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Abstract. The imprecision and the uncertainty of many systems can be expressed
with interval models. This paper presents a method for fault detection in uncer-
tain discrete dynamic systems. First, the discrete dynamic system with uncertain
parameters is formulated as an interval optimization model. In this model, we also
assume that there are some errors of observation values of the inputs/outputs. Then,
M. Hlad́ık’s newly proposed algorithm is exploited for this model. Some numerical
examples are also included to illustrate the method efficiency.
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1 Introduction

Fault detection is an issue of paramount relevance in process control from the
viewpoint of improving the system reliability. The problem of fault detection
in dynamic systems has drawn a lot of attention of researchers over the last
two decades. In the literature such a point has been treated using several
methodological frameworks, see for example [3, 5, 6, 7, 12, 23].

Whenever it is not possible to totally decouple the fault effects from the
perturbation effects on the system, optimization is often used. This kind of
method is based on formulation of the fault detection problem as an opti-
mization problem. However, most of these algorithms make many idealized
assumptions which are not satisfied, since in reality the system parameters
may either be uncertain or time-dependent resulting in a mismatch between
the real world system and the associated mathematical model [2, 14, 16].

In this paper, a novel fault detection procedure for uncertain discrete dy-
namic system is proposed, based on the interval optimization technique. In
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Section 2, the problem is formulated as an optimization model. Then, Section 3
analyzes the model and M. Hlad́ık’s newly proposed algorithm is exploited for
this model. Some numerical examples are given in Section 4 to illustrate the
results of the method and Section 5 concludes the paper.

2 Problem Formulation

Consider the following discrete dynamic system

y(k + n) +

n−1∑
i=0

aiy(k + i) =

m∑
i=0

biu(k + i),

where ai and bi are system parameters, y and u are observation value of inputs
and outputs, respectively.

Taking the modelling errors and some other uncertain factors into account,
the system parameters ai and bi may be allowed to be various in some predeter-
mined intervals, say, aLi 6 ai 6 aRi , i = 0, . . . , n−1, bLi 6 bi 6 bRi , i = 0, . . . ,m.
An error will occur if some of the system parameters ai and bi are beyond the
intervals [aLi , a

R
i ], i = 0, . . . , n− 1 or [bLi , b

R
i ], i = 0, . . . ,m, respectively.

Denote observation value of the inputs/outputs of the signal of the kth
group by

qk =[y(k + n− 1), y(k+n− 2), . . . , y(k),−u(k + m), . . . ,−u(k + 1),−u(k)]T ,

nk = y(k + n).

Consider p groups observation of values, k = 1, . . . , p (p > m + n), and denote
them by

Q = [q1, . . . , qp]T , N = [n1, . . . , np]T . (2.1)

Let X = [an−1, an−2, . . . , a0, bm, am−1, . . . , b0]T be the system parameters. If
these parameters completely match the what is actually happening, we have

QX + N = 0. (2.2)

Thus, we say that the observation value [Q,N ] and the system are consistent
if there exists some system parameter

X∗ = [a∗n−1, a
∗
n−2, . . . , a

∗
0, b
∗
m, b∗m−1, . . . , b

∗
0]T

such that QX∗ + N = 0, where a∗i ∈ [aLi , a
R
i ], i = 0, . . . , n − 1, b∗j ∈ [bLj , b

R
j ],

j = 0, . . . ,m. Otherwise they are inconsistent.
The consistency of the system can be verified by solving a simple linear

program QX + N = 0, XL 6 X 6 XR. Nevertheless, for a reason that will be
explained later, we would like to formulate the fault diagnosis for this discrete
dynamic system alternatively as a convex quadratic optimization problem

min (QX + N)T (QX + N) (2.3)

s.t. XL 6 X 6 XR,
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where

XL =
[
aLn−1, a

L
n−2, . . . , a

L
0 , b

L
m, bLm−1, . . . , b

L
0

]T
,

XR =
[
aRn−1, a

R
n−2, . . . , a

R
0 , b

R
m, bRm−1, . . . , b

R
0

]T
.

