the solution was destroyed due to overflow or the values ρ < 0

Math. Model. Anal., 24(2):179–194, 2019.
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or ε < 0 were obtained. Conditionally, one may consider the points with such
δV corresponding to stable, intermediate and unstable solutions, respectively,
since the plots of the first ones can include only single hollows or spikes, quite
acceptable in practice, whereas the plots of the third type solutions, on the
contrary, contain noticeable oscillations as a rule.
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Figure 7. Practical stability analysis of the scheme B for β = 0.1kβ̂nec(α̂,M0),
1 ≤ k ≤ 11, in dependence on α̂, for M0 = 2, 4, 6 and τ = α̂h/(|u|+ cs)

In Figure 7, for M0 = 2 and α̂ ≥ 0.4 as well as M0 = 4 and α̂ ≥ 0.5, the
results correspond well to condition (4.1) for M = M0; if M0 = 6 and α̂ ≥ 0.4,
then they correspond better to condition (4.1) for M = 0. All computations
for α̂ and β violating condition (4.1) for M = M0 are unstable excluding the
only case M0 = 2 and α̂ = 0.5.

In addition, in the Table 2, the values δV are given in dependence on α̂
and k, i.e. β, for M0 = 6. Note that they are non-decreasing in k for all α̂,
excluding α̂ = 0.4, where they first decrease to k = 4, and α̂ = 0.6, where for
k = 6 the solution is destroyed but for the next k = 7 the solution is computed
again. The latter is rather curious and shows how complicated can be situation
with stability in nonlinear statement. For k = 9, 10, 11 and all α̂ the solutions
are destroyed; the same takes place already for k = 8 and α̂ 6= 0.3. The values
δV are minimal for α̂ = 0.9 and, moreover, they decrease in α̂ for 1 ≤ k ≤ 7
(ignoring the dashes for k = 6, 7).

Comparison of Figures 7 and 8 shows that, for M0 = 6 as well as M0 = 4
and α̂ ≥ 0.6, the results for the scheme B are essentially better than those for
the scheme S. For M0 = 4 and α̂ ≤ 0.5, the situation is opposite despite that
condition (4.1) is the same for the both schemes.
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Table 2. The values δV (the scheme B) for various α̂ and β = 0.1kβ̂nec(α̂,M0) and M0 = 6

α/k 1 2 3 4 5 6 7 8 9 10 11

0.2 0.46 0.47 0.49 0.51 0.54 - - - - - -
0.3 0.16 0.18 0.19 0.22 0.24 0.26 0.29 0.31 - - -
0.4 0.098 0.096 0.093 0.088 0.089 0.10 0.12 - - - -
0.5 0.067 0.069 0.070 0.071 0.071 - - - - - -
0.6 0.050 0.051 0.053 0.054 0.057 - 0.060 - - - -
0.7 0.032 0.034 0.035 0.037 0.038 0.039 0.041 - - - -
0.8 0.016 0.017 0.018 0.020 0.021 0.022 0.023 - - - -
0.9 0.0063 0.0064 0.0065 0.0066 0.0067 0.0068 0.0069 - - - -
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Figure 8. Practical stability analysis of the scheme S for β = 0.1kβ̂nec(α̂,M0),
1 ≤ k ≤ 11, in dependence on α̂, for M0 = 4, 6 and τ = α̂h/(|u|+ cs)

In Figure 9 for M0 = 2 and α ≥ 0.3 as well as M0 = 4, 6 and α ≥ 0.2, the
results correspond well to condition (4.2) for M = M0. But for α = 0.1 (that
is the closest value to the maximum point of the right-hand side of (4.2) for
M = 0 and M = M0 = 4, 6) all the computations are unstable. All numerical
results for α and β violating condition (4.2) for M = M0 are also unstable.

In addition, in the Table 3, the values δV are given in dependence on α
and β for M0 = 6. Note that for α 6= 0.3 they are non-increasing (though
negligibly) as k increases from 1 to 9 that in general is anomalous behaviour.
For α = 0.9 and k = 1, 2, δV even passes the “critical” value 0.1. But, for
α = 0.3, the values δV are non-decreasing. For α ≥ 0.3, the values increase
with the jump when k = 9 changes to 10, and for all α and k = 11 the solutions
are already destroyed. The values δV are minimal for α = 0.4 and, moreover,
they decrease in α = 0.2, 0.3, 0.4 and increase in α ≥ 0.4, for all 1 ≤ k ≤ 9.

Thus conditions (4.1) and (4.2) can be also applied in the nonlinear state-
ment as the Mach number grows, within certain limits and at least in some
computations. However, as a rule, this is more adequate for the entropy dis-
sipative QGD-discretizations but overestimates the acceptable time step for
the standard-type QGD-schemes. Similar conclusions follow from [23] in the
simpler barotropic case.
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Figure 9. Practical stability analysis of the scheme B for β = 0.1kβnec(α,M0),
1 ≤ k ≤ 11, in dependence on α, for M0 = 2, 4, 6 and τ = αh/cs

Table 3. The values δV (the scheme B) for various α and β = 0.1kβnec(α,M0) and M0 = 6

α/k 1 2 3 4 5 6 7 8 9 10 11

0.2 0.051 0.051 0.051 0.051 0.05 0.05 0.05 0.049 0.048 0.047 -
0.3 0.019 0.02 0.02 0.021 0.021 0.022 0.022 0.023 0.023 9.2 -
0.4 0.0084 0.0081 0.0079 0.0076 0.0073 0.0070 0.0068 0.0065 0.0062 17 -
0.5 0.024 0.023 0.023 0.023 0.023 0.023 0.022 0.022 0.022 9.3 -
0.6 0.039 0.039 0.039 0.039 0.039 0.038 0.038 0.038 0.038 5.1 -
0.7 0.056 0.056 0.055 0.055 0.055 0.055 0.055 0.055 0.054 27 -
0.8 0.089 0.072 0.072 0.072 0.072 0.072 0.071 0.071 0.071 18 -
0.9 0.12 0.089 0.088 0.088 0.088 0.088 0.088 0.088 0.088 30 -
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