Define the function f(X) = (QX + N)T (QX + N). Thus, the observation
value and the system are consistent if there exists X∗ ∈ [XL, XR] such that
f(X∗) = 0, or |f(X∗)| 6 ε, where ε is a predetermined tolerance. Otherwise
they are inconsistent. Here the optimal value of the problem (2.3) is used as
the threshold value. Clearly, model (2.3) is equivalent to the model

min
1

2
XTQTQX + NTQX (2.4)

s.t. XL 6 X 6 XR,

since

(QX + N)T (QX + N) = 2

(
1

2
XTQTQX + NTQX

)
+ NTN. (2.5)

Further, let

H = QTQ, Y = X −XL, CT =
(
XL
)T

H + NTQ. (2.6)

The model (2.4) becomes

min
1

2
Y THY + CTY

s.t. Y > 0, Y 6 XR −XL.

For universality, we assume that the system parameter vector Y is to be a
subject to a more general linear relation AY 6 B, under which the system is
consistent. This linear relation can be determined according to the character-
istic of the system considered. Thus, the model (2.4) is translated into a more
general model below

min
1

2
Y THY + CTY (2.7)

s.t. Y > 0, AY 6 B,

where

1

2
Y THY +CTY =

(
1

2
XTQTQX+NTQX

)
−
(

1

2
XLTQTQXL+NTQXL

)
.

(2.8)
Model (2.7) is a standard convex quadratic optimization problem, which can
be solved in a finite number of steps.

In reality however, not only the system parameters, but also observation
values of the inputs/outputs of the signal vary in some interval. We say that
such discrete dynamic systems are uncertain discrete dynamic systems. In this
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paper, we first formulate the uncertain discrete dynamic systems as an interval
optimization problem. Then one effective solution algorithm is developed.

For simplicity, some notations are first introduced. Superscript, I, on a
quantity indicates that the quantity is an interval (number, vector, or matrix).
Quantities without a superscript are real (numbers, vectors, or matrices). The
left endpoint of an interval is indicated by a superscript, L, and the right
endpoint by a superscript, R. Thus a scalar interval aI is given by [aL, aR].
The vector of left endpoints of an interval vector, xI , is denoted by xL; and
the vector of right endpoints by xR. Thus, we write an interval vector, xI , as
[xL, xR]. Similarly, we write an interval matrix, AI , as [AL, AR].

We say that a real vector x ∈ Rn is contained in an interval vector xI

and write x ∈ xI , if xL
i 6 xi 6 xR

i for all i = 1, . . . , n. We say that a real
matrix A ∈ Rm×n is contained in an interval matrix AI and write A ∈ AI , if
aLij 6 aij 6 aRij for all i = 1, . . . ,m, j = 1, . . . , n.

Now assume that the system parameters lie in some allowable interval and
the observation value of the inputs/outputs of the signal varies in some error
interval. Thus the matrices Q, N in (2.1) are changed into interval matrices

QI =
[
qI1 , . . . , q

I
p

]T
, N I =

[
nI
1, . . . , n

I
p

]T
. The interval counterpart to (2.2) is

QIX + N I = 0, XL 6 X 6 XR, (2.9)

which is an interval linear system.
It is well known that the optimal problems with constraints of the interval

system AIx = bI , x > 0 are more difficult than that with the system AIx 6 bI ,
x > 0 (cf. [10, 4]). Thus, we would like to formulate the fault diagnosis for
this discrete dynamic system with inexact inputs/outputs alternatively as an
interval convex quadratic optimization model.

In a way similar to the analysis presented above, we obtain the interval
convex quadratic optimization model for uncertain discrete dynamic system as
follows

min
1

2
Y THIY +

(
CI
)T

Y (2.10)

s.t. Y > 0, AIY 6 BI ,

where the system parameter restriction is assumed to be subject to general
linear relation AIY 6 BI , under which the system is consistent. This general
form makes the model more generally or universally applicable.

In recent years, many papers were devoted to study the solvability of the
interval linear systems, see e.g. [1, 17, 18, 19, 20, 21]. Rohn gave many com-
plexity results related to interval problems, and proved their NP-hardness (see
[18, 19, 20, 21]). His papers provide a deep insight into the algebraic properties
of linear interval systems. However, in this paper, we would like to use the in-
terval model (2.10) instead of model (2.9), in order to exploit algorithm, which
is recently proposed by Hlad́ık (see, Hlad́ık, 2011 [11]). The interval convex
quadratic optimization problem is studied by some authors, see, e.g., [11, 13].

From the discussions given above, we know that the interval arithmetic is
required for the formulation and the solution of the problem (2.10). A complete
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discussion on interval arithmetic can be found in [1, 17]. Due to the well
known dependency problem, the problem (2.10) is not equivalent to the original
system, but for narrow intervals it can yield a sufficiently tight approximation.
The detailed discussions on dependency can be found in [1, 8, 9, 10, 15, 17].

3 Problem Solving

3.1 Problem analysis

The problem (2.10) can be also described as

min
1

2
Y THY + CTY (3.1)

s.t. Y > 0, AY 6 B,

where H, A, C and B vary in given interval matrices HI , AI and interval
vectors CI , BI . An optimal solution Y ∗ to the problem (3.1) is defined as an
optimal solution to some scenario. That is, for some A ∈ AI , B ∈ BI , c ∈ cI ,
H ∈ HI , Y ∗ is an optimal solution to the problem (3.1).

Denote by [fL, fR] the range in which the optimal value of (3.1) varies.
From (2.5) and (2.8) we know that

(
QIX + N I

)T (
QIX + N I

)
= 2

(
1

2
Y THIY +

(
CI
)T

Y

)
+ ωI ,

where

ωI = (N I)TN I + 2
(
N I
)T

QIXL + XLT (
QI
)T

QIXL (3.2)

is an interval number. Thus, the threshold interval is obtained by[
2fL, 2fR

]
+ ωI , (3.3)

once the range of optimal value range [fL, fR] is available. The system is
consistent if and only if |[2fL, 2fR] + ωI | < ε, where ε is a predetermined
threshold according to the characteristic of the system considered, and |aI |
denotes the length of the interval number aI . In general, we may assume
that a normalized threshold ε lies in the interval (0, 1). In reality, ε is chosen
according to the characteristic of the system considered and the demand of the
decision maker. In examples of Section 4, we use 0.5, the middle value of the
interval (0, 1).

In the next subsection, we provide Hlad́ık’s newly proposed solution method
[11] for interval convex quadratic programming, by which the threshold interval
can be easily obtained.

3.2 Hlad́ık’s solution method for interval convex quadratic pro-
gramming

The objective function value of the fault diagnosis model (2.10) (or (3.1)) lies
in an interval number [fL, fR]. Clearly, the lower and the upper bound of

Math. Model. Anal., 16(4):549–557, 2011.



554 W. Li and X.L. Tian

the objective function value of the model (2.10) (or (3.1)), fL and fR, can be
described as interval convex quadratic programming models:

fL = min
H∈HI , C∈CI , A∈AI , B∈BI

min
Y

1

2
Y THY + CTY

s.t. Y > 0, AY 6 B (3.4)

and

fR = max
H∈HI , C∈CI , A∈AI , B∈BI

min
Y

1

2
Y THY + CTY

s.t. Y > 0, AY 6 B, (3.5)

respectively. To obtain the lower bound fL and upper bound fR, we should
determine the optimal solution of model (3.4) and (3.5). Some results for these
cases were developed by X.Y. Wu, G.H. Huang, L. Liu, J.B.Li (2006) [22] and
by Liu and Wang (2007) [13], respectively. An algorithm for this model is also
proposed in the original manuscript of this paper. However, during the process
of revising this paper, we have learned of M. Hlad́ık’s solution method for
interval nonlinear programming, based on dual theory of interval programming
[11]. As a special case, M. Hlad́ık obtained the lower bound fL and upper
bound fR of interval convex quadratic program by two simple non-interval
quadratic programming problems. Thus, our original solution method can be
greatly simplified by using this new solution method, described below.

Proposition 1 [Hlad́ık, 2011]. We have

fL = min
1

2
Y THLY + CLY fR = min

1

2
Y THRY + CRTY (3.6)

s.t. Y > 0, ALY 6 BR, s.t. Y > 0, ARY 6 BL.

Once the lower bound fL and upper bound fR of the problem (2.10) (or
(3.1)) are obtained, the threshold interval (3.3) is given by[

2fL + ω, 2fR + ω̄
]
. (3.7)

4 Illustrative Examples and Remarks

In this section, two numerical examples are discussed to demonstrate the pro-
posed method.

Example 1. Assume that the system parameter vector X varies in the following
interval X = ([−1, 1], [0, 2])T , in which case the system works well. Assume
that the observation value of the inputs/outputs of the signal varies in the
matrices

Q =

(
[1, 2] 1

1 [2, 3]

)
, N =

(
[1, 2]

[2, 3]

)
,
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respectively. Denote Y by Y = X − XL, the system parameter restriction is
assumed to be subject to linear relation AIY 6 BI , where

A =

(
[4, 8] 1

[1, 2] [−8,−4]

)
, B =

(
2

2

)
.

Given the threshold ε = 0.5. The fault diagnosis model of this uncertain dis-
crete dynamic systems, according to (2.4), (2.6) and (2.10), can be formulated
as

min[−2, 5]Y1 + [0, 8]Y2 + [1, 2.5]Y 2
1 + [3, 5]Y1Y2 + [2.5, 5]Y 2

2

s.t. [4, 8]Y1 + Y2 6 2,

[1, 2]Y1 + [−8,−4]Y2 6 2, Y1, Y2 > 0.

Using (3.6), fL and fR can be determined respectively by

fL = min−2Y1 + Y 2
1 + 3Y1Y2 + 2.5Y 2

2

s.t. 4Y1 + Y2 6 2, Y1 − 8Y2 6 2, Y1, Y2 > 0.

and
fR = min 5Y1 + 8Y2 + 2.5Y 2

1 + 5Y1Y2 + 5Y 2
2 ,

s.t. 8Y1 + Y2 6 2, 2Y1 − 4Y2 6 2, Y1, Y2 > 0.

By employing the function quadprog in Matalab 6.5, we derive the upper bound
fR = 0 and the lower bound fL = −0.75. Then, using (3.2) and (3.7) we obtain
the threshold interval [−8.5, 12]. The length of this interval is 12 + 8.5 > 0.5,
we say that the same error occur with the system.

Example 2. Assume that the allowable interval of the system parameter vec-
tor X is X = ([0, 1], [0.5, 2])T . Assume that the observation value of the in-
puts/outputs of the signal varies in the matrices

Q =

(
[0.125, 0.25] 0.125

0.125 [0.25, 0.375]

)
, N =

(
[0.125, 0.25]

[0.25, 0.375]

)
,

respectively. Denote Y by Y = X − XL, the system parameter restriction is
assumed to be subject to linear relation AIY 6 BI , where

A =

(
[4, 8] 1

[1, 2] [−8,−4]

)
, B =

(
2

2

)
.

Given the threshold ε=0.5. The fault diagnosis model of these uncertain dis-
crete dynamic systems, according to (2.4), (2.6) and (2.10), can be formulated
as

min [0.0703, 0.1484]Y1 + [0.1172, 0.25]Y2 + [0.0157, 0.0391]Y 2
1

+ [0.0469, 0.0781]Y1Y2 + [0.0391, 0.0782]Y 2
2

s.t. [4, 8]Y1 + Y2 6 2,

[1, 2]Y1 + [−8,−4]Y2 6 2, Y1, Y2 > 0.

Then we have

fL = min 0.0703Y1 + 0.1172Y2 + 0.0157Y 2
1 + 0.0469Y1Y2 + 0.0391Y 2

2

s.t. 4Y1 + Y2 6 2, Y1 − 8Y2 6 2, Y1, Y2 > 0

Math. Model. Anal., 16(4):549–557, 2011.
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and

fR = min 0.1484Y1 + 0.25Y2 + 0.0391Y 2
1 + 0.0781Y1Y2 + 0.0782Y 2

2 ,

s.t. 8Y1 + Y2 6 2, 2Y1 − 4Y2 6 2, Y1, Y2 > 0.

By employing the function quadprog in Matalab 6.5, we derive the upper
bound fR = 0 and the lower bound fL = 0. Then, using (3.2) and (3.7) we
obtain the threshold interval [0.1758, 0.4141]. The length of this interval is
0.4141− 0.1785 = 0.2356 < 0.5, we say that the the system is consistent.

5 Conclusion

In this paper, a method for fault detection in uncertain discrete dynamic sys-
tems is proposed. The key feature of the method is the consideration of both
system parameter uncertainties in the model of the system and the objective
errors of the observation value of the inputs/outputs. An interval optimization
model is formulated to describe not only the disturbances caused by unknown
inputs, but also by uncertainties of parameters. This model can be handled
effectively by translating it to two classical quadratic optimization problems,
based on the duality theory of the optimization. As mentioned in the end of
the Section 2, the program (2.10) is an approximation of the original system,
due to the phenomenon of dependency. It is interesting to study the effect of
overestimation deeply, and to investigate quality of the approximation.
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